1
|
Li Y, Wu S, Ye K. Landscape of RNA pseudouridylation in archaeon Sulfolobus islandicus. Nucleic Acids Res 2024; 52:4644-4658. [PMID: 38375885 PMCID: PMC11077068 DOI: 10.1093/nar/gkae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Pseudouridine, one of the most abundant RNA modifications, is synthesized by stand-alone or RNA-guided pseudouridine synthases. Here, we comprehensively mapped pseudouridines in rRNAs, tRNAs and small RNAs in the archaeon Sulfolobus islandicus and identified Cbf5-associated H/ACA RNAs. Through genetic deletion and in vitro modification assays, we determined the responsible enzymes for these modifications. The pseudouridylation machinery in S. islandicus consists of the stand-alone enzymes aPus7 and aPus10, and six H/ACA RNA-guided enzymes that account for all identified pseudouridines. These H/ACA RNAs guide the modification of all eleven sites in rRNAs, two sites in tRNAs, and two sites in CRISPR RNAs. One H/ACA RNA shows exceptional versatility by targeting eight different sites. aPus7 and aPus10 are responsible for modifying positions 13, 54 and 55 in tRNAs. We identified four atypical H/ACA RNAs that lack the lower stem and the ACA motif and confirmed their function both in vivo and in vitro. Intriguingly, atypical H/ACA RNAs can be modified by Cbf5 in a guide-independent manner. Our data provide the first global view of pseudouridylation in archaea and reveal unexpected structures, substrates, and activities of archaeal H/ACA RNPs.
Collapse
MESH Headings
- Pseudouridine/metabolism
- Sulfolobus/genetics
- Sulfolobus/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Archaeal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- Archaeal Proteins/metabolism
- Archaeal Proteins/genetics
- RNA Processing, Post-Transcriptional
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
Collapse
Affiliation(s)
- Yuqian Li
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Lan YZ, Wu Z, Chen WJ, Fang ZX, Yu XN, Wu HT, Liu J. Small nucleolar RNA and its potential role in the oncogenesis and development of colorectal cancer. World J Gastroenterol 2024; 30:115-127. [PMID: 38312115 PMCID: PMC10835520 DOI: 10.3748/wjg.v30.i2.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification, thereby contributing significantly to the maintenance of cellular functions related to protein synthesis. SnoRNAs have been discovered to possess the ability to influence cell fate and alter disease progression, holding immense potential in controlling human diseases. It is suggested that the dysregulation of snoRNAs in cancer exhibits differential expression across various cancer types, stages, metastasis, treatment response and/or prognosis in patients. On the other hand, colorectal cancer (CRC), a prevalent malignancy of the digestive system, is characterized by high incidence and mortality rates, ranking as the third most common cancer type. Recent research indicates that snoRNA dysregulation is associated with CRC, as snoRNA expression significantly differs between normal and cancerous conditions. Consequently, assessing snoRNA expression level and function holds promise for the prognosis and diagnosis of CRC. Nevertheless, current comprehension of the potential roles of snoRNAs in CRC remains limited. This review offers a comprehensive survey of the aberrant regulation of snoRNAs in CRC, providing valuable insights into the discovery of novel biomarkers, therapeutic targets, and potential tools for the diagnosis and treatment of CRC and furnishing critical cues for advancing research into CRC and the judicious selection of therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
3
|
Grünberg S, Doyle LA, Wolf EJ, Dai N, Corrêa IR, Yigit E, Stoddard BL. The structural basis of mRNA recognition and binding by yeast pseudouridine synthase PUS1. PLoS One 2023; 18:e0291267. [PMID: 37939088 PMCID: PMC10631681 DOI: 10.1371/journal.pone.0291267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/25/2023] [Indexed: 11/10/2023] Open
Abstract
The chemical modification of RNA bases represents a ubiquitous activity that spans all domains of life. Pseudouridylation is the most common RNA modification and is observed within tRNA, rRNA, ncRNA and mRNAs. Pseudouridine synthase or 'PUS' enzymes include those that rely on guide RNA molecules and others that function as 'stand-alone' enzymes. Among the latter, several have been shown to modify mRNA transcripts. Although recent studies have defined the structural requirements for RNA to act as a PUS target, the mechanisms by which PUS1 recognizes these target sequences in mRNA are not well understood. Here we describe the crystal structure of yeast PUS1 bound to an RNA target that we identified as being a hot spot for PUS1-interaction within a model mRNA at 2.4 Å resolution. The enzyme recognizes and binds both strands in a helical RNA duplex, and thus guides the RNA containing the target uridine to the active site for subsequent modification of the transcript. The study also allows us to show the divergence of related PUS1 enzymes and their corresponding RNA target specificities, and to speculate on the basis by which PUS1 binds and modifies mRNA or tRNA substrates.
Collapse
Affiliation(s)
| | - Lindsey A. Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eric J. Wolf
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Nan Dai
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Ivan R. Corrêa
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Erbay Yigit
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Weidenbach K, Gutt M, Cassidy L, Chibani C, Schmitz RA. Small Proteins in Archaea, a Mainly Unexplored World. J Bacteriol 2022; 204:e0031321. [PMID: 34543104 PMCID: PMC8765429 DOI: 10.1128/jb.00313-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In recent years, increasing numbers of small proteins have moved into the focus of science. Small proteins have been identified and characterized in all three domains of life, but the majority remains functionally uncharacterized, lack secondary structure, and exhibit limited evolutionary conservation. While quite a few have already been described for bacteria and eukaryotic organisms, the amount of known and functionally analyzed archaeal small proteins is still very limited. In this review, we compile the current state of research, show strategies for systematic approaches for global identification of small archaeal proteins, and address selected functionally characterized examples. Besides, we document exemplarily for one archaeon the tool development and optimization to identify small proteins using genome-wide approaches.
Collapse
Affiliation(s)
- Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Miriam Gutt
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Liam Cassidy
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Cynthia Chibani
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
5
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
6
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
7
|
Majumder M, Mukhopadhyay S, Kharel P, Gupta R. The presence of the ACA box in archaeal H/ACA guide RNAs promotes atypical pseudouridylation. RNA (NEW YORK, N.Y.) 2020; 26:396-418. [PMID: 31919243 PMCID: PMC7075261 DOI: 10.1261/rna.073734.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Archaea and eukaryotes, in addition to protein-only enzymes, also possess ribonucleoproteins containing an H/ACA guide RNA plus four proteins that produce pseudouridine (Ψ). Although typical conditions for these RNA-guided reactions are known, certain variant conditions allow pseudouridylation. We used mutants of the two stem-loops of the Haloferax volcanii sR-h45 RNA that guides three pseudouridylations in 23S rRNA and their target RNAs to characterize modifications under various atypical conditions. The 5' stem-loop produces Ψ2605 and the 3' stem-loop produces Ψ1940 and Ψ1942. The latter two modifications require unpaired "UVUN" (V = A, C, or G) in the target and ACA box in the guide. Ψ1942 modification requires the presence of U1940 (or Ψ1940). Ψ1940 is not produced in the Ψ1942-containing substrate, suggesting a sequential modification of the two residues. The ACA box of a single stem-loop guide is not required when typically unpaired "UN" is up to 17 bases from its position in the guide, but is needed when the distance increases to 19 bases or the N is paired. However, ANA of the H box of the double stem-loop guide is needed even for the 5' typical pseudouridylation. The most 5' unpaired U in a string of U's is converted to Ψ, and in the absence of an unpaired U, a paired U can also be modified. Certain mutants of the Cbf5 protein affect pseudouridylation by the two stem-loops of sR-h45 differently. This study will help elucidate the conditions for production of nonconstitutive Ψ's, determine functions for orphan H/ACA RNAs and in target designing.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Shaoni Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Parinati Kharel
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
8
|
Saez I, Gerbracht JV, Koyuncu S, Lee HJ, Horn M, Kroef V, Denzel MS, Dieterich C, Gehring NH, Vilchez D. The E3 ubiquitin ligase UBR5 interacts with the H/ACA ribonucleoprotein complex and regulates ribosomal RNA biogenesis in embryonic stem cells. FEBS Lett 2019; 594:175-188. [PMID: 31365120 DOI: 10.1002/1873-3468.13559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
UBR5 is an E3 ubiquitin ligase involved in distinct processes such as transcriptional regulation and development. UBR5 is highly upregulated in embryonic stem cells (ESCs), whereas its expression decreases with differentiation, suggesting a role for UBR5 in ESC function. However, little is known about how UBR5 regulates ESC identity. Here, we define the protein interactome of UBR5 in ESCs and find interactions with distinct components of the H/ACA ribonucleoprotein complex, which is required for proper maturation of ribosomal RNA (rRNA). Notably, loss of UBR5 induces an abnormal accumulation of rRNA processing intermediates, resulting in diminished ribosomal levels. Consequently, lack of UBR5 triggers an increase in p53 levels and a concomitant decrease in cellular proliferation rates. Thus, our results indicate a link between UBR5 and rRNA maturation.
