1
|
Sato M, Tamura Y, Kaga H, Yamasaki N, Kadowaki S, Sugimoto D, Nakagata T, Someya Y, Nishida Y, Kawamori R, Watada H. Adipose tissue insulin resistance in young Japanese women is associated with metabolic abnormalities and dehydroepiandrosterone-sulfate. Front Endocrinol (Lausanne) 2024; 15:1390778. [PMID: 39377071 PMCID: PMC11456452 DOI: 10.3389/fendo.2024.1390778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/29/2024] [Indexed: 10/09/2024] Open
Abstract
Objective The proportion of young Japanese women who are underweight is exceptionally high. We previously showed that the prevalence of impaired glucose tolerance (IGT) was high in underweight young Japanese women, and that IGT was characterized by high free fatty acid levels and adipose tissue insulin resistance (ATIR). As the next step, this study aimed to explore factors associated with elevated ATIR in this population. Participants Ninety-eight young, healthy, underweight women participated in this study. Design To investigate the relationship between ATIR and metabolic parameters, participants were divided into three groups (Low, Medium, and High) according to ATIR level. Body composition examination, oral glucose tolerance testing, and blood biochemical analysis were performed; Adipo-IR and the Matsuda index were used as indices of ATIR and systemic insulin sensitivity, respectively. Results Participants in the High ATIR group had the highest prevalence of IGT (25%), and significantly higher body fat percentage, whole-body insulin resistance, and levels of insulin-like growth factor-1 and dehydroepiandrosterone sulfate (DHEA-S) than the other two groups. They were also significantly younger and had higher systolic blood pressure than the Low ATIR group. Multiple regression analysis showed that DHEA-S, which is known to enhance lipolysis in adipose tissue, was an independent correlate of ATIR. Conclusions Underweight Japanese women with high ATIR had impaired metabolism, a higher prevalence of IGT, higher systemic insulin resistance, and higher systolic blood pressure. DHEA-S was a determinant of high ATIR levels.
Collapse
Affiliation(s)
- Motonori Sato
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideyoshi Kaga
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nozomu Yamasaki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Kadowaki
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Sugimoto
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Nakagata
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Someya
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Harvey I, Richard AJ, Mendoza TM, Stephens JM. Adipocyte STAT5 (signal transducer and activator of transcription 5) is not required for glucocorticoid-induced metabolic dysfunction. Am J Physiol Endocrinol Metab 2023; 325:E438-E447. [PMID: 37702737 PMCID: PMC10864007 DOI: 10.1152/ajpendo.00116.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Excess glucocorticoid (GC) signaling in adipose tissue is a key driver of insulin resistance and hepatic steatosis, but underlying mechanisms have not been fully elucidated. Signal transducer and activator of transcription 5 (STAT5) signaling in adipocytes has also been implicated in the progression of similar metabolic disturbances. Although STAT5 has been shown to interact with the glucocorticoid receptor (GR) in many cell types including adipocytes, the relevance of the STAT5/GR complex has not been investigated in adipocytes. Adult male and female adipocyte-specific STAT5 knockout (STAT5AKO) and floxed mice were given corticosterone (CORT) or vehicle in their drinking water for 1 wk and examined for differences in their metabolic responses to GC excess. CORT-induced lipolysis, insulin resistance, and changes in body composition were comparable between genotypes and in both sexes. Adipocyte STAT5 is not necessary for GC-mediated progression of metabolic disease.NEW & NOTEWORTHY Both STAT5 and glucocorticoid receptor contribute to metabolic processes and type 2 diabetes, in large part, due to their functions in adipocytes. These two transcription factors can form a complex and function together. Our novel studies determined the role of adipocyte STAT5 in glucocorticoid-induced diabetes. We observed that STAT5 in adipocytes is not needed for glucocorticoid-induced diabetes.
