1
|
Di Santo R, Niccolini B, Rizzi A, Bertini L, Marafon DP, Vaccaro M, Cristallo F, Rosa E, Tartaglione L, Leo L, De Spirito M, Ciasca G, Pitocco D. Sensing Biomechanical Alterations in Red Blood Cells of Type 1 Diabetes Patients: Potential Markers for Microvascular Complications. BIOSENSORS 2024; 14:587. [PMID: 39727851 DOI: 10.3390/bios14120587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
In physiological conditions, red blood cells (RBCs) demonstrate remarkable deformability, allowing them to undergo considerable deformation when passing through the microcirculation. However, this deformability is compromised in Type 1 diabetes mellitus (T1DM) and related pathological conditions. This study aims to investigate the biomechanical properties of RBCs in T1DM patients, focusing on identifying significant mechanical alterations associated with microvascular complications (MCs). We conducted a case-control study involving 38 T1DM subjects recruited from the Diabetes Care Unit at Fondazione Policlinico Gemelli Hospital, comprising 22 without MCs (control group) and 16 with MCs (pathological group). Atomic Force Microscopy was employed to assess RBC biomechanical properties in a liquid environment. We observed significant RBC stiffening in individuals with MCs, particularly during large indentations that mimic microcirculatory deformations. Univariate analysis unveiled significant differences in RBC stiffness (median difference 0.0006 N/m, p = 0.012) and RBC counts (median difference -0.39 × 1012/L, p = 0.009) between the MC and control groups. Bivariate logistic regression further demonstrated that combining these parameters could effectively discriminate between MC and non-MC conditions, achieving an AUC of 0.82 (95% CI: 0.67-0.97). These findings reveal the potential of RBC biomechanical properties as diagnostic and monitoring tools in diabetes research. Exploring RBC mechanical alterations may lead to the development of novel biomarkers, which, in combination with clinical markers, could facilitate the early diagnosis of diabetes-related complications.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Rizzi
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| | - Laura Bertini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Denise Pires Marafon
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Federica Cristallo
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| | - Enrico Rosa
- Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Linda Tartaglione
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| | - Laura Leo
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Dario Pitocco
- UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy
| |
Collapse
|
2
|
Fylymonenko VP, Galuzinska LV, Kravchenko GB, Kravchenko VM, Bryukhanova ТО, Мaloshtan LМ, Lytkin DV. Effectiveness of food concentrate phenolic compounds of apples in experimental membrane pathologies. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Apple fruits are an available source of phenolic compounds that exhibit a wide range of biological activities (antioxidant, anti-inflammatory, membrane stabilizing, etc.). The antioxidant properties of food concentrate phenolic compounds of apples (Concentrate) were studied in vitro in models of spontaneous and ascorbate induced lipid peroxidation (LPO) in rat liver homogenate, and acute carbon tetrachloromethane hepatitis was chosen as in vivo model in rats. Membrane stabilizing activity was evaluated by the degree of hemolysis in blood samples from the tail vein. The effect of Concentrate on vascular permeability was studied considering the time of animal skin papules staining at the site of injection of phlogogenic substances. Hepatoprotective activity in the model of acute carbon tetrachloride hepatitis was assessed by changes in prooxidant-antioxidant status in liver homogenate and liver enzymes activity in serum. Significant antioxidant effect of Concentrate was fixed in models of spontaneous and ascorbate induced LPO (TBA reactants’ content was 3.12 times and 2.25 times lower than control for spontaneous LPO and ascorbate induced LPO, respectively) and under tetrachloride hepatitis (Concentrate antioxidant activity was 47.8%). The membrane-protective activity of the studied Concentrate was also high and reached 50.1%. Also, Concentrate demonstrated capillary-strengthening properties, reducing the permeability of the vascular wall, which was caused by three different chlorogens, most notably by zymosan (Concentrate significantly delayed the stain utilization from the bloodstream by 2.14 times compared to control). Newly developed concentrate showed complex hepatoprotective activity, improving the indices of antioxidant-prooxidant status and activity of liver cytolysis enzymes in rats with tetrachloromethane hepatitis. The transparent corrective effects of Concentrate are the result of synergism and additivity of its multiple components and indicate the prospects of its further research in order to develop medications for the prophylaxis and treatment of diseases associated with membrane damage.
