1
|
Rosqvist F, Cedernaes J, Martínez Mora A, Fridén M, Johansson HE, Iggman D, Larsson A, Ahlström H, Kullberg J, Risérus U. Overfeeding polyunsaturated fat compared with saturated fat does not differentially influence lean tissue accumulation in individuals with overweight: a randomized controlled trial. Am J Clin Nutr 2024; 120:121-128. [PMID: 38636844 DOI: 10.1016/j.ajcnut.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Fatty acids may influence lean tissue volume and skeletal muscle function. We previously reported in young lean participants that overfeeding PUFA compared with SFA induced greater lean tissue accumulation despite similar weight gain. OBJECTIVES In a double-blind randomized controlled trial, we aimed to investigate if the differential effects of overfeeding SFA and PUFA on lean tissue accumulation could be replicated in individuals with overweight and identify potential determinants. Further, using substitution models, we investigated associations between SFA and PUFA concentrations with lean tissue volume in a large population-based sample (UK Biobank). METHODS Sixty-one males and females with overweight [BMI (kg/m2): 27.3 (interquartile range (IQR), 25.4-29.3); age: 43 (IQR, 36-48)] were overfed SFA (palm oil) or n-6 (ω-6) PUFA (sunflower oil) for 8 wk. Lean tissue was assessed by MRI. We had access to n = 13,849 participants with data on diet, covariates, and MRI measurements of lean tissue, as well as 9119 participants with data on circulating fatty acids in the UK Biobank. RESULTS Body weight gain mean (SD) was similar in PUFA (2.01 ± 1.90 kg) and SFA (2.31 ± 1.38 kg) groups. Lean tissue increased to a similar extent [0.54 ± 0.93 L and 0.67 ± 1.21 L for PUFA and SFA groups, respectively, with a difference between groups of 0.07 (-0.21, 0.35)]. We observed no differential effects on circulating amino acids, myostatin, or IL-15 and no clear determinants of lean tissue accumulation. Similar nonsignificant results for SFA and PUFA were observed in UK Biobank, but circulating fatty acids demonstrated ambiguous and sex-dependent associations. CONCLUSIONS Overfeeding SFA or PUFA does not differentially affect lean tissue accumulation during 8 wk in individuals with overweight. A lack of dietary fat type-specific effects on lean tissue is supported by specified substitution models in a large population-based cohort consuming their habitual diet. This trial was registered at clinicaltrials.gov identifier as NCT02211612.
Collapse
Affiliation(s)
- Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden.
| | - Jonathan Cedernaes
- Department of Medical Sciences, Uppsala University, Sweden; Department of Medical Cell Biology, Uppsala University, Sweden
| | | | - Michael Fridén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden
| | - Hans-Erik Johansson
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden
| | - David Iggman
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden; Center for Clinical Research Dalarna, Uppsala University, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Sweden; Antaros Medical AB, Mölndal, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Sweden; Antaros Medical AB, Mölndal, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden
| |
Collapse
|
2
|
Gross DC, Cheever CR, Batsis JA. Understanding the development of sarcopenic obesity. Expert Rev Endocrinol Metab 2023; 18:469-488. [PMID: 37840295 PMCID: PMC10842411 DOI: 10.1080/17446651.2023.2267672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Sarcopenic obesity (SarcO) is defined as the confluence of reduced muscle mass and function and excess body fat. The scientific community is increasingly recognizing this syndrome, which affects a subgroup of persons across their lifespans and places them at synergistically higher risk of significant medical comorbidity and disability than either sarcopenia or obesity alone. Joint efforts in clinical and research settings are imperative to better understand this syndrome and drive the development of urgently needed future interventions. AREAS COVERED Herein, we describe the ongoing challenges in defining sarcopenic obesity and the current state of the science regarding its epidemiology and relationship with adverse events. The field has demonstrated an emergence of data over the past decade which we will summarize in this article. While the etiology of sarcopenic obesity is complex, we present data on the underlying pathophysiological mechanisms that are hypothesized to promote its development, including age-related changes in body composition, hormonal changes, chronic inflammation, and genetic predisposition. EXPERT OPINION We describe emerging areas of future research that will likely be needed to advance this nascent field, including changes in clinical infrastructure, an enhanced understanding of the lifecourse, and potential treatments.
Collapse
Affiliation(s)
- Danae C. Gross
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - C. Ray Cheever
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John A. Batsis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Geriatric Medicine, UNC School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D, Chaari A. Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front Nutr 2023; 10:1177897. [PMID: 37252233 PMCID: PMC10213274 DOI: 10.3389/fnut.2023.1177897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.