Collapse
Affiliation(s)
- Isabel Saez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | | | - Seda Koyuncu
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Hyun Ju Lee
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Moritz Horn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Virginia Kroef
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus, Tschira Institute for Computational Cardiology, University Hospital, Heidelberg, Germany
| | - Niels H Gehring
- Institute for Genetics, Department of Biology, University of Cologne, Germany
| | - David Vilchez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
9
|
Adachi H, De Zoysa MD, Yu YT. Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:230-239. [PMID: 30414851 DOI: 10.1016/j.bbagrm.2018.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023]
Abstract
Pseudouridylation is a post-transcriptional isomerization reaction that converts a uridine to a pseudouridine (Ψ) within an RNA chain. Ψ has chemical properties that are distinct from that of uridine and any other known nucleotides. Experimental data accumulated thus far have indicated that Ψ is present in many different types of RNAs, including coding and noncoding RNAs. Ψ is particularly concentrated in rRNA and spliceosomal snRNAs, and plays an important role in protein translation and pre-mRNA splicing, respectively. Ψ has also been found in mRNA, but its function there remains essentially unknown. In this review, we discuss the mechanisms and functions of RNA pseudouridylation, focusing on rRNA, snRNA and mRNA. We also discuss the methods, which have been developed to detect Ψs in RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
Affiliation(s)
- Hironori Adachi
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Meemanage D De Zoysa
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yi-Tao Yu
- University of Rochester Medical Center, Department of Biochemistry and Biophysics, Center for RNA Biology, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
10
|
Fujikane R, Behm-Ansmant I, Tillault AS, Loegler C, Igel-Bourguignon V, Marguet E, Forterre P, Branlant C, Motorin Y, Charpentier B. Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Ψ-synthase activities of the archaeal Cbf5 protein. Sci Rep 2018; 8:13815. [PMID: 30218085 PMCID: PMC6138745 DOI: 10.1038/s41598-018-32164-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023] Open
Abstract
Archaeal RNA:pseudouridine-synthase (PUS) Cbf5 in complex with proteins L7Ae, Nop10 and Gar1, and guide box H/ACA sRNAs forms ribonucleoprotein (RNP) catalysts that insure the conversion of uridines into pseudouridines (Ψs) in ribosomal RNAs (rRNAs). Nonetheless, in the absence of guide RNA, Cbf5 catalyzes the in vitro formation of Ψ2603 in Pyrococcus abyssi 23S rRNA and of Ψ55 in tRNAs. Using gene-disrupted strains of the hyperthermophilic archaeon Thermococcus kodakarensis, we studied the in vivo contribution of proteins Nop10 and Gar1 to the dual RNA guide-dependent and RNA-independent activities of Cbf5 on 23S rRNA. The single-null mutants of the cbf5, nop10, and gar1 genes are viable, but display a thermosensitive slow growth phenotype. We also generated a single-null mutant of the gene encoding Pus10, which has redundant activity with Cbf5 for in vitro formation of Ψ55 in tRNA. Analysis of the presence of Ψs within the rRNA peptidyl transferase center (PTC) of the mutants demonstrated that Cbf5 but not Pus10 is required for rRNA modification. Our data reveal that, in contrast to Nop10, Gar1 is crucial for in vivo and in vitro RNA guide-independent formation of Ψ2607 (Ψ2603 in P. abyssi) by Cbf5. Furthermore, our data indicate that pseudouridylation at orphan position 2589 (2585 in P. abyssi), for which no PUS or guide sRNA has been identified so far, relies on RNA- and Gar1-dependent activity of Cbf5.
Collapse
Affiliation(s)
- Ryosuke Fujikane
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
- Fukuoka Dental College, Department of Physiological Sciences and Molecular Biology, Section of Cellular and Molecular Regulation, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Isabelle Behm-Ansmant
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Anne-Sophie Tillault
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Christine Loegler
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Valérie Igel-Bourguignon
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Evelyne Marguet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
- Institut Pasteur, Département de Microbiologie, 25 rue du Dr Roux, F-7505, Paris, France
| | - Christiane Branlant
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, F-54500, Nancy, France
| | - Bruno Charpentier
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France.
| |
Collapse
|
11
|
Zhao Y, Dunker W, Yu YT, Karijolich J. The Role of Noncoding RNA Pseudouridylation in Nuclear Gene Expression Events. Front Bioeng Biotechnol 2018; 6:8. [PMID: 29473035 PMCID: PMC5809436 DOI: 10.3389/fbioe.2018.00008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudouridine is the most abundant internal RNA modification in stable noncoding RNAs (ncRNAs). It can be catalyzed by both RNA-dependent and RNA-independent mechanisms. Pseudouridylation impacts both the biochemical and biophysical properties of RNAs and thus influences RNA-mediated cellular processes. The investigation of nuclear-ncRNA pseudouridylation has demonstrated that it is critical for the proper control of multiple stages of gene expression regulation. Here, we review how nuclear-ncRNA pseudouridylation contributes to transcriptional regulation and pre-mRNA splicing.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| |
Collapse
|
12
|
Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol 2017; 14:680-692. [PMID: 27715451 PMCID: PMC5519232 DOI: 10.1080/15476286.2016.1243646] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Box C/D and box H/ACA snoRNAs are abundant non-coding RNAs that localize in the nucleolus and mostly function as guides for nucleotide modifications. While a large pool of snoRNAs modifies rRNAs, an increasing number of snoRNAs could also potentially target mRNAs. ScaRNAs belong to a family of specific RNAs that localize in Cajal bodies and that are structurally similar to snoRNAs. Most scaRNAs are involved in snRNA modification, while telomerase RNA, which contains H/ACA motifs, functions in telomeric DNA synthesis. In this review, we describe how box C/D and H/ACA snoRNAs are processed and assembled with core proteins to form functional RNP particles. Their biogenesis involve several transport factors that first direct pre-snoRNPs to Cajal bodies, where some processing steps are believed to take place, and then to nucleoli. Assembly of core proteins involves the HSP90/R2TP chaperone-cochaperone system for both box C/D and H/ACA RNAs, but also several factors specific for each family. These assembly factors chaperone unassembled core proteins, regulate the formation and disassembly of pre-snoRNP intermediates, and control the activity of immature particles. The AAA+ ATPase RUVBL1 and RUVBL2 belong to the R2TP co-chaperones and play essential roles in snoRNP biogenesis, as well as in the formation of other macro-molecular complexes. Despite intensive research, their mechanisms of action are still incompletely understood.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS, 9 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France, Université de Lorraine, Campus Biologie –Santé, CS 50184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
13
|
Henras AK, Plisson-Chastang C, Humbert O, Romeo Y, Henry Y. Synthesis, Function, and Heterogeneity of snoRNA-Guided Posttranscriptional Nucleoside Modifications in Eukaryotic Ribosomal RNAs. Enzymes 2017; 41:169-213. [PMID: 28601222 DOI: 10.1016/bs.enz.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomal RNAs contain numerous 2'-O-methylated nucleosides and pseudouridines. Methylation of the 2' oxygen of ribose moieties and isomerization of uridines into pseudouridines are catalyzed by C/D and H/ACA small nucleolar ribonucleoprotein particles, respectively. We review the composition, structure, and mode of action of archaeal and eukaryotic C/D and H/ACA particles. Most rRNA modifications cluster in functionally crucial regions of the rRNAs, suggesting they play important roles in translation. Some of these modifications promote global translation efficiency or modulate translation fidelity. Strikingly, recent quantitative nucleoside modification profiling methods have revealed that a subset of modification sites is not always fully modified. The finding of such ribosome heterogeneity is in line with the concept of specialized ribosomes that could preferentially translate specific mRNAs. This emerging concept is supported by findings that some human diseases are caused by defects in the rRNA modification machinery correlated with a significant alteration of IRES-dependent translation.
