1
|
Chromosomal regions strongly associated with waist circumference and body mass index in metabolic syndrome in a family-based study. Sci Rep 2021; 11:6082. [PMID: 33727680 PMCID: PMC7966400 DOI: 10.1038/s41598-021-85741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/05/2021] [Indexed: 11/24/2022] Open
Abstract
Obesity is the most crucial phenotype in metabolic syndrome (MetS), and waist circumference (WC) and body mass index (BMI) are two common indexes to define obesity. It is an accepted fact that genetic and environmental interaction influence obesity and MetS. Microsatellites are a subcategory of tandem repeats with a length of 1 to 10 nucleotides. Tandem repeats make up repetitive genomic regions. Differences in the number of tandem repeats or their variation (alleles) result in microsatellite polymorphisms. Thus, we attempted to find microsatellite variation associated with WC and BMI in a family-based study. Twelve microsatellite markers were selected to investigate possible genes or chromosomal regions in 91 families with at least one affected MetS. The cut-off values for BMI and WC were considered 25 kg/m2 and 90 cm, respectively. In all members of the families, the strongest association was observed between the marker D11S1304 (allele 1) with both WC and BMI, independently, by the biallelic model in the family-based association test analysis (P < 0.05). Besides, when we compared high- and low-level groups in members with MetS, the markers D8S1743 and D11S1304 (allele 1) showed a strong association with WC (P = 0.0080) and BMI (P = 0.0074), respectively. When the simultaneous detection of the high WC and MetS status was used as a trait, the strongest association was observed with the marker D8S1743 (P = 0.0034). Moreover, when BMI with the high MetS status was used as a trait, the strongest association was observed with the marker D8S1743 (allele 4) (P = 0.0034). The obtained results showed a relationship between obesity and MetS with markers on the selected regions on chromosomes 8 and 11, and to a lesser degree, on chromosome 12.
Collapse
|
2
|
Piaggi P, Köroğlu Ç, Nair AK, Sutherland J, Muller YL, Kumar P, Hsueh WC, Kobes S, Shuldiner AR, Kim HI, Gosalia N, Van Hout CV, Jones M, Knowler WC, Krakoff J, Hanson RL, Bogardus C, Baier LJ. Exome Sequencing Identifies A Nonsense Variant in DAO Associated With Reduced Energy Expenditure in American Indians. J Clin Endocrinol Metab 2020; 105:5895009. [PMID: 32818236 PMCID: PMC7501742 DOI: 10.1210/clinem/dgaa548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity and energy expenditure (EE) are heritable and genetic variants influencing EE may contribute to the development of obesity. We sought to identify genetic variants that affect EE in American Indians, an ethnic group with high prevalence of obesity. METHODS Whole-exome sequencing was performed in 373 healthy Pima Indians informative for 24-hour EE during energy balance. Genetic association analyses of all high-quality exonic variants (≥5 carriers) was performed, and those predicted to be damaging were prioritized. RESULTS Rs752074397 introduces a premature stop codon (Cys264Ter) in DAO and demonstrated the strongest association for 24-hour EE, where the Ter allele associated with substantially lower 24-hour EE (mean lower by 268 kcal/d) and sleeping EE (by 135 kcal/d). The Ter allele has a frequency = 0.5% in Pima Indians, whereas is extremely rare in most other ethnic groups (frequency < 0.01%). In vitro functional analysis showed reduced protein levels for the truncated form of DAO consistent with increased protein degradation. DAO encodes D-amino acid oxidase, which is involved in dopamine synthesis which might explain its role in modulating EE. CONCLUSION Our results indicate that a nonsense mutation in DAO may influence EE in American Indians. Identification of variants that influence energy metabolism may lead to new pathways to treat human obesity. CLINICAL TRIAL REGISTRATION NUMBER NCT00340132.
