1
|
Liu A, Lin L, Xu W, Gong Z, Liu Z, Xiao W. L-Theanine regulates glutamine metabolism and immune function by binding to cannabinoid receptor 1. Food Funct 2021; 12:5755-5769. [PMID: 34037653 DOI: 10.1039/d1fo00505g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
l-Theanine is a characteristic amino acid in tea with various effects including antioxidant and anti-inflammatory effects. Previously, most studies had reported that l-theanine regulates the immune function in vivo by inhibiting the expression of the inflammatory factors, but how l-theanine regulates the inflammatory factors' pathway is not known. In this study, we innovatively found the binding target of l-theanine in vivo-cannabinoid receptor 1, and demonstrated that l-theanine regulated the immune function and glutamine metabolism by competitively binding cannabinoid receptor 1. Mechanistically, l-theanine competitively binds cannabinoid receptor 1, leading to inhibition of cannabinoid receptor 1 activity, and regulates glutamine metabolism and immune function in normal and E44813-stressed rats. In normal rats, l-theanine inhibits ERK1/2 phosphorylation through Gβy by antagonizing cannabinoid receptor 1, thus affecting GS expression. From the point of view of immune signaling, after LTA antagonizes the activity of cannabinoid receptor 1, it relieves the inhibition of cannabinoid receptor 1 on COX-2 expression, downregulates Pdcd4 expression and NFκB, and ultimately enhances the expression of the anti-inflammatory factor IL-10. In E44813-stressed rats, l-theanine promotes the nuclear translocation of p-ERK1/2 by inhibiting the activity of cannabinoid receptor 1, and finally acts on GS. At the same time, it decreases the expression of the pro-inflammatory factor TNF-α and increases the expression of the anti-inflammatory factor IL-10 in stressed rats through the COX2-Pdcd4-NFκB-IL10 and TNFα pathways. In summary, these results demonstrate that l-theanine regulates glutamine metabolism and immune function by competitively binding to cannabinoid receptor 1.
Collapse
Affiliation(s)
- An Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhonghua Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. and National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China and Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| |
Collapse
|
2
|
Endocannabinoid-mediated modulation of Gq protein-coupled receptor mediates vascular hyporeactivity to nor-adrenaline during polymicrobial sepsis. Pharmacol Rep 2018; 70:1150-1157. [PMID: 30317131 DOI: 10.1016/j.pharep.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/30/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endocannabinoids level are reported to increase in sepsis, however, the role of vascular cannabinoid receptor-1 (CB1R) in sepsis-induced vascular hyporeactivity is yet to be unravelled. METHODS Polymicrobial sepsis was induced by caecal ligation and puncture in mice. Isometric tension in isolated aortic rings during early (6 h) and late (20 h) phases of sepsis was recorded and expression of mRNA of monoacylglycerol lipase (MAGL) and cannabinoid receptor-1 (CB1R) was investigated. RESULTS Sepsis significantly (p < 0.001) reduced the mean survival time in mice along with increase in bacterial load in blood and peritoneal lavage. Compared to Sham-operated (SO) mice, vascular reactivity to nor-adrenaline (NA) was significantly (p < 0.05) attenuated in both early and late phases of sepsis. NA-induced vasoconstriction was significantly (p < 0.05) potentiated by inhibition of diacylglycerol lipase (DAGL) and attenuated by inhibition of MAGL in SO mice. Pre-incubation with KT 109, a DAGL inhibitor, significantly (p < 0.05) improved the vascular hypo-reactivity to NA during both the phases of sepsis. mRNA expression of MAGL in aorta was significantly (p < 0.05) attenuated during both the phases of sepsis. But in the presence of AM 251, specific antagonist of CB1R, vascular reactivity to NA was significantly (p < 0.05) restored along with significant (p < 0.05) increase in mRNA expression of CB1R in aortic rings from both early and late phases of septic mice. CONCLUSION 2-AG regulates vascular response to NA and increased aortic expression of CB1R is responsible for vascular hyporeactivity to NA in sepsis, and in vitro inhibition of this receptor by AM 251 restored the vascular reactivity.