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
14
|
Abstract
Pseudouridine (Ψ) is the most abundant posttranscriptional modification in noncoding RNAs. Pseudouridines are often clustered in important regions of rRNAs (ribosomal RNAs), snRNAs (small nuclear RNAs), and tRNAs (transfer RNAs), contributing to RNA function. Pseudouridylation is governed by two independent mechanisms. The first involves single protein enzymes called pseudouridine synthases (PUSs) that alone recognize the substrate and catalyze the isomerization of uridine to pseudouridine (RNA-independent pseudouridylation). The second is an RNA-guided pseudouridylation by a family of box H/ACA RNPs (ribonucleoproteins), each of which consists of a unique RNA (box H/ACA RNA) and four common core proteins (Cbf5/NAP57/Dyskerin, Nhp2/L7Ae, Nop10, and Gar1). The RNA component serves as a guide that base pairs with the substrate RNA and directs the enzyme (Cbf5) to carry out the pseudouridylation reaction at a specific site. The crystal structures of many PUSs have been solved in numerous organisms including E. coli and human. Several partial and complete crystal structures of archaea and yeast box H/ACA RNPs are available, providing a rich source of information regarding the molecular interactions between protein components and box H/ACA RNA. Over the years, several experimental systems have been developed to study the mechanism and function of pseudouridylation. Apart from noncoding RNA pseudouridylation, recent experiments have provided evidence of mRNA pseudouridylation as well. Despite remarkable progress, there is a need to accelerate efforts in order to understand the detailed mechanisms and functions of RNA pseudouridylation.
Collapse
Affiliation(s)
- Meemanage D De Zoysa
- University of Rochester Medical Center, Center for RNA Biology, Rochester, NY, United States
| | - Yi-Tao Yu
- University of Rochester Medical Center, Center for RNA Biology, Rochester, NY, United States.
| |
Collapse
|
15
|
Stokes III JA, Mishra MK. Role of Resveratrol (RES) in Regenerative Medicine. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Within the last quarter century, technology has been a major catalyst of the advancement in various fields of scientific knowledge, particularly medical research. This new enlightenment has spurred the exploration of alternative treatment methods to some of society's most problematic diseases. One such innovative treatment is the use of Resveratrol (RES) to treat a number of pathophysiological conditions. RES is a natural polyphenolic compound found in the skin(s) of blueberries, red grapes (a major constituent of red wine), some vegetables, and even peanuts. The compound has a number of potent regenerative properties, which include: anti-aging, anti-inflammatory, and antioxidative. Research has confirmed both in vivo and in vitro RES's beneficial applications to numerous diseases. This chapter centers on its unique healing powers and beneficial applications against myriad debilitating conditions.
Collapse
|
16
|
Ketele A, Kiss T, Jády BE. Human intron-encoded AluACA RNAs and telomerase RNA share a common element promoting RNA accumulation. RNA Biol 2016; 13:1274-1285. [PMID: 27726486 PMCID: PMC5207380 DOI: 10.1080/15476286.2016.1239689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mammalian cells express hundreds of intron-encoded box H/ACA RNAs which fold into a common hairpin-hinge-hairpin-tail structure, interact with 4 evolutionarily conserved proteins, dyskerin, Nop10, Nhp2 and Gar1, and function mainly in RNA pseudouridylation. The human telomerase H/ACA RNA (hTR) directs telomeric DNA synthesis and it carries a 5'-terminal domain encompassing the telomeric template sequence. The primary hTR transcript is synthesized from an independent gene by RNA polymerase II and undergoes 3' end processing controlled by the 3'-terminal H/ACA domain. The apical stem-loop of the 3' hairpin of hTR carries a unique biogenesis-promoting element, the BIO motif that promotes hTR processing and RNP assembly. AluACA RNAs represent a distinct class of human H/ACA RNAs; they are processed from intronic Alu repetitive sequences. As compared to canonical H/ACA RNAs, the AluACA RNAs carry unusually short or long 5' hairpins and generally, they accumulate at low levels. Here, we demonstrate that the suboptimal 5' hairpins are responsible for the weak expression of AluACA RNAs. We also show that AluACA RNAs frequently carry a processing/stabilization element that is structurally and functionally indistinguishable from the hTR BIO motif. Both hTR and AluACA biogenesis-promoting elements are located in the terminal stem-loop of the 3'-terminal H/ACA hairpin, they show perfect structural conservation and are functionally interchangeable in in vivo RNA processing reactions. Our results demonstrate that the BIO motif, instead of being confined to hTR, is a more general H/ACA RNP biogenesis-facilitating element that can also promote processing/assembly of intron-encoded AluACA RNPs.
Collapse
Affiliation(s)
- Amandine Ketele
- a Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Center de Biologie Intégrative, Université Paul Sabatier , Toulouse Cedex 9, France
| | - Tamás Kiss
- a Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Center de Biologie Intégrative, Université Paul Sabatier , Toulouse Cedex 9, France.,b Biological Research Center, Hungarian Academy of Sciences , Szeged , Hungary
| | - Beáta E Jády
- a Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, Center de Biologie Intégrative, Université Paul Sabatier , Toulouse Cedex 9, France
| |
Collapse
|
17
|
Majumder M, Bosmeny MS, Gupta R. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation. RNA (NEW YORK, N.Y.) 2016; 22:1604-1619. [PMID: 27539785 PMCID: PMC5029457 DOI: 10.1261/rna.057547.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/25/2016] [Indexed: 05/31/2023]
Abstract
In Eukarya and Archaea, in addition to protein-only pseudouridine (Ψ) synthases, complexes containing one guide RNA and four proteins can also produce Ψ. Cbf5 protein is the Ψ synthase in the complex. Previously, we showed that Ψ's at positions 1940, 1942, and 2605 of Haloferax volcanii 23S rRNA are absent in a cbf5-deleted strain, and a plasmid-borne copy of cbf5 can rescue the synthesis of these Ψ's. Based on published reports of the structure of archaeal Cbf5 complexed with other proteins and RNAs, we identified several potential residues and structures in H. volcanii Cbf5, which were expected to play important roles in pseudouridylation. We mutated these structures and determined their effects on Ψ production at the three rRNA positions under in vivo conditions. Mutations of several residues in the catalytic domain and certain residues in the thumb loop either abolished Ψ's or produced partial modification; the latter indicates a slower rate of Ψ formation. The universal catalytic aspartate of Ψ synthases could be replaced by glutamate in Cbf5. A conserved histidine, which is common to Cbf5 and TruB is not needed, but another conserved histidine of Cbf5 is required for the in vivo RNA-guided Ψ formation. We also identified a previously unreported novelty in the pseudouridylation activity of Cbf5 where a single stem-loop of a guide H/ACA RNA is used to produce two closely placed Ψ's and mutations of certain residues of Cbf5 abolished one of these two Ψ's. In summary, this first in vivo study identifies several structures of an archaeal Cbf5 protein that are important for its RNA-guided pseudouridylation activity.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Michael S Bosmeny
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
18
|
Abstract
Telomerase is the eukaryotic solution to the ‘end-replication problem’ of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA and protein coevolution within RNP enzymes.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| | - Julian J-L Chen
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
19
|
Wang P, Yang L, Gao YQ, Zhao XS. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation. Nucleic Acids Res 2015. [PMID: 26206671 PMCID: PMC4551948 DOI: 10.1093/nar/gkv757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product.