Collapse
Affiliation(s)
- Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
- Department of Information Engineering, University of Pisa, Pisa, Italy
- Correspondence and Reprint Requests: Paolo Piaggi, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 4212 N 16th St., Phoenix, AZ 85016. E-mail: ,
| | - Çiğdem Köroğlu
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Anup K Nair
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Jeff Sutherland
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Yunhua L Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Pankaj Kumar
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Wen-Chi Hsueh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Alan R Shuldiner
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Hye In Kim
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Nehal Gosalia
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Marcus Jones
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| |
Collapse
|
3
|
Hellwege JN, Velez Edwards DR, Acra S, Chen K, Buchowski MS, Edwards TL. Association of gene coding variation and resting metabolic rate in a multi-ethnic sample of children and adults. BMC OBESITY 2017; 4:12. [PMID: 28417008 PMCID: PMC5381071 DOI: 10.1186/s40608-017-0145-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
Background Resting metabolic rates (RMR) vary across individuals. Understanding the determinants of RMR could provide biological insight into obesity and its metabolic consequences such as type 2 diabetes and cardiovascular diseases. Methods The present study measured RMR using reference standard indirect calorimetry and evaluated genetic variations from an exome array in a sample of children and adults (N = 262) predominantly of African and European ancestry with a wide range of ages (10 – 67 years old) and body mass indices (BMI; 16.9 – 56.3 kg/m2 for adults, 15.1 – 40.6 kg/m2 for children). Results Single variant analysis for RMR identified suggestive loci on chromosomes 15 (rs74010762, TRPM1, p-value = 2.7 × 10−6), 1 (rs2358728 and rs2358729, SH3D21, p-values < 5.8x10−5), 17 (AX-82990792, DHX33, 5.5 × 10−5) and 5 (rs115795863 and rs35433829, C5orf33 and RANBP3L, p-values < 8.2 × 10−5). To evaluate the effect of low frequency variations with RMR, we performed gene-based association tests. Our most significant locus was SH3D21 (p-value 2.01 × 10−4), which also contained suggestive results from single-variant analyses. A further investigation of all variants within the reported genes for all obesity-related loci from the GWAS catalog found nominal evidence for association of body mass index (BMI- kg/m2)-associated loci with RMR, with the most significant p-value at rs35433754 (TNKS, p-value = 0.0017). Conclusions These nominal associations were robust to adjustment for BMI. The most significant variants were also evaluated using phenome-wide association to evaluate pleiotropy, and genetically predicted gene expression using the summary statistics implicated loci related to in obesity and body composition. These results merit further examination in larger cohorts of children and adults. Electronic supplementary material The online version of this article (doi:10.1186/s40608-017-0145-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Digna R Velez Edwards
- Department of Obstetrics and Gynecology, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600, Nashville, TN USA
| | - Sari Acra
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - Kong Chen
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Maciej S Buchowski
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| |
Collapse
|
4
|
Pérusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Snyder EE, Bouchard C. The Human Obesity Gene Map: The 2004 Update. ACTA ACUST UNITED AC 2012; 13:381-490. [PMID: 15833932 DOI: 10.1038/oby.2005.50] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single-gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity-related phenotypes from 50 genome-wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Louis Pérusse
- Division of Kinesiology, Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Sainte-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tranah GJ, Lam ET, Katzman SM, Nalls MA, Zhao Y, Evans DS, Yokoyama JS, Pawlikowska L, Kwok PY, Mooney S, Kritchevsky S, Goodpaster BH, Newman AB, Harris TB, Manini TM, Cummings SR. Mitochondrial DNA sequence variation is associated with free-living activity energy expenditure in the elderly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1691-700. [PMID: 22659402 DOI: 10.1016/j.bbabio.2012.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/19/2012] [Accepted: 05/24/2012] [Indexed: 01/11/2023]
Abstract