Collapse
|
3
|
Soler A, Hunter I, Joseph G, Hutcheson R, Hutcheson B, Yang J, Zhang FF, Joshi SR, Bradford C, Gotlinger KH, Maniyar R, Falck JR, Proctor S, Schwartzman ML, Gupte SA, Rocic P. Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. J Mol Cell Cardiol 2018; 117:88-99. [PMID: 29428638 PMCID: PMC5877315 DOI: 10.1016/j.yjmcc.2018.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/08/2018] [Accepted: 02/07/2018] [Indexed: 11/24/2022]
Abstract
Arterial stiffness plays a causal role in development of systolic hypertension. 20-hydroxyeicosatetraeonic acid (20-HETE), a cytochrome P450 (CYP450)-derived arachidonic acid metabolite, is known to be elevated in resistance arteries in hypertensive animal models and loosely associated with obesity in humans. However, the role of 20-HETE in the regulation of large artery remodeling in metabolic syndrome has not been investigated. We hypothesized that elevated 20-HETE in metabolic syndrome increases matrix metalloproteinase 12 (MMP12) activation leading to increased degradation of elastin, increased large artery stiffness and increased systolic blood pressure. 20-HETE production was increased ~7 fold in large, conduit arteries of metabolic syndrome (JCR:LA-cp, JCR) vs. normal Sprague-Dawley (SD) rats. This correlated with increased elastin degradation (~7 fold) and decreased arterial compliance (~75% JCR vs. SD). 20-HETE antagonists blocked elastin degradation in JCR rats concomitant with blocking MMP12 activation. 20-HETE antagonists normalized, and MMP12 inhibition (pharmacological and MMP12-shRNA-Lnv) significantly improved (~50% vs. untreated JCR) large artery compliance in JCR rats. 20-HETE antagonists also decreased systolic (182 ± 3 mmHg JCR, 145 ± 3 mmHg JCR + 20-HETE antagonists) but not diastolic blood pressure in JCR rats. Whereas diastolic pressure was fully angiotensin II (Ang II)-dependent, systolic pressure was only partially Ang II-dependent, and large artery stiffness was Ang II-independent. Thus, 20-HETE-dependent regulation of systolic blood pressure may be a unique feature of metabolic syndrome related to high 20-HETE production in large, conduit arteries, which results in increased large artery stiffness and systolic blood pressure. These findings may have implications for management of systolic hypertension in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Amanda Soler
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Ian Hunter
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Gregory Joseph
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Rebecca Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Jenny Yang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Frank Fan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Sachindra Raj Joshi
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Chastity Bradford
- Department of Biology, Tuskegee University, Tuskegee, AL 36088, United States
| | - Katherine H Gotlinger
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Rachana Maniyar
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - John R Falck
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Spencer Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
4
|
Battault S, Meziat C, Nascimento A, Braud L, Gayrard S, Legros C, De Nardi F, Drai J, Cazorla O, Thireau J, Meyer G, Reboul C. Vascular endothelial function masks increased sympathetic vasopressor activity in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 2018; 314:H497-H507. [DOI: 10.1152/ajpheart.00217.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sylvain Battault
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Cindy Meziat
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | | | - Laura Braud
- EB2M-PROTEE, Université de Toulon, La Garde, France
| | - Sandrine Gayrard
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Christian Legros
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, Université d'Angers, Angers, France
| | - Frederic De Nardi
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, Université d'Angers, Angers, France
| | - Jocelyne Drai
- Fédération de Biochimie, Unité de Biochimie Métabolique et Moléculaire, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Jérôme Thireau
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Gregory Meyer
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| | - Cyril Reboul
- Laboratoire de Pharm-Ecologie Cardiovasculaire, Avignon University, Avignon, France
| |
Collapse
|
5
|