Collapse
Affiliation(s)
- Peng Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Lijiang Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Saliou JM, Manival X, Tillault AS, Atmanene C, Bobo C, Branlant C, Van Dorsselaer A, Charpentier B, Cianférani S. Combining native MS approaches to decipher archaeal box H/ACA ribonucleoprotein particle structure and activity. Proteomics 2015; 15:2851-61. [DOI: 10.1002/pmic.201400529] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/06/2015] [Accepted: 02/24/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Jean-Michel Saliou
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| | - Xavier Manival
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Anne-Sophie Tillault
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Cédric Atmanene
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| | - Claude Bobo
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Alain Van Dorsselaer
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA); UMR 7365 CNRS Université de Lorraine; Biopôle Vandœuvre-lès-Nancy France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO); IPHC; Université de Strasbourg; Strasbourg France
- IPHC; CNRS UMR 7178; Strasbourg France
| |
Collapse
|
21
|
RNA size is a critical factor for U-containing substrate selectivity and permanent pseudouridylated product release during the RNA:Ψ-synthase reaction catalyzed by box H/ACA sRNP enzyme at high temperature. Biochimie 2015; 113:134-42. [PMID: 25896443 DOI: 10.1016/j.biochi.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022]
Abstract
The box H/ACA small ribonucleoprotein particles (H/ACA sRNPs) are RNP enzymes that isomerize uridines (U) into pseudouridines (Ψ) in archaeal RNAs. The RNA component acts as a guide by forming base-pair interactions with the substrate RNA to specify the target nucleotide of the modification to the catalytic subunit Cbf5. Here, we have analyzed association of an H/ACA sRNP enzyme from the hyperthermophilic archaeon Pyrococcus abyssi with synthetic substrate RNAs of different length and with target nucleotide variants, and estimated their turnover at high temperature. In these conditions, we found that a short substrate, which length is restricted to the interaction with RNA guide sequence, has higher turnover rate. However, the longer substrate with additional 5' and 3' sequences non-complementary to the guide RNA is better discriminated by the U to Ψ conversion allowing the RNP enzyme to distinguish the modified product from the substrate. In addition, we identified that the conserved residue Y179 in the catalytic center of Cbf5 is crucial for substrate selectivity.
Collapse
|
22
|
Fong YW, Ho JJ, Inouye C, Tjian R. The dyskerin ribonucleoprotein complex as an OCT4/SOX2 coactivator in embryonic stem cells. eLife 2014; 3. [PMID: 25407680 PMCID: PMC4270071 DOI: 10.7554/elife.03573] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023] Open
Abstract
Acquisition of pluripotency is driven largely at the transcriptional level by activators OCT4, SOX2, and NANOG that must in turn cooperate with diverse coactivators to execute stem cell-specific gene expression programs. Using a biochemically defined in vitro transcription system that mediates OCT4/SOX2 and coactivator-dependent transcription of the Nanog gene, we report the purification and identification of the dyskerin (DKC1) ribonucleoprotein complex as an OCT4/SOX2 coactivator whose activity appears to be modulated by a subset of associated small nucleolar RNAs (snoRNAs). The DKC1 complex occupies enhancers and regulates the expression of key pluripotency genes critical for self-renewal in embryonic stem (ES) cells. Depletion of DKC1 in fibroblasts significantly decreased the efficiency of induced pluripotent stem (iPS) cell generation. This study thus reveals an unanticipated transcriptional role of the DKC1 complex in stem cell maintenance and somatic cell reprogramming. DOI:http://dx.doi.org/10.7554/eLife.03573.001 The stem cells found in an embryo are able to develop into any of the cell types found in the body of the animal: an ability called pluripotency. When a cell becomes a specialized cell type, such as a nerve cell or a muscle cell, it loses this ability. However, mature cells can be reprogrammed back to a pluripotent state by artificially introducing certain proteins (known as ‘reprogramming factors’) into the mature cells. A core group of reprogramming factors are known to activate networks of genes that are normally only expressed in stem cells, and by doing so trigger and maintain a pluripotent state. Other proteins help these core factors to regulate these networks of genes. In 2011, researchers discovered that a protein complex called XPC—which is normally involved in DNA repair—also helps two core reprogramming factors to activate an important gene related to pluripotency. Now, Fong et al., including several of the researchers involved in the 2011 work, have identified another unexpected partner for the same two core reprogramming factors. The protein complex, called DKC1, has a number of known functions related to the processing of RNA molecules. This complex has also been linked to a fatal, rare human disorder called dyskeratosis congenita—a condition that affects many parts of the body, including the skin and bone marrow. Fong et al. found that when embryonic stems cells from mice are depleted of the DKC1 complex, the activation of important pluripotency-related genes by two of the core reprogramming factors is markedly reduced. The XPC and DKC1 protein complexes were found to interact in pluripotent cells, and together they can activate a pluripotency-related gene to a greater extent than either can individually. Fong et al. propose that DKC1 binds to XPC, which in turn binds to two of the core reprogramming factors. The DKC1 complex also binds to RNA molecules, and Fong et al. found that when the DKC1 complex binds to certain RNAs it is more able to help reprogramming factors activate pluripotency-related genes. On the other hand, other RNA molecules seem to inhibit the complex's ability to activate these genes. Mutations identified in people with dyskeratosis congenita can prevent the DKC1 complex from binding to a subset of human RNA molecules. Moreover, the activity of stem cells is impaired in people with this developmental condition. As such, one of the next challenges will be to investigate if these mutations and RNA binding could be linked to problems with the activation of genes related to pluripotency in stem cells. DOI:http://dx.doi.org/10.7554/eLife.03573.002
Collapse
Affiliation(s)
- Yick W Fong
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jaclyn J Ho
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Carla Inouye
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
23
|
McMahon M, Contreras A, Ruggero D. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:173-89. [PMID: 25363811 DOI: 10.1002/wrna.1266] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/25/2014] [Accepted: 08/07/2014] [Indexed: 12/26/2022]
Abstract
A myriad of structurally and functionally diverse noncoding RNAs (ncRNAs) have recently been implicated in numerous human diseases including cancer. Small nucleolar RNAs (snoRNAs), the most abundant group of intron-encoded ncRNAs, are classified into two families (box C/D snoRNAs and box H/ACA snoRNAs) and are required for post-transcriptional modifications on ribosomal RNA (rRNA). There is now a growing appreciation that nucleotide modifications on rRNA may impart regulatory potential to the ribosome; however, the functional consequence of site-specific snoRNA-guided modifications remains poorly defined. Discovered almost 20 years ago, H/ACA snoRNAs are required for the conversion of specific uridine residues to pseudouridine on rRNA. Interestingly, recent reports indicate that the levels of subsets of H/ACA snoRNAs required for pseudouridine modifications at specific sites on rRNA are altered in several diseases, particularly cancer. In this review, we describe recent advances in understanding the downstream consequences of H/ACA snoRNA-guided modifications on ribosome function, discuss the possible mechanism by which H/ACA snoRNAs may be regulated, and explore prospective expanding functions of H/ACA snoRNAs. Furthermore, we discuss the potential biological implications of alterations in H/ACA snoRNA expression in several human diseases.