Collapse
Affiliation(s)
- Innocence Harvey
- Adipocyte Biology Department, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Allison J Richard
- Adipocyte Biology Department, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Tamra M Mendoza
- Adipocyte Biology Department, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Jacqueline M Stephens
- Adipocyte Biology Department, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
- Biological Sciences Department, Louisiana State University, Baton Rouge, Louisiana, United States
| |
Collapse
|
3
|
Moustaki M, Paschou SA, Xekouki P, Kotsa K, Peppa M, Psaltopoulou T, Kalantaridou S, Vryonidou A. Secondary diabetes mellitus in acromegaly. Endocrine 2023; 81:1-15. [PMID: 36882643 PMCID: PMC10239382 DOI: 10.1007/s12020-023-03339-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Secondary diabetes mellitus (DM) is a common complication of acromegaly, encountered in up to 55% of cases. Vice versa, the prevalence of acromegaly is markedly higher in cohorts of patients with type 2 DM (T2DM). The presence of secondary DM depends primarily on acromegaly status and is associated with increased cardiovascular morbidity, malignancy rate and overall mortality. The principal pathophysiologic mechanism is increased insulin resistance due to excessive lipolysis and altered fat distribution, reflected at the presence of intermuscular fat and attenuated, dysfunctional adipose tissue. Insulin resistance is ascribed to the direct, diabetogenic effects of growth hormone (GH), which prevail over the insulin-sensitizing effects of insulin-like growth factor 1 (IGF-1), probably due to higher glucometabolic potency of GH, IGF-1 resistance, or both. Inversely, GH and IGF-1 act synergistically in increasing insulin secretion. Hyperinsulinemia in portal vein leads to enhanced responsiveness of liver GH receptors and IGF-1 production, pointing towards a mutually amplifying loop between GH-IGF-1 axis and insulin. Secondary DM occurs upon beta cell exhaustion, principally due to gluco-lipo-toxicity. Somatostatin analogues inhibit insulin secretion; especially pasireotide (PASI) impairs glycaemic profile in up to 75% of cases, establishing a separate pathophysiologic entity, PASI-induced DM. In contrast, pegvisomant and dopamine agonizts improve insulin sensitivity. In turn, metformin, pioglitazone and sodium-glucose transporters 2 inhibitors might be disease-modifying by counteracting hyperinsulinemia or acting pleiotropically. Large, prospective cohort studies are needed to validate the above notions and define optimal DM management in acromegaly.
Collapse
Affiliation(s)
- Melpomeni Moustaki
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Paraskevi Xekouki
- Department of Endocrinology and Diabetes, University General Hospital of Heraklion, School of Medicine, University of Crete, Heraklion, Greece
| | - Kalliopi Kotsa
- Endocrine Unit and Diabetes Center, First Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Melpomeni Peppa
- Endocrine Unit and Diabetes Center, Second Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Kalantaridou
- 3rd Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| |
Collapse
|
4
|
Zhao L, Jia D, Tan Z, Jiang H. Association of growth hormone deficiency with an increased number of preadipocytes in subcutaneous fat. Front Endocrinol (Lausanne) 2023; 14:1199589. [PMID: 37305046 PMCID: PMC10250704 DOI: 10.3389/fendo.2023.1199589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
The inhibitory effect of growth hormone (GH) on adipose tissue growth is well known, but the underlying mechanism is not fully understood. In this study, we determined the possibility that GH inhibits adipose tissue growth by inhibiting adipogenesis, the process of formation of adipocytes from stem cells, in the lit/lit mice. The lit/lit mice are GH deficient because of a spontaneous mutation to the GH releasing hormone receptor (ghrhr) gene, and they have more subcutaneous fat despite being smaller than the lit/+ mice at the same age. We found that cells of the stromal vascular fraction (SVF) of subcutaneous fat from the lit/lit mice had greater adipogenic potential than those from the lit/+ mice, as evidenced by forming greater numbers of lipid droplets-containing adipocytes and having greater expression of adipocyte marker genes during induced adipocyte differentiation in culture. However, addition of GH to the culture did not reverse the superior adipogenic potential of subcutaneous SVF from the lit/lit mice. Through florescence-activated cell sorting and quantification of mRNAs of preadipocyte markers, including CD34, CD29, Sca-1, CD24, Pref-1, and PPARγ, we found that subcutaneous SVF from the lit/lit mice contained more preadipocytes than that from the lit/+ mice. These results support the notion that GH inhibits adipose tissue growth in mice at least in part by inhibiting adipogenesis. Furthermore, these results suggest that GH inhibits adipogenesis in mice not by inhibiting the terminal differentiation of preadipocytes into adipocytes, rather by inhibiting the formation of preadipocytes from stem cells or the recruitment of stem cells to the fat depot.