DeVallance E, Branyan KW, Lemaster K, Olfert IM, Smith DM, Pistilli EE, Frisbee JC, Chantler PD. Aortic dysfunction in metabolic syndrome mediated by perivascular adipose tissue TNFα- and NOX2-dependent pathway. Exp Physiol 2018; 103:590-603. [PMID: 29349831 DOI: 10.1113/ep086818] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Tumour necrosis factor-α (TNFα) has been shown to impair vascular function, but the impact of thoracic aorta perivascular adipose tissue (tPVAT)-derived TNFα on tPVAT and aortic function in metabolic syndrome is unknown. What is the main finding and its importance? Release of TNFα by tPVAT causes production of reactive oxygen species in tPVAT through activation of an NADPH-oxidase 2 (NOX2)-dependent pathway, activates production of aortic reactive oxygen species and mediates aortic stiffness, potentially through matrix metalloproteinase 9 activity. Neutralization of TNFα and/or inhibition of NOX2 blocks the tPVAT-induced impairment of aortic function. These data partly implicate tPVAT NOX2 and TNFα in mediating the vascular pathology of metabolic syndrome. ABSTRACT Perivascular adipose tissue (PVAT) is recognized for its vasoactive effects, but it is unclear how metabolic syndrome impacts thoracic aorta (t)PVAT and the subsequent effect on functional and structural aortic stiffness. Thoracic aorta and tPVAT were removed from 16- to 17-week-old lean (LZR, n = 16) and obese Zucker rats (OZR, n = 16). The OZR presented with aortic endothelial dysfunction, assessed by wire myography, and increased aortic stiffness, assessed by elastic modulus. The OZR tPVAT exudate further exacerbated the endothelial dysfunction, reducing nitric oxide and endothelium-dependent relaxation (P < 0.05). Additionally, OZR tPVAT exudate had increased MMP9 activity (P < 0.05) and further increased the elastic modulus of the aorta after 72 h of co-culture (P < 0.05). We found that the observed aortic dysfunction caused by OZR tPVAT was mediated through increased production and release of tumour necrosis factor-α (TNFα; P < 0.01), which was dependent on tPVAT NADPH-oxidase 2 (NOX2) activity. The OZR tPVAT release of reactive oxygen species and subsequent aortic dysfunction were inhibited by TNFα neutralization and/or inhibition of NOX2. Additionally, we found that OZR tPVAT had reduced activity of the active sites of the 20S proteasome (P < 0.05) and reduced superoxide dismutase activity (P < 0.01). In conclusion, metabolic syndrome causes tPVAT dysfunction through an interplay between TNFα and NOX2 that leads to tPVAT-mediated aortic stiffness by activation of aortic reactive oxygen species and increased MMP9 activity.
Collapse
Affiliation(s)
- Evan DeVallance
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kayla W Branyan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kent Lemaster
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - David M Smith
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Emidio E Pistilli
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
6
|
Paradoxical Effect of Nonalcoholic Red Wine Polyphenol Extract, Provinols™, in the Regulation of Cyclooxygenases in Vessels from Zucker Fatty Rats ( fa/ fa). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8536910. [PMID: 28660008 PMCID: PMC5474272 DOI: 10.1155/2017/8536910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/13/2017] [Indexed: 01/08/2023]
Abstract
The aim of this work was to study the vascular effects of dietary supplementation of a nonalcoholic red wine polyphenol extract, Provinols, in Zucker fatty (ZF) obese rats. ZF or lean rats received diet supplemented or not with Provinols for 8 weeks. Vasoconstriction in response to phenylephrine (Phe) was then assessed in small mesenteric arteries (SMA) and the aorta with emphasis on the contribution of cyclooxygenases (COX). Although no difference in vasoconstriction was observed between ZF and lean rats both in SMA and the aorta, Provinols affected the contribution of COX-derived vasoconstrictor agents. The nonselective COX inhibitor, indomethacin, reduced vasoconstriction in vessels from both groups; however, lower efficacy was observed in Provinols-treated rats. This was associated with a reduction in thromboxane-A2 and 8-isoprostane release. The selective COX-2 inhibitor, NS398, reduced to the same extent vasoconstriction in aortas from ZF and Provinols-treated ZF rats. However, NS398 reduced response to Phe only in SMA from ZF rats. This was associated with a reduction in 8-isoprostane and prostaglandin-E release. Paradoxically, Provinols decreased COX-2 expression in the aorta, while it increased its expression in SMA. We provide here evidence of a subtle and paradoxical regulation of COX pathway by Provinols vessels from obese rats to maintain vascular tone within a physiological range.