The decline in activity energy expenditure underlies a range of age-associated pathological conditions, neuromuscular and neurological impairments, disability, and mortality. The majority (90%) of the energy needs of the human body are met by mitochondrial oxidative phosphorylation (OXPHOS). OXPHOS is dependent on the coordinated expression and interaction of genes encoded in the nuclear and mitochondrial genomes. We examined the role of mitochondrial genomic variation in free-living activity energy expenditure (AEE) and physical activity levels (PAL) by sequencing the entire (~16.5 kilobases) mtDNA from 138 Health, Aging, and Body Composition Study participants. Among the common mtDNA variants, the hypervariable region 2 m.185G>A variant was significantly associated with AEE (p=0.001) and PAL (p=0.0005) after adjustment for multiple comparisons. Several unique nonsynonymous variants were identified in the extremes of AEE with some occurring at highly conserved sites predicted to affect protein structure and function. Of interest is the p.T194M, CytB substitution in the lower extreme of AEE occurring at a residue in the Qi site of complex III. Among participants with low activity levels, the burden of singleton variants was 30% higher across the entire mtDNA and OXPHOS complex I when compared to those having moderate to high activity levels. A significant pooled variant association across the hypervariable 2 region was observed for AEE and PAL. These results suggest that mtDNA variation is associated with free-living AEE in older persons and may generate new hypotheses by which specific mtDNA complexes, genes, and variants may contribute to the maintenance of activity levels in late life.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA 94107, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang XD. A method for effectively comparing gene effects in multiple conditions in RNAi and expression-profiling research. Pharmacogenomics 2010; 10:345-58. [PMID: 20397965 DOI: 10.2217/14622416.10.3.345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop a new analytical method to address the issues of traditional contrast analysis for comparing gene effects in RNAi and expression-profiling research. METHODS & RESULTS I propose a new method consisting of contrast variable, standardized mean of contrast (SMC) and c(+)-probability analysis for comparing gene effects in multiple conditions. Compared with traditional contrast analysis, this new method has the following major advantages: it directly addresses the primary question of interest, namely the assessment of the strength of comparison; SMC and c(+)-probability capture data variability and are robust to sample size. The simulation and application studies show that traditional contrast analysis produces misleading results and erroneous conclusions whereas the new method produces reasonable results and sensible conclusions. CONCLUSIONS The new method may have a broad utility in comparing gene effects in multiple conditions including selecting hits in RNAi research and identifying differential expression in microarray experiments.
Collapse
|
7
|
Kettunen J, Perola M, Martin NG, Cornes BK, Wilson SG, Montgomery GW, Benyamin B, Harris JR, Boomsma D, Willemsen G, Hottenga JJ, Slagboom PE, Christensen K, Kyvik KO, Sørensen TIA, Pedersen NL, Magnusson PKE, Andrew T, Spector TD, Widen E, Silventoinen K, Kaprio J, Palotie A, Peltonen L. Multicenter dizygotic twin cohort study confirms two linkage susceptibility loci for body mass index at 3q29 and 7q36 and identifies three further potential novel loci. Int J Obes (Lond) 2009; 33:1235-42. [PMID: 19721450 PMCID: PMC2873558 DOI: 10.1038/ijo.2009.168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To identify common loci and potential genetic variants affecting body mass index (BMI, kg m(-2)) in study populations originating from Europe. DESIGN We combined genome-wide linkage scans of six cohorts from Australia, Denmark, Finland, the Netherlands, Sweden and the United Kingdom with an approximately 10-cM microsatellite marker map. Variance components linkage analysis was carried out with age, sex and country of origin as covariates. SUBJECTS The GenomEUtwin consortium consists of twin cohorts from eight countries (Australia, Denmark, the Netherlands, Finland, Italy, Norway, Sweden and the United Kingdom) with a total data collection of more than 500,000 monozygotic and dizygotic (DZ) twin pairs. Variance due to early-life events and the environment is reduced within twin pairs, which makes DZ pairs highly valuable for linkage studies of complex traits. This study totaled 4401 European-originated twin families (10,535 individuals) from six countries (Australia, Denmark, the Netherlands, Finland, Sweden and the United Kingdom). RESULTS We found suggestive evidence for a quantitative trait locus on 3q29 and 7q36 in the combined sample of DZ twins (multipoint logarithm of odds score (MLOD) 2.6 and 2.4, respectively). Two individual cohorts showed strong evidence independently for three additional loci: 16q23 (MLOD=3.7) and 2p24 (MLOD=3.4) in the Dutch cohort and 20q13 (MLOD=3.2) in the Finnish cohort. CONCLUSION Linkage analysis of the combined data in this large twin cohort study provided evidence for suggestive linkage to BMI. In addition, two cohorts independently provided significant evidence of linkage to three new loci. The results of our study suggest a smaller environmental variance between DZ twins than full siblings, with a corresponding increase in heritability for BMI as well as an increase in linkage signal in well-replicated regions. The results are consistent with the possibility of locus heterogeneity for some genomic regions, and indicate a lack of major common quantitative trait locus variants affecting BMI in European populations.