Collapse
|
5
|
Zhao L, Jiang H. Growth hormone stimulates lipolysis in mice but not in adipose tissue or adipocyte culture. Front Endocrinol (Lausanne) 2023; 13:1028191. [PMID: 36686475 PMCID: PMC9846043 DOI: 10.3389/fendo.2022.1028191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
The inhibitory effect of growth hormone (GH) on adipose tissue growth and the stimulatory effect of GH on lipolysis are well known, but the mechanisms underlying these effects are not completely understood. In this study, we revisited the effects of GH on adipose tissue growth and lipolysis in the lit/lit mouse model. The lit/lit mice are GH deficient because of a mutation in the GH releasing hormone receptor gene. We found that the lit/lit mice had more subcutaneous fat and larger adipocytes than their heterozygous lit/+ littermates and that these differences were partially reversed by 4-week GH injection. We also found that GH injection to the lit/lit mice caused the mature adipose tissue and adipocytes to reduce in size. These results demonstrate that GH inhibits adipose tissue growth at least in part by stimulating lipolysis. To determine the mechanism by which GH stimulates lipolysis, we cultured adipose tissue explants and adipocytes derived from lit/lit mice with GH and/or isoproterenol, an agonist of the beta-adrenergic receptors. These experiments showed that whereas isoproterenol, expectedly, stimulated potent lipolysis, GH, surprisingly, had no effect on basal lipolysis or isoproterenol-induced lipolysis in adipose tissue explants or adipocytes. We also found that both isoproterenol-induced lipolysis and phosphorylation of hormone-sensitive lipase were not different between lit/lit and lit/+ mice. Taken together, these results support the conclusion that GH has lipolytic effect in mice but argue against the notion that GH stimulates lipolysis by directly acting on adipocytes or by enhancing β-adrenergic receptors-mediated lipolysis.
Collapse
Affiliation(s)
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Important Hormones Regulating Lipid Metabolism. Molecules 2022; 27:molecules27207052. [PMID: 36296646 PMCID: PMC9607181 DOI: 10.3390/molecules27207052] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
There is a wide variety of kinds of lipids, and complex structures which determine the diversity and complexity of their functions. With the basic characteristic of water insolubility, lipid molecules are independent of the genetic information composed by genes to proteins, which determine the particularity of lipids in the human body, with water as the basic environment and genes to proteins as the genetic system. In this review, we have summarized the current landscape on hormone regulation of lipid metabolism. After the well-studied PI3K-AKT pathway, insulin affects fat synthesis by controlling the activity and production of various transcription factors. New mechanisms of thyroid hormone regulation are discussed, receptor α and β may mediate different procedures, the effect of thyroid hormone on mitochondria provides a new insight for hormones regulating lipid metabolism. Physiological concentration of adrenaline induces the expression of extrapituitary prolactin in adipose tissue macrophages, which promotes fat weight loss. Manipulation of hormonal action has the potential to offer a new therapeutic horizon for the global burden of obesity and its associated complications such as morbidity and mortality.
Collapse
|
7
|
Redox Regulation of Lipid Mobilization in Adipose Tissues. Antioxidants (Basel) 2021; 10:antiox10071090. [PMID: 34356323 PMCID: PMC8301038 DOI: 10.3390/antiox10071090] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.
Collapse
|
8
|
Hergenreder JE, Baggerman JO, Harris TL, Thompson AJ, Spivey KS, Broadway PR, Vogel GJ, Smith ZK, Johnson BJ. Bovine Somatotropin Alters Myosin Heavy Chains and Beta Receptors in Skeletal Muscle of Feedlot Heifers with Little Impact on Live or Carcass Performance. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective was to determine whether recombinant bovine somatotropin (rbST) enhanced live performance,skeletal muscle biological activity, and beta-adrenergic receptor expression of feedlot heifers during the finishing phase. Heifers (n = 16; initial body weight = 457 ± 3 kg) were randomly assigned to pens (4 pens/treatment; 2 heads/pen) and treatment: (1) no rbST (Control); (2) 500 mg/hd of sometribove zinc at day 0 and 14 (rbST; Posilac®; Elanco AnimalHealth, Greenfield, IN). Longissimus muscle biopsies for muscle chemistry were collected on day 0, 14, 28, 42, and 56. The rbST heifers had increased expression of AMP-activated protein kinase alpha and beta 3 adrenergic receptor (P < 0.05). Day of the study affected the expression of myosin heavy chain-IIA (MHC-IIA), MHC-IIX, beta 2 adrenergic receptor, peroxisome proliferator-activated receptor gamma, and stearoyl-CoA desaturase (P < 0.05). Day had a significant effect on muscle fiber cross-sectional area and proportion (P < 0.05). As days on feed increased, the area of MHC-I fibers decreased whereas MHC-IIA and IIX area increased (P < 0.05). The rbST heifers had decreased proportions of MHC-I fibers and increased proportions of MHC-IIX fibers (P < 0.05). The greatest density of Paired Box 7-positive cells was on day 0, 28, and 42 (P < 0.05), and the greatest density of Myogenic factor 5-positive cells was on day 42 and 56 (P < 0.05). Also, the greatest density of cells positive for Paired Box 7:Myogenic factor 5 was measured on day 28 (P < 0.05). These data indicate that, as days on feed increase, the effects of skeletal muscle biological activity are not dependent on rbST administration but may be more due to physiological changes occurring as the animal reaches physio-logical maturity.