Collapse
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
24
|
Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol 2014; 11:1483-94. [PMID: 25590339 PMCID: PMC4615163 DOI: 10.4161/15476286.2014.972855] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.
Collapse
Key Words
- DC, dyskeratosis congenita
- H/ACA
- HH, hoyeraal-hreidarsson syndrome
- PIKK, phosphatidylinositol 3-kinase-related kinase
- PUA, pseudouridylase and archaeosine transglycosylase
- RNA modification
- RNA-guided
- RNP, ribonucleoprotein
- SMN, survival of motor neuron protein
- SSD, SHQ1 specific domain
- U, uridine
- X-DC, X-linked dyskeratosis congenita
- dyskeratosis congenita
- prostate cancer
- pseudouridine
- rRNA
- rRNA, ribosomal RNA
- ribonucleoproteins
- sca, small Cajal body
- snRNA, small nuclear RNA
- sno, small nucleolar
- snoRNA
- snoRNA, small nucleolar RNA
- spliceosomal small nuclear RNA
- tRNA, transfer RNA
- ψ, pseudouridine, 5-ribosyluracil
Collapse
MESH Headings
- Dyskeratosis Congenita/genetics
- Dyskeratosis Congenita/metabolism
- Dyskeratosis Congenita/pathology
- Humans
- Isomerism
- Male
- Mutation
- Nucleic Acid Conformation
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Yi-Tao Yu
- University of Rochester Medical Center; Department of Biochemistry and Biophysics; Center for RNA Biology; Rochester, NY USA
| | - U Thomas Meier
- Albert Einstein College of Medicine; Department of Anatomy and Structural Biology; Bronx, NY USA
| |
Collapse
|
25
|
Cerrudo CS, Ghiringhelli PD, Gomez DE. Protein universe containing a PUA RNA-binding domain. FEBS J 2013; 281:74-87. [PMID: 24393395 DOI: 10.1111/febs.12602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/22/2013] [Accepted: 11/11/2013] [Indexed: 01/18/2023]
Abstract
Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.
Collapse
Affiliation(s)
- Carolina S Cerrudo
- Laboratory of Genetic Engineering and Cellular and Molecular Biology, Quilmes National University, Bernal, Buenos Aires, Argentina
| | | | | |
Collapse
|
26
|
Gómez DLM, Farina HG, Gómez DE. Telomerase regulation: a key to inhibition? (Review). Int J Oncol 2013; 43:1351-6. [PMID: 24042470 DOI: 10.3892/ijo.2013.2104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/05/2013] [Indexed: 11/06/2022] Open
Abstract
Telomerase has been recognized as a common factor in most tumor cells, and in turn a distinctive feature with respect to non-malignant cells. This feature has made telomerase a promising target for cancer therapy. Telomerase studies revealed that it is a multi-subunit complex possessing different levels of regulation, including control of expression, phosphorylation state, assembly and transportation to sites of activity. Thus, we emphasize that targeting telomerase expression or activity is not the only way to shorten telomeres, induce cell senescence and apoptosis. Therefore, there are multiple sites capable of allowing the modulation of its enzymatic activity. In the development of strategies based on the regulation of telomerase activity the understanding of the mechanisms regulating their subunits is essential. Based on this, in this review we summarize the current state of knowledge of some regulatory mechanisms of the components of the telomerase complex, and hypothetize their potential therapeutic application against cancer.
Collapse
Affiliation(s)
- Diego L Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | | | | |
Collapse
|
27
|
Fourmann JB, Tillault AS, Blaud M, Leclerc F, Branlant C, Charpentier B. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity. PLoS One 2013; 8:e70313. [PMID: 23922977 PMCID: PMC3726423 DOI: 10.1371/journal.pone.0070313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/18/2013] [Indexed: 11/22/2022] Open
Abstract
Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs) which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA) is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10–L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD) spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.
Collapse
Affiliation(s)
- Jean-Baptiste Fourmann
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Anne-Sophie Tillault
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Magali Blaud
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Fabrice Leclerc
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christiane Branlant
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
28
|
Bellodi C, McMahon M, Contreras A, Juliano D, Kopmar N, Nakamura T, Maltby D, Burlingame A, Savage SA, Shimamura A, Ruggero D. H/ACA small RNA dysfunctions in disease reveal key roles for noncoding RNA modifications in hematopoietic stem cell differentiation. Cell Rep 2013; 3:1493-502. [PMID: 23707062 DOI: 10.1016/j.celrep.2013.04.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/29/2013] [Accepted: 04/24/2013] [Indexed: 01/01/2023] Open
Abstract
Noncoding RNAs control critical cellular processes, although their contribution to disease remains largely unexplored. Dyskerin associates with hundreds of H/ACA small RNAs to generate a multitude of functionally distinct ribonucleoproteins (RNPs). The DKC1 gene, encoding dyskerin, is mutated in the multisystem disorder X-linked dyskeratosis congenita (X-DC). A central question is whether DKC1 mutations affect the stability of H/ACA RNPs, including those modifying ribosomal RNA (rRNA). We carried out comprehensive profiling of dyskerin-associated H/ACA RNPs, revealing remarkable heterogeneity in the expression and function of subsets of H/ACA small RNAs in X-DC patient cells. Using a mass spectrometry approach, we uncovered single-nucleotide perturbations in dyskerin-guided rRNA modifications, providing functional readouts of small RNA dysfunction in X-DC. In addition, we identified that, strikingly, the catalytic activity of dyskerin is required for accurate hematopoietic stem cell differentiation. Altogether, these findings reveal that small noncoding RNA dysfunctions may contribute to the pleiotropic manifestation of human disease.
Collapse
Affiliation(s)
- Cristian Bellodi
- School of Medicine and Department of Urology, UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ge J, Yu YT. RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 2013; 38:210-8. [PMID: 23391857 PMCID: PMC3608706 DOI: 10.1016/j.tibs.2013.01.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/22/2012] [Accepted: 01/07/2013] [Indexed: 12/18/2022]
Abstract
Pseudouridine is the most abundant post-transcriptionally modified nucleotide in various stable RNAs of all organisms. Pseudouridine is derived from uridine via base-specific isomerization, resulting in an extra hydrogen-bond donor that distinguishes it from other nucleotides. In eukaryotes, uridine-to-pseudouridine isomerization is catalyzed primarily by box H/ACA RNPs, ribonucleoproteins that act as pseudouridylases. When introduced into RNA, pseudouridine contributes significantly to RNA-mediated cellular processes. It was recently discovered that pseudouridylation can be induced by stress, suggesting a regulatory role for pseudouridine. It has also been reported that pseudouridine can be artificially introduced into mRNA by box H/ACA RNPs and that such introduction can mediate nonsense-to-sense codon conversion, thus demonstrating a new means of generating coding or protein diversity.
Collapse
Affiliation(s)
- Junhui Ge
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
30
|
Ribonucleoproteins in archaeal pre-rRNA processing and modification. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:614735. [PMID: 23554567 PMCID: PMC3608112 DOI: 10.1155/2013/614735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs) requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP) machines. They are called small RNPs (sRNPs), in Archaea, and small nucleolar RNPs (snoRNPs), in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures.