Collapse
|
7
|
Justo ML, Claro C, Zeyda M, Stulnig TM, Herrera MD, Rodríguez-Rodríguez R. Rice bran prevents high-fat diet-induced inflammation and macrophage content in adipose tissue. Eur J Nutr 2015; 55:2011-9. [DOI: 10.1007/s00394-015-1015-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
|
8
|
Lambert EA, Straznicky NE, Dixon JB, Lambert GW. Should the sympathetic nervous system be a target to improve cardiometabolic risk in obesity? Am J Physiol Heart Circ Physiol 2015; 309:H244-58. [DOI: 10.1152/ajpheart.00096.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/11/2015] [Indexed: 02/03/2023]
Abstract
The sympathetic nervous system (SNS) plays a key role in both cardiovascular and metabolic regulation; hence, disturbances in SNS regulation are likely to impact on both cardiovascular and metabolic health. With excess adiposity, in particular when visceral fat accumulation is present, sympathetic activation commonly occurs. Experimental investigations have shown that adipose tissue releases a large number of adipokines, cytokines, and bioactive mediators capable of stimulating the SNS. Activation of the SNS and its interaction with adipose tissue may lead to the development of hypertension and end-organ damage including vascular, cardiac, and renal impairment and in addition lead to metabolic abnormalities, especially insulin resistance. Lifestyle changes such as weight loss and exercise programs considerably improve the cardiovascular and metabolic profile of subjects with obesity and decrease their cardiovascular risk, but unfortunately weight loss is often difficult to achieve and sustain. Pharmacological and device-based approaches to directly or indirectly target the activation of the SNS may offer some benefit in reducing the cardiometabolic consequences of obesity. Preliminary evidence is encouraging, but more trials are needed to investigate whether sympathetic inhibition could be used in obesity to reverse or prevent cardiometabolic disease development. The purpose of this review article is to highlight the current knowledge of the role that SNS plays in obesity and its associated metabolic disorders and to review the potential benefits of sympathoinhibition on metabolic and cardiovascular functions.
Collapse
Affiliation(s)
- Elisabeth A. Lambert
- Human Neurotransmitters Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Physiology, Monash University, Clayton, Australia
| | - Nora E. Straznicky
- Human Neurotransmitters Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - John B. Dixon
- Clinical Obesity Research Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - Gavin W. Lambert
- Human Neurotransmitters Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| |
Collapse
|
9
|
Jenkin KA, O'Keefe L, Simcocks AC, Grinfeld E, Mathai ML, McAinch AJ, Hryciw DH. Chronic administration of AM251 improves albuminuria and renal tubular structure in obese rats. J Endocrinol 2015; 225:113-24. [PMID: 25804605 DOI: 10.1530/joe-15-0004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 01/07/2023]
Abstract
Modulation of the endocannabinoid system as an anti-obesity therapeutic is well established; however, the direct effects of cannabinoid receptor 1 (CB1) antagonism on renal function and structure in a model of diet-induced obesity (DIO) are unknown. The aim of this study was to characterise the renal effects of the CB1 antagonist AM251 in a model of DIO. Male Sprague-Dawley rats were fed a low- or high-fat diet (HFD: 40% digestible energy from lipids) for 10 weeks to elicit DIO (n=9). In a different cohort, rats were fed a HFD for 15 weeks. After 9 weeks consuming a HFD, rats were injected daily for 6 weeks with 3 mg/kg AM251 (n=9) or saline via i.p. injection (n=9). After 10 weeks consuming a HFD, CB1 and megalin protein expression were significantly increased in the kidneys of obese rats. Antagonism of CB1 with AM251 significantly reduced weight gain, systolic blood pressure, plasma leptin, and reduced albuminuria and plasma creatinine levels in obese rats. Importantly, there was a significant reduction in tubular cross-section diameter in the obese rats treated with AM251. An improvement in albuminuria was likely due to the reduction in tubular size, reduced leptinaemia and maintenance of megalin expression levels. In obese rats, AM251 did not alter diastolic blood pressure, sodium excretion, creatinine clearance or expression of the fibrotic proteins VEGFA, TGFB1 and collagen IV in the kidney. This study demonstrates that treatment with CB1 antagonist AM251 improves renal outcomes in obese rats.