Collapse
Affiliation(s)
| | | | - Tyler L. Harris
- Texas Tech University Department of Animal and Food Sciences
| | | | - Kari S. Spivey
- Texas Tech University Department of Animal and Food Sciences
| | | | | | | | | |
Collapse
|
9
|
Sharma R, Kopchick JJ, Puri V, Sharma VM. Effect of growth hormone on insulin signaling. Mol Cell Endocrinol 2020; 518:111038. [PMID: 32966863 PMCID: PMC7606590 DOI: 10.1016/j.mce.2020.111038] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone that coordinates an array of physiological processes, including effects on bone, muscle, and fat, ultimately resulting in growth. Metabolically, GH promotes anabolic action in most tissues except adipose, where its catabolic action causes the breakdown of stored triglycerides into free fatty acids (FFA). GH antagonizes insulin action via various molecular pathways. Chronic GH secretion suppresses the anti-lipolytic action of insulin and increases FFA flux into the systemic circulation; thus, promoting lipotoxicity, which causes pathophysiological problems, including insulin resistance. In this review, we will provide an update on GH-stimulated adipose lipolysis and its consequences on insulin signaling in liver, skeletal muscle, and adipose tissue. Furthermore, we will discuss the mechanisms that contribute to the diabetogenic action of GH.
Collapse
Affiliation(s)
- Rita Sharma
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA
| | - Vishva M Sharma
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
10
|
Huang Z, Huang L, Waters MJ, Chen C. Insulin and Growth Hormone Balance: Implications for Obesity. Trends Endocrinol Metab 2020; 31:642-654. [PMID: 32416957 DOI: 10.1016/j.tem.2020.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Disruption of endocrine hormonal balance (i.e., increased levels of insulin, and reduced levels of growth hormone, GH) often occurs in pre-obesity and obesity. Using distinct intracellular signaling pathways to control cell and body metabolism, GH and insulin also regulate each other's secretion to maintain overall metabolic homeostasis. Therefore, a comprehensive understanding of insulin and GH balance is essential for understanding endocrine hormonal contributions to energy storage and utilization. In this review we summarize the actions of, and interactions between, insulin and GH at the cellular level, and highlight the association between the insulin/GH ratio and energy metabolism, as well as fat accumulation. Use of the [insulin]:[GH] ratio as a biomarker for predicting the development of obesity is proposed.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
11
|
Zhang H, Guan W. The response of gene expression associated with intramuscular fat deposition in the longissimus dorsi muscle of Simmental × Yellow breed cattle to different energy levels of diets. Anim Sci J 2019; 90:493-503. [PMID: 30706583 DOI: 10.1111/asj.13170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/28/2018] [Accepted: 12/17/2018] [Indexed: 12/29/2022]
Abstract
This study was designed to estimate dietary energy level on intramuscular fat (IMF) deposition in Simmental × Yellow breed cattle. Results showed that ultimate weight and average daily gain in high and medium energy groups were significantly higher than low-energy group, yet feed conversion ratio was significantly lower. IMF content was significantly increased by dietary energy increasing, whereas longissimus muscle shear force significantly decreased. Serum-free fatty acids, triglycerides and glucose significantly increased by dietary energy increasing, whereas growth hormone (GH) significantly decreased. Enzyme activities of lipoprotein lipase (LPL), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) significantly increased by dietary energy increasing, whereas hormone-sensitive lipase (HSL) and carnitine palmitoyltransferase-1 (CPT-1) significantly diminished. Peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase, adipocyte-fatty acid-binding proteins, ACC, LPL, and FAS gene or protein expression significantly increased by dietary energy increasing, whereas HSL, CPT-1, and GH gene or protein expression significantly decreased. These results indicated that high dietary energy promoting IMF deposition is mainly by downregulating pituitary GH gene expression, decreasing serum GH concentration, increasing lipogenic genes levels of mRNA, enzyme activities and protein expression, and decreasing lipolytic genes levels of mRNA, enzyme activities, and protein expression.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Environmetal Resource, Yichun University, Yichun, China
| | - Weikun Guan
- College of Life Science and Environmetal Resource, Yichun University, Yichun, China
| |
Collapse
|
12
|
|
13
|
Vakili H, Jin Y, Cattini PA. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus. J Clin Invest 2014; 124:5002-12. [PMID: 25295535 DOI: 10.1172/jci77126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.