Collapse
|
31
|
Yang X, Duan J, Li S, Wang P, Ma S, Ye K, Zhao XS. Kinetic and thermodynamic characterization of the reaction pathway of box H/ACA RNA-guided pseudouridine formation. Nucleic Acids Res 2012; 40:10925-36. [PMID: 23012266 PMCID: PMC3510513 DOI: 10.1093/nar/gks882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/20/2022] Open
Abstract
The box H/ACA RNA-guided pseudouridine synthase is a complicated ribonucleoprotein enzyme that recruits substrate via both the guide RNA and the catalytic subunit Cbf5. Structural studies have revealed multiple conformations of the enzyme, but a quantitative description of the reaction pathway is still lacking. Using fluorescence correlation spectroscopy, we here measured the equilibrium dissociation constants and kinetic association and dissociation rates of substrate and product complexes mimicking various reaction intermediate states. These data support a sequential model for substrate loading and product release regulated by the thumb loop of Cbf5. The uridine substrate is first bound primarily through interaction with the guide RNA and then loaded into the active site while progressively interacted with the thumb. After modification, the subtle chemical structure change from uridine to pseudouridine at the target site triggers the release of the thumb, resulting in an intermediate complex with the product bound mainly by the guide RNA. By dissecting the role of Gar1 in individual steps of substrate turnover, we show that Gar1 plays a major role in catalysis and also accelerates product release about 2-fold. Our biophysical results integrate with previous structural knowledge into a coherent reaction pathway of H/ACA RNA-guided pseudouridylation.
Collapse
Affiliation(s)
- Xinxing Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Jingqi Duan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Shuang Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Shoucai Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Keqiong Ye
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Sheng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
32
|
Kamalampeta R, Kothe U. Archaeal proteins Nop10 and Gar1 increase the catalytic activity of Cbf5 in pseudouridylating tRNA. Sci Rep 2012; 2:663. [PMID: 22993689 PMCID: PMC3443816 DOI: 10.1038/srep00663] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/03/2012] [Indexed: 02/05/2023] Open
Abstract
Cbf5 is a pseudouridine synthase that usually acts in a guide RNA-dependent manner as part of H/ACA small ribonucleoproteins; however archaeal Cbf5 can also act independently of guide RNA in modifying uridine 55 in tRNA. This guide-independent activity of Cbf5 is enhanced by proteins Nop10 and Gar1 which are also found in H/ACA small ribonucleoproteins. Here, we analyzed the specific contribution of Nop10 and Gar1 for Cbf5-catalyzed pseudouridylation of tRNA. Interestingly, both Nop10 and Gar1 not only increase Cbf5's affinity for tRNA, but they also directly enhance Cbf5's catalytic activity by increasing the k(cat) of the reaction. In contrast to the guide RNA-dependent reaction, Gar1 is not involved in product release after tRNA modification. These results in conjunction with structural information suggest that Nop10 and Gar1 stabilize Cbf5 in its active conformation; we hypothesize that this might also be true for guide-RNA dependent pseudouridine formation by Cbf5.
Collapse
Affiliation(s)
- Rajashekhar Kamalampeta
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
33
|
Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, Ruggero D, Dinman JD. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell 2012; 44:660-6. [PMID: 22099312 DOI: 10.1016/j.molcel.2011.09.017] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 05/17/2011] [Accepted: 09/01/2011] [Indexed: 01/04/2023]
Abstract
How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked dyskeratosis congenita (X-DC) and Hoyeraal-Hreidarsson (HH) syndrome. Here, we characterize ribosomes isolated from a yeast strain in which Cbf5p, the yeast homolog of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A and P sites as well as the cricket paralysis virus internal ribosome entry site (IRES), which interacts with both the P and the E sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification in ribosome-ligand interactions that are conserved in yeast, mouse, and humans.
Collapse
Affiliation(s)
- Karen Jack
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li S, Duan J, Li D, Yang B, Dong M, Ye K. Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase. Genes Dev 2011; 25:2409-21. [PMID: 22085967 DOI: 10.1101/gad.175299.111] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Box H/ACA ribonucleoprotein particles (RNPs) mediate pseudouridine synthesis, ribosome formation, and telomere maintenance. The structure of eukaryotic H/ACA RNPs remains poorly understood. We reconstituted functional Saccharomyces cerevisiae H/ACA RNPs with recombinant proteins Cbf5, Nop10, Gar1, and Nhp2 and a two-hairpin H/ACA RNA; determined the crystal structure of a Cbf5, Nop10, and Gar1 ternary complex at 1.9 Å resolution; and analyzed the structure-function relationship of the yeast complex. Although eukaryotic H/ACA RNAs have a conserved two-hairpin structure, isolated single-hairpin RNAs are also active in guiding pseudouridylation. Nhp2, unlike its archaeal counterpart, is largely dispensable for the activity, reflecting a functional adaptation of eukaryotic H/ACA RNPs to the variable RNA structure that Nhp2 binds. The N-terminal extension of Cbf5, a hot spot for dyskeratosis congenita mutation, forms an extra structural layer on the PUA domain. Gar1 is distinguished from the assembly factor Naf1 by containing a C-terminal extension that controls substrate turnover and the Gar1-Naf1 exchange during H/ACA RNP maturation. Our results reveal significant novel features of eukaryotic H/ACA RNPs.
Collapse
Affiliation(s)
- Shuang Li
- National Institute of Biological Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
35
|
Mason PJ, Bessler M. The genetics of dyskeratosis congenita. Cancer Genet 2011; 204:635-45. [PMID: 22285015 PMCID: PMC3269008 DOI: 10.1016/j.cancergen.2011.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 01/18/2023]
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome associated with characteristic mucocutaneous features and a variable series of other somatic abnormalities. The disease is heterogeneous at the genetic and clinical levels. Determination of the genetic basis of DC has established that the disease is caused by a number of genes, all of which encode products involved in telomere maintenance, either as part of telomerase or as part of the shelterin complex that caps and protects telomeres. There is overlap at the genetic and clinical levels with other, more common conditions, including aplastic anemia (AA), pulmonary fibrosis (PF), and liver cirrhosis. Although part of the spectrum of disorders known to be associated with DC, it has emerged that mutations in telomere maintenance genes can lead to the development of AA and PF in the absence of other DC features. Here we discuss the genetics of DC and its relationship to disease presentation.
Collapse
Affiliation(s)
- Philip J Mason
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA.
| | | |
Collapse
|
36
|
Podlevsky JD, Chen JJL. It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 2011; 730:3-11. [PMID: 22093366 DOI: 10.1016/j.mrfmmm.2011.11.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/30/2011] [Accepted: 11/01/2011] [Indexed: 12/18/2022]
Abstract
Telomerase is a reverse transcriptase specialized in the addition of telomeric DNA repeats onto the ends of chromosomes. Telomere extension offsets the loss of telomeric repeats from the failure of DNA polymerases to fully replicate linear chromosome ends. Telomerase functions as a ribonucleoprotein, requiring an integral telomerase RNA (TR) component, in addition to the catalytic telomerase reverse transcriptase (TERT). Extensive studies have identified numerous structural and functional features within the TR and TERT essential for activity. A number of accessory proteins have also been identified with various functions in enzyme biogenesis, localization, and regulation. Understanding the molecular mechanism of telomerase function has significance for the development of therapies for telomere-mediated disorders and cancer. Here we review telomerase structural and functional features, and the techniques for assessing telomerase dysfunction.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | | |
Collapse
|
37
|
Koo BK, Park CJ, Fernandez CF, Chim N, Ding Y, Chanfreau G, Feigon J. Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface. J Mol Biol 2011; 411:927-42. [PMID: 21708174 DOI: 10.1016/j.jmb.2011.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 11/28/2022]
Abstract
H/ACA small nucleolar and Cajal body ribonucleoproteins (RNPs) function in site-specific pseudouridylation of eukaryotic rRNA and snRNA, rRNA processing, and vertebrate telomerase biogenesis. Nhp2, one of four essential protein components of eukaryotic H/ACA RNPs, forms a core trimer with the pseudouridylase Cbf5 and Nop10 that binds to H/ACA RNAs specifically. Crystal structures of archaeal H/ACA RNPs have revealed how the protein components interact with each other and with the H/ACA RNA. However, in place of Nhp2p, archaeal H/ACA RNPs contain L7Ae, which binds specifically to an RNA K-loop motif absent from eukaryotic H/ACA RNPs, while Nhp2 binds a broader range of RNA structures. We report solution NMR studies of Saccharomyces cerevisiae Nhp2 (Nhp2p), which reveal that Nhp2p exhibits two major conformations in solution due to cis/trans isomerization of the evolutionarily conserved Pro83. The equivalent proline is in the cis conformation in all reported structures of L7Ae and other homologous proteins. Nhp2p has the expected α-β-α fold, but the solution structures of the major conformation of Nhp2p with trans Pro83 and of Nhp2p-S82W with cis Pro83 reveal that Pro83 cis/trans isomerization affects the positions of numerous residues at the Nop10 and RNA binding interface. An S82W substitution, which stabilizes the cis conformation, also stabilizes the association of Nhp2p with H/ACA snoRNPs expressed in vivo. We propose that Pro83 plays a key role in the assembly of the eukaryotic H/ACA RNP, with the cis conformation locking in a stable Cbf5-Nop10-Nhp2 ternary complex and positioning the protein backbone to interact with the H/ACA RNA.