Collapse
Affiliation(s)
- J Kettunen
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstracts of the 87thScientific Meeting and 50thAnniversary Symposium of the Society for the Study of Human Biology held at University of Oxford, 1–3 April 2008. Ann Hum Biol 2009. [DOI: 10.1080/03014460903116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Åberg K, Dai F, Sun G, Keighley ED, Indugula SR, Roberts ST, Zhang Q, Smelser D, Viali S, Tuitele J, Jin L, Deka R, Weeks DE, McGarvey ST. Susceptibility loci for adiposity phenotypes on 8p, 9p, and 16q in American Samoa and Samoa. Obesity (Silver Spring) 2009; 17:518-24. [PMID: 19238140 PMCID: PMC2879592 DOI: 10.1038/oby.2008.558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is a complex phenotype affected by genetic and environmental influences such as sociocultural factors and individual behaviors. Previously, we performed two separate genome-wide investigations for adiposity-related traits (BMI, percentage body fat (%BF), abdominal circumference (ABDCIR), and serum leptin and serum adiponectin levels) in families from American Samoa and in families from Samoa. The two polities have a common evolutionary history but have lately been influenced by variations in economic development, leading to differences in income and wealth and in dietary and physical activity patterns. We now present a genome-wide linkage scan of the combined samples from the two polities. We adjust for environmental covariates, including polity of residence, education, cigarette smoking, and farm work, and use variance component methods to calculate univariate and bivariate multipoint lod scores. We identified a region on 9p22 with genome-wide significant linkage for the bivariate phenotypes ABDCIR-%BF (1-d.f. lod 3.30) and BMI-%BF (1-d.f. lod 3.31) and two regions with genome-wide suggestive linkage on 8p12 and 16q23 for adiponectin (lod 2.74) and the bivariate phenotype leptin-ABDCIR (1-d.f. lod 3.17), respectively. These three regions have previously been reported to be linked to adiposity-related phenotypes in independent studies. However, the differences in results between this study and our previous polity-specific studies suggest that environmental effects are of different importance in the samples. These results strongly encourage further genetic studies of adiposity-related phenotypes where extended sets of carefully measured environmental factors are taken into account.
Collapse
Affiliation(s)
- Karolina Åberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Feng Dai
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Guangyun Sun
- Center for Genome Information, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ember D. Keighley
- International Health Institute, Brown University, Providence, Rhode Island, USA
| | - Subba R. Indugula
- Center for Genome Information, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sarah T. Roberts
- International Health Institute, Brown University, Providence, Rhode Island, USA
| | - Qi Zhang
- Center for Genome Information, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Diane Smelser
- Center for Genome Information, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Satupaitea Viali
- Tupua Tamasese Meaole Hospital, Ministry of Health, Government of Samoa, Apia, Samoa
| | - John Tuitele
- Tafuna Family Health Center, Department of Health, American Samoa Government, Pago Pago, American Samoa, USA
| | - Li Jin
- Center for Genome Information, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ranjan Deka
- Center for Genome Information, Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daniel E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen T. McGarvey
- International Health Institute, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Abstract
BACKGROUND Obesity is rapidly becoming a global epidemic. Unlike many complex human diseases, obesity is defined not just by a single trait or phenotype, but jointly by measures of anthropometry and metabolic status. METHODS We applied maximum likelihood factor analysis to identify common latent factors underlying observed covariance in multiple obesity-related measures. Both the genetic components and the mode of inheritance of the common factors were evaluated. A total of 1775 participants from 590 families for whom measures on obesity-related traits were available were included in this study. RESULTS The average age of participants was 37 years, 39% of the participants were obese (body mass index >or= 30.0 kg/m(2)) and 26% were overweight (body mass index 25.0-29.9 kg/m(2)). Two latent common factors jointly accounting for over 99% of the correlations among obesity-related traits were identified. Complex segregation analysis of the age- and sex-adjusted latent factors provide evidence for a Mendelian mode of inheritance of major genetic effect with heritability estimates of 40.4 and 47.5% for the first and second factors, respectively. CONCLUSIONS These findings provide a support for multivariate-based approach for investigating pleiotropic effects on obesity-related traits, which can be applied in both genetic linkage and association mapping.