Collapse
|
14
|
Nielsen TS, Jessen N, Jørgensen JOL, Møller N, Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 2014; 52:R199-222. [PMID: 24577718 DOI: 10.1530/jme-13-0277] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipolysis is the process by which triglycerides (TGs) are hydrolyzed to free fatty acids (FFAs) and glycerol. In adipocytes, this is achieved by sequential action of adipose TG lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase. The activity in the lipolytic pathway is tightly regulated by hormonal and nutritional factors. Under conditions of negative energy balance such as fasting and exercise, stimulation of lipolysis results in a profound increase in FFA release from adipose tissue (AT). This response is crucial in order to provide the organism with a sufficient supply of substrate for oxidative metabolism. However, failure to efficiently suppress lipolysis when FFA demands are low can have serious metabolic consequences and is believed to be a key mechanism in the development of type 2 diabetes in obesity. As the discovery of ATGL in 2004, substantial progress has been made in the delineation of the remarkable complexity of the regulatory network controlling adipocyte lipolysis. Notably, regulatory mechanisms have been identified on multiple levels of the lipolytic pathway, including gene transcription and translation, post-translational modifications, intracellular localization, protein-protein interactions, and protein stability/degradation. Here, we provide an overview of the recent advances in the field of AT lipolysis with particular focus on the molecular regulation of the two main lipases, ATGL and HSL, and the intracellular and extracellular signals affecting their activity.
Collapse
Affiliation(s)
- Thomas Svava Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Jessen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Jens Otto L Jørgensen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Møller
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Sten Lund
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| |
Collapse
|
15
|
Chaves VE, Júnior FM, Bertolini GL. The metabolic effects of growth hormone in adipose tissue. Endocrine 2013; 44:293-302. [PMID: 23430368 DOI: 10.1007/s12020-013-9904-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/09/2013] [Indexed: 11/27/2022]
Abstract
There is a general consensus that a reduction in growth hormone (GH) secretion results in obesity. However, the pathophysiologic role of GH in the metabolism of lipids is yet to be fully understood. The major somatic targets of GH are bones and muscles, but GH stimulates lipolysis and seems to regulate lipid deposition in adipose tissue. Patients with isolated GH deficiency (GHD) have enlarged fat depots due to higher fat cell volume, but their fat cell numbers are lower than those of matched controls. The treatment of patients with GH results in a relative loss of body fat and shifts both fat cell number and fat cell volume toward normal, indicating an adipogenic effect of GH. Adults with GHD are characterized by perturbations in body composition, lipid metabolism, cardiovascular risk profile, and bone mineral density. It is well established that GHD is usually accompanied by an increase in fat accumulation; GH replacement in GHD results in the reduction of fat mass, particularly abdominal fat mass. In addition, abdominal obesity results in a secondary reduction in GH secretion that is reversible with weight loss. However, whereas GH replacement in patients with GHD leads to specific depletion of intra-abdominal fat, administering GH to obese individuals does not seem to result in a consistent reduction or redistribution of body fat. Although administering GH to obese non-GHD subjects has only led to equivocal results, more recent studies indicate that GH still remains a plausible metabolic candidate.
Collapse
Affiliation(s)
- Valéria Ernestânia Chaves
- Laboratory of Physiology and Pharmacology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | | |
Collapse
|
16
|
Giordano C, Ciresi A, Amato MC, Pivonello R, Auriemma RS, Grasso LFS, Galluzzo A, Colao A. Clinical and metabolic effects of first-line treatment with somatostatin analogues or surgery in acromegaly: a retrospective and comparative study. Pituitary 2012; 15:539-51. [PMID: 22116639 DOI: 10.1007/s11102-011-0365-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To evaluate the metabolic effects of first-line somatostatin analogues or surgery in acromegaly. Retrospective, comparative, 12-month follow-up. Two hundred and thirty one patients (123 men, age 47.32 ± 14.63 years) with active acromegaly, first line treatments were somatostatin analogues in 151 (65.4%) and surgery in 80 (34.6%). Metabolic syndrome (MS) parameters, glucose, insulin and GH during oral glucose tolerance test, stimulated insulin sensitivity by insulin sensitivity index (ISI Matsuda), early and total insulin-secretion rate by insulinogenic index and AUC(INS), visceral adiposity function, expressed by visceral adipose index (VAI). Somatostatin analogues treatment improved all MS parameters and significantly reduced fasting glucose (P < 0.001), HbA1c (P = 0.014) and the prevalence of DM (P = 0.003) when disease control was achieved. Both somatostatin analogues and surgery improved ISI Matsuda (P < 0.001) and reduced AUC(INS) (P < 0.001) and VAI (P < 0.001 and P = 0.003, respectively). Only in controlled somatostatin analogues-treated patients a significant reduction in insulinogenic index (P = 0.010) was observed. ISI Matsuda showed a significant independent correlation with IGF-1 levels (β = -0.258; P = 0.001) and VAI score (β = -0.430; P < 0.001). VAI was independently correlated with IGF-1 (β = 0.183; P = 0.004). Both somatostatin analogues and surgery can safely be used as first-line therapy in acromegaly, without any untoward effects on glucose tolerance. The control of acromegaly is the main determinant of beneficial effects on general features of insulin sensitivity. VAI could represent an additional link between disease control and insulin sensitivity.