Collapse
Affiliation(s)
- Bon-Kyung Koo
- Department of Chemistry and Biochemistry, and the Molecular Biology Institute, PO Box 951569,University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA-protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo.
Collapse
|
39
|
Kiss T, Fayet-Lebaron E, Jády BE. Box H/ACA small ribonucleoproteins. Mol Cell 2010; 37:597-606. [PMID: 20227365 DOI: 10.1016/j.molcel.2010.01.032] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/06/2010] [Accepted: 01/12/2010] [Indexed: 11/25/2022]
Abstract
Box H/ACA RNAs represent an abundant, evolutionarily conserved class of small noncoding RNAs. All H/ACA RNAs associate with a common set of proteins, and they function as ribonucleoprotein (RNP) enzymes mainly in the site-specific pseudouridylation of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). Some H/ACA RNPs function in the nucleolytic processing of precursor rRNA (pre-rRNA) and synthesis of telomeric DNA. Thus, H/ACA RNPs are essential for three fundamental cellular processes: protein synthesis, mRNA splicing, and maintenance of genome integrity. Recently, great progress has been made toward understanding of the biogenesis, intracellular trafficking, structure, and function of H/ACA RNPs.
Collapse
Affiliation(s)
- Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | | | | |
Collapse
|
40
|
Trahan C, Martel C, Dragon F. Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs. Hum Mol Genet 2009; 19:825-36. [PMID: 20008900 DOI: 10.1093/hmg/ddp551] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare genetic syndrome that gives rise to a variety of disorders in affected individuals. Remarkably, all causative gene mutations identified to date share a link to telomere/telomerase biology. We found that the most prevalent dyskerin mutation in DC (A353V) did not affect formation of the NAF1-dyskerin-NOP10-NHP2 tetramer that normally assembles with nascent H/ACA RNAs in vivo. However, the A353V mutation slightly reduced pre-RNP assembly with the H/ACA-like domain of human telomerase RNA (hTR). In contrast, NHP2 mutations V126M and Y139H impaired association with NOP10, leading to major pre-RNP assembly defects with all H/ACA RNAs tested, including the H/ACA domain of hTR. Mutation R34W in NOP10 caused no apparent defect in protein tetramer formation, but it severely affected pre-RNP assembly with the H/ACA domain of hTR and a subset of H/ACA RNAs. Surprisingly, H/ACA sno/scaRNAs that encode miRNAs were not affected by the mutation R34W, and they were able to form pre-RNPs with NOP10-R34W. This indicates structural differences between H/ACA RNPs that encode miRNAs and those that do not. Altogether, our results suggest that, in addition to major defects in the telomere/telomerase pathways, some of the disorders occurring in DC may be caused by alteration of most H/ACA RNPs, or by only a subset of them.
Collapse
Affiliation(s)
- Christian Trahan
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada H3C 3P8
| | | | | |
Collapse
|
41
|
Hamma T, Ferré-D'Amaré AR. The box H/ACA ribonucleoprotein complex: interplay of RNA and protein structures in post-transcriptional RNA modification. J Biol Chem 2009; 285:805-9. [PMID: 19917616 DOI: 10.1074/jbc.r109.076893] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The box H/ACA ribonucleoproteins (RNPs) are protein-RNA complexes responsible for pseudouridylation, the most abundant post-transcriptional modification of cellular RNAs. Integrity of its box H/ACA domain is also essential for assembly and stability of the human telomerase RNP. The recent publication of the complete box H/ACA RNP structures combined with the previously reported structures of the protein and RNA components makes it possible to deduce the structural accommodation that accompanies assembly of the full particle. This analysis reveals how the protein components distort the RNA component of the RNP, enabling productive docking of the substrate RNA into the enzymatic active site.
Collapse
Affiliation(s)
- Tomoko Hamma
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
42
|
He J, Gu BW, Ge J, Mochizuki Y, Bessler M, Mason PJ. Variable expression of Dkc1 mutations in mice. Genesis 2009; 47:366-73. [PMID: 19391112 DOI: 10.1002/dvg.20509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans mutations in DKC1, cause the rare bone marrow failure syndrome dyskeratosis congenita. We have used gene targeting to produce mouse ES cells with Dkc1 mutations that cause DC when in humans. The mutation A353V, the most common human mutation, causes typical DC to very severe DC in humans. Male chimeric mice carrying this mutation do not pass the mutated allele to their offspring. The mutation G402E accounts for a single typical case of DC in a human family. The allele carrying this mutation was transmitted to the offspring with high efficiency. Expression of RNA and protein was reduced compared to wild type animals, but no abnormalities of growth and development or in blood values were found in mutant mice. Thus Dkc1 mutations have variable expression in mice, as in humans.
Collapse
Affiliation(s)
- Jun He
- Department of Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
43
|
Grozdanov PN, Fernandez-Fuentes N, Fiser A, Meier UT. Pathogenic NAP57 mutations decrease ribonucleoprotein assembly in dyskeratosis congenita. Hum Mol Genet 2009; 18:4546-51. [PMID: 19734544 DOI: 10.1093/hmg/ddp416] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
X-linked dyskeratosis congenita (DC) is a rare bone marrow failure syndrome caused by mostly missense mutations in the pseudouridine synthase NAP57 (dyskerin/Cbf5). As part of H/ACA ribonucleoproteins (RNPs), NAP57 is important for the biogenesis of ribosomes, spliceosomal small nuclear RNPs, microRNAs and the telomerase RNP. DC mutations concentrate in the N- and C-termini of NAP57 but not in its central catalytic domain raising questions as to their impact. We demonstrate that the N- and C-termini together form the binding surface for the H/ACA RNP assembly factor SHQ1 and that DC mutations modulate the interaction between the two proteins. Pinpointing impaired interaction between NAP57 and SHQ1 as a potential molecular basis for X-linked DC has implications for therapeutic approaches, e.g. by targeting the NAP57-SHQ1 interface with small molecules.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
44
|
When DNA replication and protein synthesis come together. Trends Biochem Sci 2009; 34:429-34. [PMID: 19729310 DOI: 10.1016/j.tibs.2009.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/25/2009] [Accepted: 05/28/2009] [Indexed: 11/20/2022]
Abstract
In all organisms, DNA and protein are synthesized by dedicated, but unrelated, machineries that move along distinct templates with no apparent coordination. Therefore, connections between DNA replication and translation are a priori unexpected. However, recent findings support the existence of such connections throughout the three domains of life. In particular, we recently identified in archaeal genomes a conserved association between genes encoding DNA replication and ribosome-related proteins which all have eukaryotic homologs. We believe that this gene organization is biologically relevant and, moreover, that it suggests the existence of a mechanism coupling DNA replication and translation in Archaea and Eukarya.