Collapse
|
3
|
Bio-Inspired Proanthocyanidins from Blueberries’ Surface Coating Prevents Red Blood Cell Agglutination on Urinary Silicon-Based Catheters. COATINGS 2022. [DOI: 10.3390/coatings12020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Thrombosis can cause the occlusion of implantable medical devices, leading to the rejection of the device and subsequent mortality. Thrombosis is primarily induced by red blood aggregation and coagulation. The administration of anticoagulant drugs is generally used as a treatment to avoid these processes. Adverse effects such as bleeding in the event of an anticoagulant overdose, osteoporosis associated with prolonged use, hypersensitivity, and hives have been reported. New strategies such as biomolecule surface functionalization have recently been studied to overcome these problems. In this study, we report a novel coating composed of polydopamine (PDA) and proanthocyanidins (PACs) from blueberry extract to avoid red blood aggregation in short-term use medical devices such as silicone catheters. We showed that PDA formed stable films on silicone surfaces and PACs could be immobilized on PDA layers using laccase as a catalyst. The PDA–PACs films decreased surface hydrophilicity, increased surface roughness, and decreased plasma protein adsorption. The films were stable in phosphate buffer saline (PBS) and cell culture media. Furthermore, red blood cell adsorption and aggregation decreased. These effects are attributed to changes in the membrane fluidity that influences adhesion, the steric hindrance of the layers, and the low adsorption of plasma proteins on the PAC layer.
Collapse
|
4
|
Marcińczyk N, Gromotowicz-Popławska A, Tomczyk M, Chabielska E. Tannins as Hemostasis Modulators. Front Pharmacol 2022; 12:806891. [PMID: 35095516 PMCID: PMC8793672 DOI: 10.3389/fphar.2021.806891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
The hemostasis system is often affected by complications associated with cardiovascular diseases, which results in thromboembolic events. Compounds of plant origin and plant extracts are considered as a promising source of substances that could modulate the functioning of the hemostasis system and thus reduce the risk of thromboembolism. Among them, tannins, which are plant-origin compounds with potential effects in hemostasis, deserve a special mention. This paper describes the hemostasis-modifying ability of three groups of tannins, namely ellagitannins, gallotannins, and procyanidins. The review highlights the desirable as well as undesirable influence of tannins on specific components of hemostasis, namely platelets, coagulation system, fibrinolysis system, and endothelium, and the multidirectional effect of these compounds on the thrombotic process. Studies performed under normal and pathological conditions such as diabetes or hypercoagulation are described, and the pathophysiology-dependent action of tannins is also highlighted. Most of the studies presented in the paper were performed in vitro, and due to the low bioavailability of tannins more studies should be conducted in the future to understand their actual activity in vivo.
Collapse
Affiliation(s)
- Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland
| | | | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Białystok, Białystok, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
5
|
MORTAŞ T, ARIKAN DURMAZ Ş, SEZEN ŞC, SAVRANLAR Y. Assessment of erythrocyte morphology in patients with type 2 diabetes mellitus: a pilot study of electron microscopy-based analysis in relation to healthy controls. Turk J Med Sci 2021; 51:2534-2542. [PMID: 34174794 PMCID: PMC8742505 DOI: 10.3906/sag-2103-336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background/aim The present study aimed to assess erythrocyte morphology in newly diagnosed type 2 diabetes mellitus patients using scanning electron microscopy. Materials and methods In total, 30 patients admitted to endocrine outpatient clinics were included in the study. The patients were divided into two groups according to their fasting blood glucose levels: type 2 diabetes mellitus (n = 15, fasting blood glucose levels ≥ 126 mg/dL) and control (n = 15, fasting blood glucose levels < 99 mg/dL). The patient’s demographic characteristics, haemoglobin A1c levels, and scanning electron microscopy findings regarding erythrocyte morphology were recorded. Results There was no significant difference between the control and type 2 diabetes mellitus group in terms of the participants’ age (51.13 ± 8.53 vs. 50.33 ± 8.72 years, p = 0.8) and the male/female ratio (9/6 vs. 9/6). In the control group, discocytes were abundant, echinocytes were rare, and spherocytes were absent. On the other hand, discocytes were less common and echinocyte-shaped erythrocytes were more common in the type 2 diabetes mellitus group than in the control group. In addition, spherocytes were detected in the type 2 diabetes mellitus group. Moreover, the diameter of discocytes was significantly lower (p = 0.014), and blood glucose and haemoglobin A1c levels were significantly higher (p < 0.05 for both) in the type 2 diabetes mellitus group than in the control group. Conclusion Our findings indicate that high glucose levels in type 2 diabetes mellitus patients lead to significant alterations in erythrocyte morphology, including decreased erythrocyte deformability and the formation of echinocytes and spherocytes due to eryptosis. The possibility of decreased erythrocyte deformability due to excessive eryptosis may disturb microcirculation in newly diagnosed, treatment-naïve type 2 diabetes mellitus patients who do not have any complications.