Collapse
Affiliation(s)
- Kayte A Jenkin
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Lannie O'Keefe
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Anna C Simcocks
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Esther Grinfeld
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Michael L Mathai
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Andrew J McAinch
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Deanne H Hryciw
- College of Health and Biomedicine Centre for Chronic Disease Prevention and Management, Victoria University, St Albans Campus, PO Box 14428, Melbourne, Victoria 8001, Australia The Florey Institute of Neuroscience and Mental Health Parkville, Melbourne, Victoria 3052, Australia Department of Physiology The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
10
|
Schaich CL, Shaltout HA, Brosnihan KB, Howlett AC, Diz DI. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol Rep 2014; 2:2/8/e12108. [PMID: 25168868 PMCID: PMC4246581 DOI: 10.14814/phy2.12108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We investigated acute and chronic effects of CB1 cannabinoid receptor blockade in renin‐angiotensin system‐dependent hypertension using rimonabant (SR141716A), an orally active antagonist with central and peripheral actions. In transgenic (mRen2)27 rats, a model of angiotensin II‐dependent hypertension with increased body mass and insulin resistance, acute systemic blockade of CB1 receptors significantly reduced blood pressure within 90 min but had no effect in Sprague‐Dawley rats. No changes in metabolic hormones occurred with the acute treatment. During chronic CB1 receptor blockade, (mRen2)27 rats received daily oral administration of SR141716A (10 mg/kg/day) for 28 days. Systolic blood pressure was significantly reduced within 24 h, and at Day 21 of treatment values were 173 mmHg in vehicle versus 149 mmHg in drug‐treated rats (P < 0.01). This accompanied lower cumulative weight gain (22 vs. 42 g vehicle; P < 0.001), fat mass (2.0 vs. 2.9% of body weight; P < 0.05), and serum leptin (2.8 vs. 6.0 ng/mL; P < 0.05) and insulin (1.0 vs. 1.9 ng/mL; P < 0.01), following an initial transient decrease in food consumption. Conscious hemodynamic recordings indicate twofold increases occurred in spontaneous baroreflex sensitivity (P < 0.05) and heart rate variability (P < 0.01), measures of cardiac vagal tone. The beneficial actions of CB1 receptor blockade in (mRen2)27 rats support the interpretation that an upregulated endocannabinoid system contributes to hypertension and impaired autonomic function in this angiotensin II‐dependent model. We conclude that systemic CB1 receptor blockade may be an effective therapy for angiotensin II‐dependent hypertension and associated metabolic syndrome. Acute and chronic systemic CB1 cannabinoid receptor blockade significantly lowers blood pressure in Angiotensin II‐dependent hypertensive (mRen2)27 rats, with a concomitant positive influence over conscious autonomic blood pressure regulation and metabolic profile. Results from our study indicate novel mechanisms for maintenance of hypertension, metabolic syndrome, and impaired autonomic control of blood pressure associated with upregulation of Angiotensin II signaling.
Collapse
Affiliation(s)
- Chris L Schaich
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hossam A Shaltout
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina Department of Obstetrics & Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - K Bridget Brosnihan
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Debra I Diz
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina Hypertension & Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
11
|
Sánchez-Pastor E, Andrade F, Sánchez-Pastor JM, Elizalde A, Huerta M, Virgen-Ortiz A, Trujillo X, Rodríguez-Hernández A. Cannabinoid receptor type 1 activation by arachidonylcyclopropylamide in rat aortic rings causes vasorelaxation involving calcium-activated potassium channel subunit alpha-1 and calcium channel, voltage-dependent, L type, alpha 1C subunit. Eur J Pharmacol 2014; 729:100-6. [PMID: 24561046 DOI: 10.1016/j.ejphar.2014.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/12/2023]
Abstract
Cannabinoids are key regulators of vascular tone, some of the mechanisms involved include the activation of cannabinoid receptor types 1 and 2 (CB); the transient receptor potential cation channel, subfamily V, member 1 (TRPV1); and non-(CB(1))/non-CB2 receptors. Here, we used the potent, selective CB(1) agonist arachidonylcyclopropylamide (ACPA) to elucidate the mechanism underlying vascular tone regulation. Immunohistochemistry and confocal microscopy revealed that CB(1) was expressed in smooth muscle and endothelial cells in rat aorta. We performed isometric tension recordings in aortic rings that had been pre-contracted with phenylephrine. In these conditions, ACPA caused vasorelaxation in an endothelium-independent manner. To confirm that the effect of ACPA was mediated by CB(1) receptor, we repeated the experiment after blocking these receptors with a selective antagonist, AM281. In these conditions, ACPA did not cause vasorelaxation. We explored the role of K(+) channels in the effect of ACPA by applying high-K(+) solution to induce contraction in aortic rings. In these conditions, the ACPA-induced vasorelaxation was about half that observed with phenylephrine-induced contraction. Thus, K(+) channels were involved in the ACPA effect. Furthermore, the vasorelaxation effect was similarly reduced when we specifically blocked calcium-activated potassium channel subunit alpha-1 (KCa1.1) (MaxiK; BKCa) prior to adding ACPA. Finally, ACPA-induced vasorelaxation was also diminished when we specifically blocked the calcium channel, voltage-dependent, L type, alpha 1C subunit (Ca(v)1.2). These results showed that ACPA activation of CB(1) in smooth muscle caused vasorelaxation of aortic rings through a mechanism involving the activation of K(Ca)1.1 and the inhibition of Ca(v)1.2.