Collapse
Affiliation(s)
- B O Tayo
- Department of Preventive Medicine and Epidemiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
11
|
Snodgrass JJ, Leonard WR, Sorensen MV, Tarskaia LA, Mosher MJ. The influence of basal metabolic rate on blood pressure among indigenous Siberians. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 137:145-55. [PMID: 18470897 DOI: 10.1002/ajpa.20851] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypertension is an important global health issue and is currently increasing at a rapid pace in most industrializing nations. Although a number of risk factors have been linked with the development of hypertension, including obesity, high dietary sodium, and chronic psychosocial stress, these factors cannot fully explain the variation in blood pressure and hypertension rates that occurs within and between populations. The present study uses data collected on adults from three indigenous Siberian populations (Evenki, Buryat, and Yakut [Sakha]) to test the hypothesis of Luke et al. (Hypertension 43 (2004) 555-560) that basal metabolic rate (BMR) and blood pressure are positively associated independent of body size. When adjusted for body size and composition, as well as potentially confounding variables such as age, smoking status, ethnicity, and degree of urbanization, BMR was positively correlated with systolic blood pressure (SBP; P < 0.01) and pulse pressure (PP; P < 0.01); BMR showed a trend with diastolic blood pressure (DBP; P = 0.08). Thus, higher BMR is associated with higher SBP and PP; this is opposite the well-documented inverse relationship between physical activity and blood pressure. If the influence of BMR on blood pressure is confirmed, the systematically elevated BMRs of indigenous Siberians may help explain the relatively high blood pressures and hypertension rates documented among native Siberians in the post-Soviet period. These findings underscore the importance of considering the influence of biological adaptation to regional environmental conditions in structuring health changes associated with economic development and lifestyle change.
Collapse
Affiliation(s)
- J Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA.
| | | | | | | | | |
Collapse
|
12
|
Bosy-Westphal A, Wolf A, Bührens F, Hitze B, Czech N, Mönig H, Selberg O, Settler U, Pfeuffer M, Schrezenmeir J, Krawczak M, Müller MJ. Familial influences and obesity-associated metabolic risk factors contribute to the variation in resting energy expenditure: the Kiel Obesity Prevention Study. Am J Clin Nutr 2008; 87:1695-701. [PMID: 18541558 DOI: 10.1093/ajcn/87.6.1695] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A low metabolic rate may be inherited and predispose to obesity, whereas a higher metabolic rate in obesity may be acquired by obesity-associated cardiometabolic risk. OBJECTIVE We aimed to explain the interindividual variation in resting energy expenditure (REE) by assessing 1) the association between REE and body composition, thyroid hormones, and obesity-related cardiometabolic risk factors, and 2) the familial (genetic and environmental) contribution to REE. DESIGN REE and metabolic risk factors (ie, blood pressure and plasma insulin, glucose, and C-reactive protein concentrations) were assessed in 149 two- or three-generation families, including at least one overweight or obese member. Heritability of REE, respiratory quotient (RQ), thyroid hormones [thyrotropin (TSH), free triiodothyronine (FT3) and free thyroxine (FT4)], and body composition (fat-free mass and fat mass) were estimated by using variance components-based quantitative genetic models. RESULTS REE adjusted for body composition, sex, and age (REEadj) significantly correlated with systolic and diastolic blood pressure, plasma insulin and glucose concentrations, and the homeostasis model assessment (HOMA) (r = 0.14-0.31, P < 0.05). Thyroid hormones had a modest influence on REE variance only. Heritability was 0.30 +/- 0.07 for REEadj and 0.29 +/- 0.08 for REE after additional adjustment for thyroid hormones and metabolic risk. Furthermore, heritability was estimated to be 0.22 +/- 0.08 for RQ, 0.37 +/- 0.08 for TSH, 0.68 +/- 0.06 for FT4, and 0.69 +/- 0.05 for FT3 (all significantly larger than zero). CONCLUSIONS Obesity-related cardiometabolic risk factors contribute to interindividual variation in REE, with hypertension and insulin resistance being associated with a higher REE. REE was moderately heritable, independent of body composition, sex, age, thyroid function, and cardiometabolic risk.