Collapse
Affiliation(s)
- Tülay MORTAŞ
- Department of Histology and Embryology, Faculty of Medicine, Kırıkkale University, KırıkkaleTurkey
| | - Şenay ARIKAN DURMAZ
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kırıkkale University, KırıkkaleTurkey
| | - Şaban Cem SEZEN
- Department of Histology and Embryology, Faculty of Medicine, Kırıkkale University, KırıkkaleTurkey
| | - Yasemin SAVRANLAR
- Department of Histology and Embryology, Faculty of Dentistry, Nuh Naci Yazgan University, KayseriTurkey
| |
Collapse
|
6
|
Chen Y, Pan Y, Feng Y, Li D, Man J, Feng L, Zhang D, Chen H, Chen H. Role of glucose in the repair of cell membrane damage during squeeze distortion of erythrocytes in microfluidic capillaries. LAB ON A CHIP 2021; 21:896-903. [PMID: 33432946 DOI: 10.1039/d0lc00411a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid development of portable precision detection methods and the crisis of insufficient blood supply worldwide has led scientists to study mechanical visualization features beyond the biochemical properties of erythrocytes. Combined evaluation of currently known biochemical biomarkers and mechanical morphological biomarkers will become the mainstream of single-cell detection in the future. To explore the mechanical morphology of erythrocytes, a microfluidic capillary system was constructed in vitro, with flow velocity and glucose concentration as the main variables, and the morphology and ability of erythrocytes to recover from deformation as the main objects of analysis. We showed the mechanical distortion of erythrocytes under various experimental conditions. Our results showed that glucose plays important roles in improving the ability of erythrocytes to recover from deformation and in repairing the damage caused to the cell membrane during the repeated squeeze process. These protective effects were also confirmed in in vivo experiments. Our results provide visual detection markers for single-cell chips and may be useful for future studies in cell aging.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Tribology, Mechanical Engineering Department, Tsinghua University, Beijing, 100084, China. and School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Institute of Bionic and Micro-Nano Systems, Beihang University, Beijing, 100191, China
| | - Yunfan Pan
- State Key Laboratory of Tribology, Mechanical Engineering Department, Tsinghua University, Beijing, 100084, China.
| | - Yuzhen Feng
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Donghai Li
- Advanced Medical Research Institute, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, P.R China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Institute of Bionic and Micro-Nano Systems, Beihang University, Beijing, 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Institute of Bionic and Micro-Nano Systems, Beihang University, Beijing, 100191, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Institute of Bionic and Micro-Nano Systems, Beihang University, Beijing, 100191, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Mechanical Engineering Department, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Di Giacinto F, Tartaglione L, Nardini M, Mazzini A, Romanò S, Rizzo GE, Papi M, De Spirito M, Pitocco D, Ciasca G. Searching for the Mechanical Fingerprint of Pre-diabetes in T1DM: A Case Report Study. Front Bioeng Biotechnol 2020; 8:569978. [PMID: 33117782 PMCID: PMC7552738 DOI: 10.3389/fbioe.2020.569978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 01/11/2023] Open
Abstract
We report the case of a 38 year-old Caucasian man enrolled in a study aimed at investigating the physical properties of red blood cells (RBCs) using advanced microscopy techniques, including Atomic Force Microscopy (AFM). At the time of his first enrolment in the study, he had normal Fasting Plasma Glucose (FPG) values, a BMI of 24.1, and no other symptoms of diabetes, including fatigue, high triglycerides, low HDL cholesterol, and altered inflammatory and corpuscular RBC indices. The subject reported no family history of diabetes, obesity, and cardiovascular diseases. Despite his apparently healthy conditions, the biomechanics of his RBCs was altered, showing increased values of stiffness and viscosity. More than 1 year after the mechanical measurements, the subject was admitted to the Operational Unit of Diabetology of the Policlinico Gemelli Hospital with high blood glucose and glycosylated hemoglobin (HbA1c) levels and diagnosed with type 1 diabetes (T1DM). Here, we show these data, and we discuss the hypothesis that RBC mechanical properties could be sensitive to changes occurring during the pre-diabetic phase of T1DM.