Collapse
Affiliation(s)
- Anns Mahboob
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arif Mohamed
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sofiane Ghorbel
- Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabil Miled
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
4
|
Dowsett L, Duluc L, Higgins E, Alghamdi F, Fast W, Salt IP, Leiper J. Asymmetric dimethylarginine positively modulates calcium-sensing receptor signalling to promote lipid accumulation. Cell Signal 2023; 107:110676. [PMID: 37028778 DOI: 10.1016/j.cellsig.2023.110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Asymmetric dimethylarginine (ADMA) is generated through the irreversible methylation of arginine residues. It is an independent risk factor for cardiovascular disease, currently thought to be due to its ability to act as a competitive inhibitor of the nitric oxide (NO) synthase enzymes. Plasma ADMA concentrations increase with obesity and fall following weight loss; however, it is unknown whether they play an active role in adipose pathology. Here, we demonstrate that ADMA drives lipid accumulation through a newly identified NO-independent pathway via the amino-acid sensitive calcium-sensing receptor (CaSR). ADMA treatment of 3 T3-L1 and HepG2 cells upregulates a suite of lipogenic genes with an associated increase in triglyceride content. Pharmacological activation of CaSR mimics ADMA while negative modulation of CaSR inhibits ADMA driven lipid accumulation. Further investigation using CaSR overexpressing HEK293 cells demonstrated that ADMA potentiates CaSR signalling via Gq intracellular Ca2+ mobilisation. This study identifies a signalling mechanism for ADMA as an endogenous ligand of the G protein-coupled receptor CaSR that potentially contributes to the impact of ADMA in cardiometabolic disease.
Collapse
Affiliation(s)
- Laura Dowsett
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK.
| | - Lucie Duluc
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Erin Higgins
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fatmah Alghamdi
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Ian P Salt
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - James Leiper
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| |
Collapse
|
5
|
Jones A, Silver HJ. Myosteatotic and sarcopenic obesity impact postoperative outcomes more robustly than visceral obesity in general surgery patients, with differences by sex. Clin Nutr 2023; 42:625-635. [PMID: 36947987 DOI: 10.1016/j.clnu.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND AND AIMS Computed tomography (CT) defined myosteatotic, sarcopenic, and visceral obesity are associated with adverse surgical outcomes and mortality in patients with malignancies. These occult conditions may also be widely prevalent in today's general surgery patients who tend to be overweight/obese. This study identified the predominant obesity phenotypes in 906 patients aged 18-85 years who were scheduled for laparoscopic resection for benign abdominal or colorectal disease at Vanderbilt University Medical Center between 2010 and 2017. METHODS Sex and body mass index (BMI) specific cut-points were used to identify myosteatotic, sarcopenic, and visceral obesity phenotype from abdominal CT scan morphometrics. Multivariable regression modeling determined relationships between sex, obesity phenotype, and postoperative outcomes. RESULTS The myosteatostic + sarcopenic obesity phenotype associated with longer surgery duration and increased the likelihood for major complication (OR 1.34, 95%CI 1.01-1.74) and ICU admission (OR 1.39, 95%CI 1.04-1.90). Having myosteatotic obesity doubled the likelihood for hospital stay >7 days and discharge to a nursing home (OR 2.11, 95%CI 1.43,3.11), increasing the likelihood for readmission within 90 days. Obesity was more prevalent in females, but myosteatotic, sarcopenic, and visceral obesity were more prevalent in males, regardless of age or BMI. Males had more major complications (23.6% vs 17.7%, P = 0.03), particularly wound dehiscence or infection, and a 2-day longer hospital stay. CONCLUSIONS This study shows that sarcopenic and myosteatotic obesity phenotypes are highly prevalent, especially in male general surgery patients, regardless of age or BMI. Importantly, sarcopenic and myosteatostic obesity may be more detrimental than visceral obesity; these phenotypes robustly associated with adverse postoperative outcomes. Future work could use these findings for design of phenotype-specific interventions to reduce patient risk and prevent outcomes that are harmful and costly.
Collapse
Affiliation(s)
- Alexander Jones
- Western University of Health Sciences, College of Osteopathic Medicine, Lebanon, OR, USA.
| | - Heidi J Silver
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
6
|
Freitas EDS, Katsanos CS. (Dys)regulation of Protein Metabolism in Skeletal Muscle of Humans With Obesity. Front Physiol 2022; 13:843087. [PMID: 35350688 PMCID: PMC8957804 DOI: 10.3389/fphys.2022.843087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/07/2022] [Indexed: 01/22/2023] Open
Abstract
Studies investigating the proteome of skeletal muscle present clear evidence that protein metabolism is altered in muscle of humans with obesity. Moreover, muscle quality (i.e., strength per unit of muscle mass) appears lower in humans with obesity. However, relevant evidence to date describing the protein turnover, a process that determines content and quality of protein, in muscle of humans with obesity is quite inconsistent. This is due, at least in part, to heterogeneity in protein turnover in skeletal muscle of humans with obesity. Although not always evident at the mixed-muscle protein level, the rate of synthesis is generally lower in myofibrillar and mitochondrial proteins in muscle of humans with obesity. Moreover, alterations in the synthesis of protein in muscle of humans with obesity are manifested more readily under conditions that stimulate protein synthesis in muscle, including the fed state, increased plasma amino acid availability to muscle, and exercise. Current evidence supports various biological mechanisms explaining impairments in protein synthesis in muscle of humans with obesity, but this evidence is rather limited and needs to be reproduced under more defined experimental conditions. Expanding our current knowledge with direct measurements of protein breakdown in muscle, and more importantly of protein turnover on a protein by protein basis, will enhance our understanding of how obesity modifies the proteome (content and quality) in muscle of humans with obesity.