Collapse
Affiliation(s)
- Carla Giordano
- Department of Endocrinology and Metabolic Diseases, DOSAC, University of Palermo, piazza delle Cliniche 2, 90127 Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vakili H, Jin Y, Cattini PA. Negative regulation of human growth hormone gene expression by insulin is dependent on hypoxia-inducible factor binding in primary non-tumor pituitary cells. J Biol Chem 2012; 287:33282-92. [PMID: 22833680 DOI: 10.1074/jbc.m112.380949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides -496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides -308/-235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (-264/-259) and investigated whether HIF-1 is associated with insulin regulation of "endogenous" hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.
Collapse
Affiliation(s)
- Hana Vakili
- Department of Physiology, Division of Endocrine and Metabolic diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
18
|
Effect of suppressor of cytokine signaling 2 (SOCS2) on fat metabolism induced by growth hormone (GH) in porcine primary adipocyte. Mol Biol Rep 2012; 39:9113-22. [DOI: 10.1007/s11033-012-1783-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 06/09/2012] [Indexed: 01/13/2023]
|
19
|
Brown-Borg HM, Bartke A. GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol A Biol Sci Med Sci 2012; 67:652-60. [PMID: 22466316 PMCID: PMC3348496 DOI: 10.1093/gerona/gls086] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology & Therapeutics, School of Medicine & Health Sciences, University of North Dakota, 501 North Columbia Road, Grand Forks, ND 58202-9037, USA.
| | | |
Collapse
|
20
|
Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 2011; 60:1500-10. [PMID: 21864867 DOI: 10.1016/j.metabol.2011.06.012] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/15/2011] [Accepted: 06/18/2011] [Indexed: 01/12/2023]
Abstract
Glucocorticoids (GCs) have long been accepted as being catabolic in nature, liberating energy substrates during times of stress to supply the increased metabolic demand of the body. The effects of GCs on adipose tissue metabolism are conflicting, however, because patients with elevated GCs present with central adiposity. We performed an extensive literature review of the effects of GCs on adipose tissue metabolism. The contradictory effects of GCs on lipid metabolism occur through a number of different mechanisms, some of which are well defined and others remain to be elucidated. Firstly, through increases in caloric and dietary fat intake, along with increased hydrolysis of circulating triglycerides (chylomicrons, very low-density lipoproteins) by lipoprotein lipase activity, GCs increase the amount of fatty acids in circulation, which are then available for ectopic fat distribution (liver, muscle, and central adipocytes). Glucocorticoids also increase de novo lipid production in hepatocytes through increased expression of fatty acid synthase. There is some controversy as to whether these same mechanisms occur in adipocytes, thereby contributing to adipose hypertrophy. Glucocorticoids promote preadipocyte conversion to mature adipocytes, causing hyperplasia of the adipose tissue. Glucocorticoids also have acute antilipolytic effect on adipocytes, whereas their genomic actions facilitate increased lipolysis after about 48 hours of exposure. The acute and long-term effects of GCs on adipose tissue lipolysis remain unclear. Although considerable evidence supports the notion that GCs increase lipolysis through glucocorticoid-induced increases of lipase expression, they clearly have antilipolytic effects within these same tissues and cell line models.
Collapse
Affiliation(s)
- Ashley J Peckett
- School of Kinesiology and Health Science Muscle Health Research Centre, York University, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
21
|
Chaves VE, Frasson D, Kawashita NH. Several agents and pathways regulate lipolysis in adipocytes. Biochimie 2011; 93:1631-40. [PMID: 21658426 DOI: 10.1016/j.biochi.2011.05.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/23/2011] [Indexed: 01/01/2023]
Abstract
Adipose tissue is the only tissue capable of hydrolyzing its stores of triacylglycerol (TAG) and of mobilizing fatty acids and glycerol in the bloodstream so that they can be used by other tissues. The full hydrolysis of TAG depends on the activity of three enzymes, adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase, each of which possesses a distinct regulatory mechanism. Although more is known about HSL than about the other two enzymes, it has recently been shown that HLS and ATGL can be activated simultaneously, such that the mechanism that enables HSL to access the surface of lipid droplets also permits the stimulation of ATGL. The classical pathway of lipolysis activation in adipocytes is cAMP-dependent. The production of cAMP is modulated by G-protein-coupled receptors of the Gs/Gi family and cAMP degradation is regulated by phosphodiesterase. However, other pathways that activate TAG hydrolysis are currently under investigation. Lipolysis can also be started by G-protein-coupled receptors of the Gq family, through molecular mechanisms that involve phospholipase C, calmodulin and protein kinase C. There is also evidence that increased lipolytic activity in adipocytes occurs after stimulation of the mitogen-activated protein kinase pathway or after cGMP accumulation and activation of protein kinase G. Several agents contribute to the control of lipolysis in adipocytes by modulating the activity of HSL and ATGL. In this review, we have summarized the signalling pathways activated by several agents involved in the regulation of TAG hydrolysis in adipocytes.