Collapse
Affiliation(s)
- Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Linda Tartaglione
- Diabetes Care Unit, Catholic University School of Medicine and Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Matteo Nardini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Alberto Mazzini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Emanuele Rizzo
- Diabetes Care Unit, Catholic University School of Medicine and Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Catholic University School of Medicine and Fondazione Policlinico Universitario “A. Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
8
|
Jacob SS, Prasad K, Rao P, Kamath A, Hegde RB, Baby PM, Rao RK. Computerized Morphometric Analysis of Eryptosis. Front Physiol 2019; 10:1230. [PMID: 31649550 PMCID: PMC6769039 DOI: 10.3389/fphys.2019.01230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Eryptosis is the suicidal destruction-process of erythrocytes, much like apoptosis of nucleated cells, in the course of which the stressed red cell undergoes cell-shrinkage, vesiculation and externalization of membrane phosphatidylserine. Currently, there exist numerous methods to detect eryptosis, both morphometrically and biochemically. This study aimed to design a simple but sensitive, automated computerized approach to instantaneously detect eryptotic red cells and quantify their hallmark morphological characteristics. Red cells from 17 healthy volunteers were exposed to normal Ringer and hyperosmotic stress with sodium chloride, following which morphometric comparisons were conducted from their photomicrographs. The proposed method was found to significantly detect and differentiate normal and eryptotic red cells, based on variations in their structural markers. The receiver operating characteristic curve analysis for each of the markers showed a significant discriminatory accuracy with high sensitivity, specificity and area under the curve values. The software-based technique was then validated with RBCs in malaria. This model, quantifies eryptosis morphometrically in real-time, with minimal manual intervention, providing a new window to explore eryptosis triggered by different stressors and diseases and can find wide application in laboratories of hematology, blood banks and medical research.
Collapse
Affiliation(s)
- Sanu Susan Jacob
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Keerthana Prasad
- School of Information Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Pragna Rao
- Department of Biochemistry, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Asha Kamath
- Department of Statistics, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - Roopa B Hegde
- School of Information Sciences, Manipal Academy of Higher Education, Manipal, India.,Nitte Mahalinga Adyanthaya Memorial Institute of Technology, NITTE, Karkala, India
| | - Prathap M Baby
- Department of Physiology, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Karnataka, India
| | - Raghavendra K Rao
- Department of Physiology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
A systematic review of the potential uses of pine bark in food industry and health care. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
LU MENGCHUN, YANG MEIDUE, LI PINGCHUN, FANG HSINYUAN, HUANG HUIYING, CHAN YINCHING, BAU DATIAN. Effect of Oligomeric Proanthocyanidin on the Antioxidant Status and Lung Function of Patients with Chronic Obstructive Pulmonary Disease. In Vivo 2018. [PMID: 29936455 PMCID: PMC6117753 DOI: 10.21873/invivo.112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND/AIM Evidence exists that oxidative stress and oxidative damage play a pivotal role in chronic obstructive pulmonary disease (COPD). Oligomeric proanthocyanidins (OPCs) extracted from grape seeds have been shown to exhibit antioxidant capabilities greater than those of vitamin C and E. The objective of this study was to evaluate the effects of OPCs on antioxidant status and lung function in patients with COPD. PATIENTS AND METHODS Patients were supplemented with 150 mg/day OPC (n=13) orally or with a placebo (n=14) for 8 weeks in a randomized double-blind clinical design. Changes in anthropometric values, lung function, oxidative state, and lipid profiles were assessed after OPC or placebo treatment for 8 weeks. RESULTS The results showed that OPC supplementation significantly reduced the concentration of malondialdehyde, superoxide dismutase, and total cholesterol (TC)/high-density lipoprotein cholesterol (HDL-C) ratio. The concentration of HDL-C significantly increased in the OPC-treated group. The plasma triglyceride, TC and low-density lipoprotein cholesterol values and the activities of catalase and glutathione peroxidase also decreased, but did not significantly differ between the OPC- and placebo-treated groups. Lung function was not significantly different between the two groups after 8 weeks. CONCLUSION OPC supplementation was effective in increasing the antioxidant capacity, in addition to improving the lipid profiles in patients with COPD.
Collapse
Affiliation(s)
- MENG-CHUN LU
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C.,Clinical Nutrition, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Nutrition, China Medical University, Taichung, Taiwan, R.O.C
| | - MEI-DUE YANG
- Clinical Nutrition, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Surgery, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - PING-CHUN LI
- Surgery, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - HSIN-YUAN FANG
- Surgery, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - HUI-YING HUANG
- Nutrition, China Medical University, Taichung, Taiwan, R.O.C
| | - YIN-CHING CHAN
- Department of Food and Nutrition, Providence University, Taichung, Taiwan, R.O.C
| | - DA-TIAN BAU
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|