Collapse
Affiliation(s)
- Anja Bosy-Westphal
- Institut für Humanernährung und Lebensmittelkunde, Christian-Albrechts-Universität, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cai G, Cole SA, Butte NF, Voruganti VS, Comuzzie AG. Genome-wide scan revealed genetic loci for energy metabolism in Hispanic children and adolescents. Int J Obes (Lond) 2008; 32:579-85. [PMID: 18317473 DOI: 10.1038/ijo.2008.20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Genome-wide scans were conducted in search for genetic locations linked to energy expenditure and substrate oxidation in children. DESIGN Pedigreed data of 1030 Hispanic children and adolescents were from the Viva La Familia Study which was designed to investigate genetic and environmental risk factors for the development of obesity in Hispanic families. A respiratory calorimeter was used to measure 24-h total energy expenditure (TEE), basal metabolic rate (BMR), sleep metabolic rate (SMR), 24-h respiratory quotient (24RQ), basal metabolic respiratory quotient (BMRQ) and sleep respiratory quotient (SRQ). Protein, fat and carbohydrate oxidation (PROOX, FATOX and CHOOX, respectively) were also estimated. All participants were genotyped for 384 single tandem repeat markers spaced an average of 10 cM apart. Computer program SOLAR was used to perform the genetic linkage analyses. RESULTS Significant linkage for TEE was detected on chromosome 1 near marker D1S2841, with a logarithm of the odds (LOD) score of 4.0. SMR, BMRQ and PROOX were associated with loci on chromosome 18, 17 and 9, respectively, with LOD scores of 4.88, 3.17 and 4.55, respectively. A genome-wide scan of SMR per kg fat-free mass (SpFFM) peaked in the same region as SMR on chromosome 18 (LOD, 5.24). Suggestive linkage was observed for CHOOX and FATOX. Several candidate genes were found in the above chromosomal regions including leptin receptor (LEPR). CONCLUSION Regions on chromosomes 1, 9, 17 and 18 harbor genes affecting variation in energy expenditure and substrate oxidation in Hispanic children and adolescents.
Collapse
Affiliation(s)
- G Cai
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
14
|
Dai F, Keighley ED, Sun G, Indugula SR, Roberts ST, Aberg K, Smelser D, Tuitele J, Jin L, Deka R, Weeks DE, McGarvey ST. Genome-wide scan for adiposity-related phenotypes in adults from American Samoa. Int J Obes (Lond) 2007; 31:1832-42. [PMID: 17621312 DOI: 10.1038/sj.ijo.0803675] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To detect quantitative trait loci influencing adiposity-related phenotypes assessed by body mass index (BMI), abdominal circumference (ABDCIR), percent body fat (%BFAT) and fasting serum leptin and adiponectin using a whole genome linkage scan of families from American Samoa. DESIGN Family-based linkage analysis, the probands and family members were unselected for obesity. SUBJECTS A total of 583 phenotyped American Samoan adults, of which 578 were genotyped in 34 pedigrees. MEASUREMENTS A total of 377 autosomal and 18 X chromosome microsatellite markers were typed at an approximate average spacing of 10 cM spanning the genome. Multipoint LOD (logarithm of the odds) scores were calculated using variance-components approaches and SOLAR/LOKI software. The covariates simultaneously evaluated were age, sex, education, farm work and cigarette smoking, with a significance level of 0.1. Due to the stochastic nature of LOKI, we report the average of maximum LOD scores from 10 runs. RESULTS Significant linkage to leptin was found at 6q32.2 with LOD of 3.83. Suggestive linkage to leptin was found at 16q21:LOD=2.98, 1q42.2:LOD=1.97, 5q11.2:LOD=2.08, 12q24.23:LOD=2.00, 19p13.3:LOD=2.05; adiponectin was linked to 13q33.1-q22.1:LOD=2.41; %BFAT was linked to 16q12.2-q21, LOD=2.24; ABDCIR was linked to 16q23.1:LOD=1.95; %BFAT-adjusted leptin to 14q12, LOD=2.01; %BFAT-adjusted ABDCIR to 1q31.1, LOD=2.36, to 3q27.3-q28, LOD=2.10 and to 12p12.3, LOD=2.04. CONCLUSION We found strong evidence for a major locus on 6q23.2 influencing serum leptin levels in American Samoans. The 16q21 region appears to harbor a susceptibility locus that has significant pleiotrophic effects on phenotypes BMI, %BFAT, leptin and ABDCIR as shown by bivariate linkage analyses. Several other loci of varying significance were detected across the genome.