Collapse
Affiliation(s)
- E Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio No. 965, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico
| | - F Andrade
- Instituto Tecnológico de Colima, Avenida Tecnológico No. 1, CP 28976 Villa de Álvarez, Colima, Mexico
| | - J M Sánchez-Pastor
- Instituto Tecnológico de Colima, Avenida Tecnológico No. 1, CP 28976 Villa de Álvarez, Colima, Mexico
| | - A Elizalde
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio No. 965, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico
| | - M Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio No. 965, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico.
| | - A Virgen-Ortiz
- Departamento de Ciencias Químico Biológicas, División de Ciencias e Ingenierías, Unidad Regional Sur, Campus Navojoa, Universidad de Sonora, Lázaro Cárdenas No. 100, Colonia Francisco Villa, CP 85800 Navojoa, Sonora, Mexico
| | - X Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio No. 965, Apdo. Postal No. 11, CP 28040 Colima, Colima, Mexico
| | - A Rodríguez-Hernández
- Facultad de Medicina, Universidad de Colima, Av. Universidad 333, Las Víboras, 28040 Colima, Colima, Mexico
| |
Collapse
|
12
|
Chen W, Chen Z, Xue N, Zheng Z, Li S, Wang L. Effects of CB1 receptor blockade on monosodium glutamate induced hypometabolic and hypothalamic obesity in rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:721-32. [PMID: 23620336 DOI: 10.1007/s00210-013-0875-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Effects of cannabinoid receptor 1 (CB1R) blockade were observed by comparing 9-day and 6-week SR141716 treatments in monosodium glutamate (MSG)-induced hypometabolic and hypothalamic obesity (HO) in rats for the first time and molecular mechanisms were investigated. Compared with normal rats, the MSG rats display typical symptoms of the metabolic syndrome, i.e., excessive abdominal obesity, hypertriglyceridemia, hyperinsulinemia, insulin resistance, and hepatic steatosis, but with lower food intake. Although both the 9-day and 6-week treatments with the specific CB1R antagonist SR141716 effectively lowered body weight, intraperitoneal adipose tissue mass, serum triglyceride (TG), and insulin level, the effect of chronic treatment is more impressive. Moreover, serum cholesterol, free fatty acids (FFA), fasted and postprandial blood glucose, and insulin insensitivity were more effectively improved by 6-week exposure to SR141716, whereas hypophagia was only effective within the initial 2 weeks. In addition, hepatic steatosis as well as hepatic and adipocyte morphology was improved. Western blot analysis revealed that the markedly increased CB1R expression and decreased insulin receptor (INR) expression in liver and adipose tissues were effectively corrected by SR141716. Consistent with this, deregulated gene expression of lipogenesis and lipolysis as well as glucose metabolic key enzymes were also restored by SR141716. In conclusion, based on present data we found that: (1) alteration of the hypothalamus in MSG rats leads to a lower expression of INR in crucially insulin-targeted tissues and hyperinsulinemia that was reversed by SR141716, (2) the abnormally increased expression of CB1R in liver and adipose tissues plays a vital role in the pathophysiological process of MSG rats, and (3) chronic CB1R blockade leads to a sustained improvement of the metabolic dysfunctions of MSG rats.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | | | | | | | | | | |
Collapse
|
13
|
Rodriguez-Rodriguez R, Justo ML, Claro CM, Vila E, Parrado J, Herrera MD, Alvarez de Sotomayor M. Endothelium-dependent vasodilator and antioxidant properties of a novel enzymatic extract of grape pomace from wine industrial waste. Food Chem 2012; 135:1044-51. [DOI: 10.1016/j.foodchem.2012.05.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/07/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
|
14
|
Water-soluble rice bran enzymatic extract attenuates dyslipidemia, hypertension and insulin resistance in obese Zucker rats. Eur J Nutr 2012; 52:789-97. [DOI: 10.1007/s00394-012-0385-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/17/2012] [Indexed: 01/03/2023]
|
15
|
McCully BH, Brooks VL, Andresen MC. Diet-induced obesity severely impairs myelinated aortic baroreceptor reflex responses. Am J Physiol Heart Circ Physiol 2012; 302:H2083-91. [PMID: 22408022 DOI: 10.1152/ajpheart.01200.