Collapse
Affiliation(s)
- Valéria Ernestânia Chaves
- Department of Basic Sciences in Health, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | | |
Collapse
|
22
|
Vijayakumar A, Yakar S, LeRoith D. The intricate role of growth hormone in metabolism. Front Endocrinol (Lausanne) 2011; 2:32. [PMID: 22654802 PMCID: PMC3356038 DOI: 10.3389/fendo.2011.00032] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/30/2011] [Indexed: 11/18/2022] Open
Abstract
Growth hormone (GH), a master regulator of somatic growth, also regulates carbohydrate and lipid metabolism via complex interactions with insulin and insulin-like growth factor-1 (IGF-1). Data from human and rodent studies reveal the importance of GH in insulin synthesis and secretion, lipid metabolism and body fat remodeling. In this review, we will summarize the tissue-specific metabolic effects of GH, with emphasis on recent targets identified to mediate these effects. Furthermore, we will discuss what role GH plays in obesity and present possible mechanisms by which this may occur.
Collapse
Affiliation(s)
- Archana Vijayakumar
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA
| | - Shoshana Yakar
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Mount Sinai School of MedicineNew York, NY, USA
- *Correspondence: Derek LeRoith, Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, One Gustav Levy Place, Box 1055, New York, NY 10029-6574, USA. e-mail:
| |
Collapse
|
23
|
Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 2010; 20:1-7. [PMID: 19800274 PMCID: PMC2815161 DOI: 10.1016/j.ghir.2009.09.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 01/05/2023]
Abstract
This review will summarize the metabolic effects of growth hormone (GH) on the adipose tissue, liver, and skeletal muscle with focus on lipid and carbohydrate metabolism. The metabolic effects of GH predominantly involve the stimulation of lipolysis in the adipose tissue resulting in an increased flux of free fatty acids (FFAs) into the circulation. In the muscle and liver, GH stimulates triglyceride (TG) uptake, by enhancing lipoprotein lipase (LPL) expression, and its subsequent storage. The effects of GH on carbohydrate metabolism are more complicated and may be mediated indirectly via the antagonism of insulin action. Furthermore, GH has a net anabolic effect on protein metabolism although the molecular mechanisms of its actions are not completely understood. The major questions that still remain to be answered are (i) What are the molecular mechanisms by which GH regulates substrate metabolism? (ii) Does GH affect substrate metabolism directly or indirectly via IGF-1 or antagonism of insulin action?
Collapse
Affiliation(s)
- Archana Vijayakumar
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
24
|
Fain JN, Cheema P, Tichansky DS, Madan AK. Stimulation of human omental adipose tissue lipolysis by growth hormone plus dexamethasone. Mol Cell Endocrinol 2008; 295:101-5. [PMID: 18640775 DOI: 10.1016/j.mce.2008.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/15/2008] [Accepted: 05/22/2008] [Indexed: 12/23/2022]
Abstract
Growth hormone [GH] administration results in a reduction in adiposity of humans that is attributed to stimulation of lipolysis. We examined the effect of direct addition of human GH, in both the absence and presence of dexamethasone [Dex], as well as that of interferon beta on lipolysis by omental adipose tissue explants from obese women incubated for 48h in primary culture. There was a significant stimulation of lipolysis by GH in the presence of Dex but not by Dex or GH alone. There was also a significant further stimulation by GH in the presence of Dex of hormone-sensitive lipase, perilipin, lipoprotein lipase and beta1 adrenergic receptor mRNA. We conclude that the direct lipolytic effect of GH is accompanied by an increase in HSL mRNA in the presence of DEX, but GH also increased the mRNAs for other proteins that could explain all or part of its lipolytic action.