Collapse
|
45
|
snoRNAs in Giardia lamblia: a novel role in RNA silencing? Trends Parasitol 2009; 25:348-50. [PMID: 19616476 DOI: 10.1016/j.pt.2009.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/21/2022]
Abstract
In the expanding world of small regulatory RNAs, a recent paper by Saraiya and Wang has reported the identification in the protozoan parasite Giardia lamblia of a novel class of small RNAs, which are derived by Dicer processing of small nucleolar RNAs and have the potential to function as micro RNAs. Interestingly, these RNAs occur not only in this parasite but also in humans.
Collapse
|
46
|
Duan J, Li L, Lu J, Wang W, Ye K. Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol Cell 2009; 34:427-39. [PMID: 19481523 DOI: 10.1016/j.molcel.2009.05.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/11/2009] [Accepted: 05/07/2009] [Indexed: 11/28/2022]
Abstract
H/ACA RNAs form ribonucleoprotein complex (RNP) with proteins Cbf5, Nop10, L7Ae, and Gar1 and guide site-specific conversion of uridine into pseudouridine in cellular RNAs. The crystal structures of H/ACA RNP with substrate bound at the active site cleft reveal that the substrate is recruited through sequence-specific pairing with guide RNA and essential protein contacts. Substrate binding leads to a reorganization of a preset pseudouridylation pocket and an adaptive movement of the PUA domain and the lower stem of the H/ACA RNA. Moreover, a thumb loop flips from the Gar1-bound state in the substrate-free RNP structure to tightly associate with the substrate. Mutagenesis and enzyme kinetics analysis suggest a critical role of Gar1 and the thumb in substrate turnover, particularly in product release. Comparison with tRNA Psi55 synthase TruB reveals the structural conservation and adaptation between an RNA-guided and stand-alone pseudouridine synthase and provides insight into the guide-independent activity of Cbf5.
Collapse
Affiliation(s)
- Jingqi Duan
- College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
47
|
Wu M, Li X, Kwoh CK, Ng SK. A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics 2009; 10:169. [PMID: 19486541 PMCID: PMC2701950 DOI: 10.1186/1471-2105-10-169] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 06/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How to detect protein complexes is an important and challenging task in post genomic era. As the increasing amount of protein-protein interaction (PPI) data are available, we are able to identify protein complexes from PPI networks. However, most of current studies detect protein complexes based solely on the observation that dense regions in PPI networks may correspond to protein complexes, but fail to consider the inherent organization within protein complexes. RESULTS To provide insights into the organization of protein complexes, this paper presents a novel core-attachment based method (COACH) which detects protein complexes in two stages. It first detects protein-complex cores as the "hearts" of protein complexes and then includes attachments into these cores to form biologically meaningful structures. We evaluate and analyze our predicted protein complexes from two aspects. First, we perform a comprehensive comparison between our proposed method and existing techniques by comparing the predicted complexes against benchmark complexes. Second, we also validate the core-attachment structures using various biological evidence and knowledge. CONCLUSION Our proposed COACH method has been applied on two different yeast PPI networks and the experimental results show that COACH performs significantly better than the state-of-the-art techniques. In addition, the identified complexes with core-attachment structures are demonstrated to match very well with existing biological knowledge and thus provide more insights for future biological study.
Collapse
Affiliation(s)
- Min Wu
- School of Computer Engineering, Nanyang Technological University, Singapore
| | - Xiaoli Li
- Institute for Infocomm Research, 1 Fusionopolis Way, Singapore
| | - Chee-Keong Kwoh
- School of Computer Engineering, Nanyang Technological University, Singapore
| | - See-Kiong Ng
- Institute for Infocomm Research, 1 Fusionopolis Way, Singapore
| |
Collapse
|
48
|
Liang B, Zhou J, Kahen E, Terns RM, Terns MP, Li H. Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA. Nat Struct Mol Biol 2009; 16:740-6. [PMID: 19478803 DOI: 10.1038/nsmb.1624] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/09/2022]
Abstract
Box H/ACA small nucleolar and Cajal body ribonucleoprotein particles comprise the most complex pseudouridine synthases and are essential for ribosome and spliceosome maturation. The multistep and multicomponent-mediated enzyme mechanism remains only partially understood. Here we report a crystal structure at 2.35 A of a substrate-bound functional archaeal enzyme containing three of the four proteins, Cbf5, Nop10 and L7Ae, and a box H/ACA RNA that reveals detailed information about the protein-only active site. The substrate RNA, containing 5-fluorouridine at the modification position, is fully docked and catalytically rearranged by the enzyme in a manner similar to that seen in two stand-alone pseudouridine synthases. Structural analysis provides a mechanism for plasticity in the diversity of guide RNA sequences used and identifies a substrate-anchoring loop of Cbf5 that also interacts with Gar1 in unliganded structures. Activity analyses of mutated proteins and RNAs support the structural findings and further suggest a role of the Cbf5 loop in regulation of enzyme activity.
Collapse
Affiliation(s)
- Bo Liang
- Institute of Molecular Biophysics, Tallahassee, Florida, USA
| | | | | | | | | | | |
Collapse
|
49
|
Liang B, Kahen EJ, Calvin K, Zhou J, Blanco M, Li H. Long-distance placement of substrate RNA by H/ACA proteins. RNA (NEW YORK, N.Y.) 2008; 14:2086-94. [PMID: 18755842 PMCID: PMC2553744 DOI: 10.1261/rna.1109808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The structural basis for accurate placement of substrate RNA by H/ACA proteins is studied using a nonintrusive fluorescence assay. A model substrate RNA containing 2-aminopurine immediately 3' of the uridine targeted for modification produces distinct fluorescence signals that report the substrate's docking status within the enzyme active site. We combined substrate RNA with complete and subcomplexes of H/ACA ribonucleoprotein particles and monitored changes in the substrate conformation. Our results show that each of the three accessory proteins, as well as an active site residue, have distinct effects on substrate conformations, presumably as docking occurs. Interestingly, in some cases these effects are exerted far from the active site. Application of our data to an available structural model of the holoenzyme, enables the functional role of each accessory protein in substrate placement to come into view.
Collapse
Affiliation(s)
- Bo Liang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Among eukaryotic organisms a vast majority of Box H/ACA ribonucleoproteins (RNPs) are responsible for the post-transcriptional introduction of pseudouridine (Psi) into ribosomal RNAs (rRNA) and spliceosomal small nuclear RNAs (snRNA), thus influencing protein translation and pre-mRNA splicing, respectively. Additionally, a few distinct Box H/ACA RNPs are involved in the processing of rRNA, and the stabilization of vertebrate telomerase RNA. Thus, whether directly or indirectly, Box H/ACA RNPs impact major steps of gene expression, as well as play a role in maintaining genome integrity. Box H/ACA RNPs each consist of a unique Box H/ACA RNA and a set of four common core proteins. While the RNA component is responsible for dictating site-specificity, the four core proteins impact numerous aspects of RNP function including both stability and catalytic potential. Interestingly, mutations have been identified in the core proteins of the Box H/ACA RNP, resulting in a rare inherited bone marrow failure syndrome referred to as dyskeratosis congenita. This review discusses our current understanding of the roles of the protein components of the Box H/ACA RNP, and provides a framework to understand how mutations in the Box H/ACA RNP contribute to disease pathology.
Collapse
Affiliation(s)
- John Karijolich
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | | |
Collapse
|