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diet-induced obesity (DIO) attenuates the arterial cardiac baroreceptor reflex, but the mechanisms and sites of action are unknown. This study tested the hypothesis that DIO impairs central aortic baroreceptor pathways. Normal chow control (CON) and high-fat-chow obesity-resistant (OR) and obesity-prone (OP) rats were anesthetized (inactin, 120 mg/kg) and underwent sinoaortic denervation. The central end of the aortic depressor nerve (ADN) was electrically stimulated to generate frequency-dependent baroreflex curves (5-100 Hz) during selective activation of myelinated (A-fiber) or combined (A- and C-fiber) ADN baroreceptors. A mild stimulus (1 V) that activates only A-fiber ADN baroreceptors induced robust, frequency-dependent depressor and bradycardic responses in CON and OR rats, but these responses were completely abolished in OP rats. Maximal activation of A fibers (3 V) elicited frequency-dependent reflexes in all groups, but a dramatic deficit was still present in OP rats. Activation of all ADN baroreceptors (20 V) evoked even larger reflex responses. Depressor responses were nearly identical among groups, but OP rats still exhibited attenuated bradycardia. In separate groups of rats, the reduced heart rate (HR) response to maximal activation of ADN A fibers (3 V) persisted in OP rats following pharmacological blockade of β(1)-adrenergic or muscarinic receptors, suggesting deficits in both parasympathetic nervous system (PNS) and sympathetic nervous system (SNS) reflex pathways. However, the bradycardic responses to direct efferent vagal stimulation were similar among groups. Taken together, our data suggest that DIO severely impairs the central processing of myelinated aortic baroreceptor control of HR, including both PNS and SNS components.
Collapse
Affiliation(s)
- Belinda H McCully
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
16
|
Horváth B, Mukhopadhyay P, Haskó G, Pacher P. The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:432-442. [PMID: 22155112 PMCID: PMC3349875 DOI: 10.1016/j.ajpath.2011.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/23/2011] [Accepted: 11/02/2011] [Indexed: 02/07/2023]
Abstract
Oxidative stress and inflammation play critical roles in the development of diabetes and its complications. Recent studies provided compelling evidence that the newly discovered lipid signaling system (ie, the endocannabinoid system) may significantly influence reactive oxygen species production, inflammation, and subsequent tissue injury, in addition to its well-known metabolic effects and functions. The modulation of the activity of this system holds tremendous therapeutic potential in a wide range of diseases, ranging from cancer, pain, neurodegenerative, and cardiovascular diseases to obesity and metabolic syndrome, diabetes, and diabetic complications. This review focuses on the role of the endocannabinoid system in primary diabetes and its effects on various diabetic complications, such as diabetic cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy, particularly highlighting the mechanisms beyond the metabolic consequences of the activation of the endocannabinoid system. The therapeutic potential of targeting the endocannabinoid system and certain plant-derived cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabivarin, which are devoid of psychotropic effects and possess potent anti-inflammatory and/or antioxidant properties, in diabetes and diabetic complications is also discussed.
Collapse
Affiliation(s)
- Béla Horváth
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Partha Mukhopadhyay
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey
| | - Pál Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Belin de Chantemèle EJ, Mintz JD, Rainey WE, Stepp DW. Impact of leptin-mediated sympatho-activation on cardiovascular function in obese mice. Hypertension 2011; 58:271-9. [PMID: 21690486 PMCID: PMC3141100 DOI: 10.1161/hypertensionaha.110.168427] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/24/2011] [Indexed: 02/06/2023]
Abstract
Although the anorexic effects of leptin are lost in obesity, leptin-mediated sympatho-activation is preserved. The cardiovascular consequences of leptin-mediated sympatho-activation in obesity are poorly understood. We tested the hypothesis that 32 weeks of high-fat diet (HFD) induces metabolic leptin resistance but preserves leptin-mediated sympatho-activation of the cardiovascular system. HFD in mice significantly increased body weight and plasma leptin concentrations but significantly reduced the anorexic effects of leptin. HFD increased heart rate, stroke volume, cardiac output, and plasma aldosterone levels but not blood pressure. As reflected by the contractile response to phenylephrine measured both in vivo and ex vivo, vascular adrenergic reactivity was reduced by HFD, suggesting that reductions in sympathetic tone to the periphery vasculature may mitigate sympatho-activation of the heart and the renin-angiotensin-aldosterone system. Tachyphylaxis was partially restored by symptho-inhibition and not present in ob/ob and db/db mice, despite obesity, arguing for a sympatho-mediated and leptin-specific mechanism. Although infusion of leptin in HFD mice had no effect on heart rate or blood pressure, it further increased aldosterone levels and further reduced vascular adrenergic tone in the absence of weight loss, indicating persistent leptin-mediated stimulation of the cardiovascular system in obesity. In conclusion, these data indicate that, despite metabolic leptin resistance, leptin-mediated stimulation of the heart, the vasculature, and aldosterone production persists in obesity. Blood pressure effects in response to leptin may be limited by a tachyphylactic response in the circulation, suggesting that failure of adrenergic desensitization may be a requisite step for hypertension in the context of obesity.