Collapse
Affiliation(s)
- John N Fain
- Department of Molecular Sciences, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
25
|
Freda PU, Shen W, Heymsfield SB, Reyes-Vidal CM, Geer EB, Bruce JN, Gallagher D. Lower visceral and subcutaneous but higher intermuscular adipose tissue depots in patients with growth hormone and insulin-like growth factor I excess due to acromegaly. J Clin Endocrinol Metab 2008; 93:2334-43. [PMID: 18349062 PMCID: PMC2435633 DOI: 10.1210/jc.2007-2780] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT GH and IGF-I are important regulators of metabolism and body composition. In acromegaly, a state of GH and IGF-I excess, the lipolytic and insulin antagonistic effects of GH may alter adipose tissue (AT) distribution. OBJECTIVES Our objective was to test the hypothesis that in acromegaly whole-body AT mass is less and to examine for the first time the relationship between GH/IGF-I excess and intermuscular AT (IMAT), an AT depot associated with insulin resistance in other populations. DESIGN, SETTING, AND PATIENTS We conducted a cross-sectional study in 24 adults with active acromegaly compared with predicted models developed in 315 healthy non-acromegaly subjects. OUTCOME MEASURES Mass of AT in the visceral AT (VAT), sc AT (SAT), and IMAT compartments from whole-body magnetic resonance imaging and serum levels of GH, IGF-I, insulin, and glucose were measured. RESULTS VAT and SAT were less in active acromegaly (P < 0.0001); these were 68.2 +/- 27% and 79.5 +/- 15% of predicted values, respectively. By contrast, IMAT was greater (P = 0.0052) by 185.6 +/- 84% of predicted. VAT/trunk AT ratios were inversely related to IGF-I levels (r = 0.544; P = 0.0054). Acromegaly subjects were insulin resistant. CONCLUSIONS VAT and SAT, most markedly VAT, are less in acromegaly. The proportion of trunk AT that is VAT is less with greater disease activity. IMAT is greater in acromegaly, a novel finding, which suggests that increased AT in muscle could be associated with GH-induced insulin resistance. These findings have implications for understanding the role of GH in body composition and metabolic risk in acromegaly and other clinical settings of GH use.
Collapse
Affiliation(s)
- Pamela U Freda
- Department of Medicine, Columbia University, College of Physicians and Surgeons, 650 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Jørgensen JOL, Møller L, Krag M, Billestrup N, Christiansen JS. Effects of growth hormone on glucose and fat metabolism in human subjects. Endocrinol Metab Clin North Am 2007; 36:75-87. [PMID: 17336735 DOI: 10.1016/j.ecl.2006.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This article focuses on in vivo data from tests performed in normal subjects and in patients who had abnormal growth hormone (GH) status. Experimental data in human subjects demonstrate that GH acutely inhibits glucose disposal in skeletal muscle. At the same time GH stimulates the turnover and oxidation of free fatty acid (FFA), and experimental evidence suggests a causal link between elevated FFA levels and insulin resistance in skeletal muscle. Observational data in GH-deficient adults do not indicate that GH replacement is associated with significant impairment of glucose tolerance, but it is recommended that overdosing be avoided and glycemic control be monitored.
Collapse
Affiliation(s)
- Jens O L Jørgensen
- Medical Department M (Endocrinology and Diabetes) and Institute of Experimental Clinical Research, Aarhus University Hospital, Norrebrogade 44, DK-800C, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
27
|
Wee J, Charlton C, Simpson H, Jackson NC, Shojaee-Moradie F, Stolinski M, Pentecost C, Umpleby AM. GH secretion in acute exercise may result in post-exercise lipolysis. Growth Horm IGF Res 2005; 15:397-404. [PMID: 16213174 DOI: 10.1016/j.ghir.2005.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 08/02/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Exercise is a potent stimulator of growth hormone (GH) secretion. We hypothesised that after a short bout of intense exercise GH may increase lipolysis during recovery. In 7 moderately trained young male subjects (21.8 +/- 0.5 years) and 7 moderately trained older male subjects (56.0 +/- 1.0 years) [(2)H(5)] glycerol was infused for 370min to measure glycerol production rate (R(a)), a measure of lipolysis. At 130 min subjects exercised on a cycle ergonometer for 20 min at 70% V(O2 max), followed by rest for 220 min. On a separate occasion the study was repeated in the young subjects with a 1h GH infusion (4microgkg(-1)h(-1)) at 130 min instead of exercise. In response to exercise, catecholamines (p < 0.02) and glycerol R(a) (p < 0.01) increased, peaking during exercise. GH concentration increased in response to exercise (p < 0.01), peaking after exercise (150-160 min) in both groups with no significant difference in peak response between groups. A post-exercise rise in glycerol R(a) was demonstrated in both groups peaking at 265-295 min in the older group (p < 0.002, peak vs. basal) and continuing to rise until 370 min in the young group (p < 0.01, peak vs. basal). The timing and magnitude of this was reproduced with the GH infusion. There was a significant correlation between the peak GH response to exercise and the post-exercise rise in glycerol R(a) measured as area under the curve (r=0.57, p < 0.04). In conclusion, this study provides evidence that the GH response to acute exercise may increase lipolysis during recovery.
Collapse
Affiliation(s)
- Jamie Wee
- Department of Diabetes, Endocrinology and Internal Medicine, St. Thomas' Hospital, GKT School of Medicine, Kings College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|