Collapse
Affiliation(s)
- F Dai
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 02912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Johnston SL, Souter DM, Tolkamp BJ, Gordon IJ, Illius AW, Kyriazakis I, Speakman JR. Intake compensates for resting metabolic rate variation in female C57BL/6J mice fed high-fat diets. Obesity (Silver Spring) 2007; 15:600-6. [PMID: 17372309 DOI: 10.1038/oby.2007.550] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The literature is divided over whether variation in resting metabolic rate (RMR) is related to subsequent obesity. We set out to see whether the effect of RMR on weight gain in mice could be revealed with high-fat feeding. RESEARCH METHODS AND PROCEDURES Female C57BL/6J mice received a low- (10 kcal%fat n = 47), medium- (45 kcal%fat n = 50), or high-fat diet (60 kcal%fat n = 50) for 12 weeks. Pre-treatment RMR was measured by indirect calorimetry. Body composition was estimated using DXA before and after treatment. RESULTS Mice on the high-fat diet gained 39% of body mass, whereas control animals gained 3.5%. There was no interaction between RMR and dietary type on weight gain, and there was no association between weight gain and RMR for any of the treatments. RMR accounted for 2.4% of the variation in pre-treatment food intake corrected for initial body mass; however, the gradient of this relationship indicated that variations in RMR were, on average, compensated for by adjustments in food intake. DISCUSSION Individual variations in RMR did not predispose mice to weight gain independent of the dietary treatment. Deviations from the relationship between RMR and food intake were not associated with weight gain. This suggests that variations in energy expenditure, caused by RMR and physical activity, are closely linked to dietary intake, and, therefore, well compensated. Individual variations in the strength of this association may underpin individual variability in the responses to diet.
Collapse
Affiliation(s)
- Sarah L Johnston
- Obesity and Metabolic Health Division, Rowett Research Institute, Bucksburn, Aberdeen, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
16
|
Baessler A, Fischer M, Mayer B, Koehler M, Wiedmann S, Stark K, Doering A, Erdmann J, Riegger G, Schunkert H, Kwitek AE, Hengstenberg C. Epistatic interaction between haplotypes of the ghrelin ligand and receptor genes influence susceptibility to myocardial infarction and coronary artery disease. Hum Mol Genet 2007; 16:887-99. [PMID: 17324965 DOI: 10.1093/hmg/ddm033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Data from both experimental models and humans provide evidence that ghrelin and its receptor, the growth hormone secretagogue receptor (ghrelin receptor, GHSR), possess a variety of cardiovascular effects. Thus, we hypothesized that genetic variants within the ghrelin system (ligand ghrelin and its receptor GHSR) are associated with susceptibility to myocardial infarction (MI) and coronary artery disease (CAD). Seven single nucleotide polymorphisms (SNPs) covering the GHSR region as well as eight SNPs across the ghrelin gene (GHRL) region were genotyped in index MI patients (864 Caucasians, 'index MI cases') from the German MI family study and in matched controls without evidence of CAD (864 Caucasians, 'controls', MONICA Augsburg). In addition, siblings of these MI patients with documented severe CAD (826 'affected sibs') were matched likewise with controls (n = 826 Caucasian 'controls') and used for verification. The effect of interactions between genetic variants of both genes of the ghrelin system was explored by conditional classification tree models. We found association of several GHSR SNPs with MI [best SNP odds ratio (OR) 1.7 (1.2-2.5); P = 0.002] using a recessive model. Moreover, we identified a common GHSR haplotype which significantly increases the risk for MI [multivariate adjusted OR for homozygous carriers 1.6 (1.1-2.5) and CAD OR 1.6 (1.1-2.5)]. In contrast, no relationship between genetic variants and the disease could be revealed for GHRL. However, the increase in MI/CAD frequency related to the susceptible GHSR haplotype was abolished when it coincided with a common GHRL haplotype. Multivariate adjustments as well as permutation-based methods conveyed the same results. These data are the first to demonstrate an association of SNPs and haplotypes within important genes of the ghrelin system and the susceptibility to MI, whereas association with MI/CAD could be identified for genetic variants across GHSR, no relationship could be revealed for GHRL itself. However, we found an effect of GHRL dependent upon the presence of a common, MI and CAD susceptible haplotype of GHSR. Thus, our data suggest that specific haplotypes of the ghrelin ligand and its receptor act epistatically to affect susceptibility or tolerance to MI and/or CAD.