Collapse
Affiliation(s)
- Eric J. Belin de Chantemèle
- Vascular Biology Center, Georgia Health Sciences University Augusta, GA, USA
- Department of Physiology, Georgia Health Sciences University Augusta, GA, USA
| | - James D. Mintz
- Vascular Biology Center, Georgia Health Sciences University Augusta, GA, USA
| | - William E. Rainey
- Department of Physiology, Georgia Health Sciences University Augusta, GA, USA
| | - David W. Stepp
- Vascular Biology Center, Georgia Health Sciences University Augusta, GA, USA
- Department of Physiology, Georgia Health Sciences University Augusta, GA, USA
| |
Collapse
|
18
|
Chronic Treatment With the Cannabinoid 1 Antagonist Rimonabant Altered Vasoactive Cyclo-oxygenase-Derived Products on Arteries From Obese Zucker Rats. J Cardiovasc Pharmacol 2010; 56:560-9. [DOI: 10.1097/fjc.0b013e3181f7141a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Rajesh M, Mukhopadhyay P, Haskó G, Liaudet L, Mackie K, Pacher P. Cannabinoid-1 receptor activation induces reactive oxygen species-dependent and -independent mitogen-activated protein kinase activation and cell death in human coronary artery endothelial cells. Br J Pharmacol 2010; 160:688-700. [PMID: 20590572 PMCID: PMC2931568 DOI: 10.1111/j.1476-5381.2010.00712.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/22/2009] [Accepted: 01/21/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Impaired endothelial activity and/or cell death play a critical role in the development of vascular dysfunction associated with congestive heart failure, diabetic complications, hypertension, coronary artery disease and atherosclerosis. Increasing evidence suggests that cannabinoid 1 (CB(1)) receptor inhibition is beneficial in atherosclerosis and cardiovascular inflammation both in experimental models, as well as in humans. Here, we investigated the effects of CB(1) receptor activation with the endocannabinoid anandamide (AEA) or synthetic agonist HU210 on cell death and interrelated signal transduction pathways in human primary coronary artery endothelial cells (HCAECs). EXPERIMENTAL APPROACH Cell death, CB(1) receptor expression, reactive oxygen species (ROS) generation and activation of signal transduction pathways in HCAECs were determined by flow cytometry and molecular biology tools. KEY RESULTS In HCAECs expressing CB(1) receptors (demonstrated by Western immunoblot and flow cytometry) AEA (5-15 microM) or HU210 (30-1000 nM) triggered concentration- and time-dependent activation of p38 and c-Jun NH(2)-terminal protein kinase (JNK)-mitogen-activated protein kinases (MAPKs), cell death and ROS generation. The AEA- or HU210-induced cell death and MAPK activation were attenuated by CB(1) antagonists [SR141716 (rimonabant) and AM281], inhibitors of p38 and JNK-MAPKs or the antioxidant N-acetylcysteine. N-acetylcysteine alone prevented AEA- or HU210-induced ROS generation, but only partially attenuated MAPK activation and cell death. In contrast, in combination with CB(1) antagonists, N-acetylcysteine completely prevented these effects. CONCLUSIONS AND IMPLICATIONS CB(1) receptor activation in endothelial cells may amplify the ROS-MAPK activation-cell death pathway in pathological conditions when the endocannabinoid synthetic or metabolic pathways are dysregulated by excessive inflammation and/or oxidative/nitrosative stress, thereby contributing to the development of endothelial dysfunction and pathophysiology of multiple cardiovascular diseases.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| | - György Haskó
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical SchoolNewark, NJ, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Medical Center and Faculty of Biology and MedicineLausanne, Switzerland
| | - Ken Mackie
- Gill Center and the Department of Psychological & Brain Sciences, Indiana UniversityBloomington, IN, USA
| | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|