Collapse
Affiliation(s)
- Andrea Baessler
- Clinic for Internal Medicine II, University of Regensburg Franz-Josef-Stauss Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jacobson P, Rankinen T, Tremblay A, Pérusse L, Chagnon YC, Bouchard C. Resting metabolic rate and respiratory quotient: results from a genome-wide scan in the Quebec Family Study. Am J Clin Nutr 2006; 84:1527-33. [PMID: 17158439 DOI: 10.1093/ajcn/84.6.1527] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Genes influencing resting metabolic rate (RMR) and respiratory quotient (RQ) represent candidate genes for obesity, type 2 diabetes, and the metabolic syndrome because of the involvement of these traits in energy balance and substrate oxidation. OBJECTIVE We conducted a genome-wide scan for quantitative trait loci (QTL) contributing to the variability in RMR and RQ. DESIGN Regression-based and variance components-based genome-wide autosomal scans on RMR and RQ phenotypes, obtained from indirect calorimetry, were performed in 169 families ascertained via an obese proband or from the general population. RESULTS We found evidence for linkage to RMR on chromosomes 3q26.1 (lod = 2.74), 1q21.2 (2.44), and 22q12.3 (1.33). QTL influencing RQ were found on chromosomes 12q13 (1.65) and 14q22 (1.83) when the analyses were performed in all families. Considerable locus heterogeneity within this population was suggested because most of the families were unlinked to any one quantitative trait locus. Significant associations between traits and linked microsatellites were detected within the linked, informative subsets. CONCLUSIONS We found several new QTL for energy metabolism, but the QTL on 1q may be a replication of the one reported in Pima Indians. All 3 RMR linkages overlapped regions previously linked to the metabolic syndrome or its components, and the significant association between RMR and the metabolic syndrome in the present cohort reinforces this relation. We conclude that considerable locus heterogeneity exists even within populations, which should be taken into account when considering candidate gene studies of energy metabolism phenotypes and other complex traits.
Collapse
Affiliation(s)
- Peter Jacobson
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
18
|
Luke A, Durazo-Arvizu R, Cao G, Adeyemo A, Tayo B, Cooper R. Positive association between resting energy expenditure and weight gain in a lean adult population. Am J Clin Nutr 2006; 83:1076-81. [PMID: 16685049 DOI: 10.1093/ajcn/83.5.1076] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Weight gain in adulthood is common, from modest gains in developing countries to substantial increases in Western societies. Evidence of the importance of energy expenditure in adult weight change has been limited to studies conducted in Pima Indians, in whom resting energy expenditure (REE) was found to be inversely associated with weight gain. OBJECTIVE The aim was to determine whether REE was predictive of weight change in lean Nigerian adults. DESIGN Weight was measured in 744 adults on 2-4 occasions over 5.5 y. REE was measured in the second follow-up examination. Sex-specific, mixed-effects models with REE, fat-free mass, and age as fixed effects were used to test the association between REE and weight change. RESULTS Adults aged >19 y (n = 352 men and 392 women) were included in these analyses. At baseline, the mean (+/-SD) age was 45.9 +/- 16.1 y for the whole population; the mean weight was 61.4 +/- 10.7 and 58.1 +/- 12.1 kg and body mass index (in kg/m(2)) was 21.4 +/- 3.2 and 23.1 +/- 4.0 for men and women, respectively. Over a mean 5.5 y of follow-up, the age-adjusted weight gain was 0.42 kg/y for the men and 0.59 kg/y for the women. In mixed-effects models, REE was positively associated with weight gain in both men and women (P < 0.001). No significant association was observed in participants who lost weight. CONCLUSIONS In contrast with observations in overweight Pima Indians, REE adjusted for body size and composition was positively associated with weight gain in lean Nigerian adults. This suggests either that the potential for differential regulation of body weight in lean compared with overweight populations exists or that the increased REE in this population was the result, rather than cause, of weight gain.
Collapse
Affiliation(s)
- Amy Luke
- Department of Preventive Medicine and Epidemiology, Loyola University Stritch School of Medicine, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 706] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|