Collapse
Affiliation(s)
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic in Arizona, Scottsdale, AZ, United States
| |
Collapse
|
7
|
Ryan AS, Li G. Skeletal muscle myostatin gene expression and sarcopenia in overweight and obese middle‐aged and older adults. JCSM CLINICAL REPORTS 2021; 6:137-142. [PMID: 35311023 PMCID: PMC8932637 DOI: 10.1002/crt2.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Myostatin (MSTN) is a key negative regulator of muscle mass in humans and animals, having direct and indirect influences on molecular regulators of atrophy and hypertrophy, thus potentially impacting fitness and physical function. We have shown that myostatin is elevated in conditions of chronic disability (e.g. paretic limb of stroke). Our hypothesis is that myostatin would be elevated in older adults with sarcopenia. The purpose of this study was to examine the role of skeletal muscle myostatin in sarcopenia. Methods Sixty-four overweight to obese aged 45–81 years underwent a maximal aerobic capacity (VO2max) test, dual-energy X-ray absorptiometry (DXA) scan to determine appendicular lean tissue (ALM), and vastus lateralis muscle biopsy to determine myostatin mRNA expression by quantitative real time PCR (Q-RT-PCR). Rates of sarcopenia were determined using (ALM/BMI), and sarcopenia was defined as <0.789 in men and <0.512 in women. Subjects had low fitness (VO2max: 22.7 ± 0.7 mL/kg/min) and on average 40.9 ± 1% body fat. Results The prevalence of sarcopenia in this cohort was 16%. BMI, % body fat, and fat mass were higher in adults with sarcopenia than those without sarcopenia (all P < 0.001). Myostatin mRNA expression was lower in those without sarcopenia than those with sarcopenia (P < 0.05) and higher in men than women (P < 0.001). Myostatin expression was associated with BMI (r = 0.36, P < 0.01) and mid-thigh intramuscular fat (r = 0.29, P < 0.05). Conclusion Given that myostatin is important in muscle atrophy, fat accumulation, and sarcopenia, further work could address its implication in other aging cohorts of disability and chronic disease.
Collapse
Affiliation(s)
- Alice S. Ryan
- Department of Veterans Affairs, Department of Medicine, Division of Gerontology and Palliative Medicine, and the Baltimore VA Medical Center Geriatrics, Research, Education Center (GRECC) VA Maryland Health Care System Baltimore MD 21201 USA
| | - Guoyan Li
- Department of Veterans Affairs, Department of Medicine, Division of Gerontology and Palliative Medicine, and the Baltimore VA Medical Center Geriatrics, Research, Education Center (GRECC) VA Maryland Health Care System Baltimore MD 21201 USA
| |
Collapse
|
8
|
Morgan PT, Smeuninx B, Breen L. Exploring the Impact of Obesity on Skeletal Muscle Function in Older Age. Front Nutr 2020; 7:569904. [PMID: 33335909 PMCID: PMC7736105 DOI: 10.3389/fnut.2020.569904] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia is of important clinical relevance for loss of independence in older adults. The prevalence of obesity in combination with sarcopenia ("sarcopenic-obesity") is increasing at a rapid rate. However, whilst the development of sarcopenia is understood to be multi-factorial and harmful to health, the role of obesity from a protective and damaging perspective on skeletal muscle in aging, is poorly understood. Specifically, the presence of obesity in older age may be accompanied by a greater volume of skeletal muscle mass in weight-bearing muscles compared with lean older individuals, despite impaired physical function and resistance to anabolic stimuli. Collectively, these findings support a potential paradox in which obesity may protect skeletal muscle mass in older age. One explanation for these paradoxical findings may be that the anabolic response to weight-bearing activity could be greater in obese vs. lean older individuals due to a larger mechanical stimulus, compensating for the heightened muscle anabolic resistance. However, it is likely that there is a complex interplay between muscle, adipose, and external influences in the aging process that are ultimately harmful to health in the long-term. This narrative briefly explores some of the potential mechanisms regulating changes in skeletal muscle mass and function in aging combined with obesity and the interplay with sarcopenia, with a particular focus on muscle morphology and the regulation of muscle proteostasis. In addition, whilst highly complex, we attempt to provide an updated summary for the role of obesity from a protective and damaging perspective on muscle mass and function in older age. We conclude with a brief discussion on treatment of sarcopenia and obesity and a summary of future directions for this research field.
Collapse
Affiliation(s)
- Paul T. Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Cellular & Molecular Metabolism Laboratory, Monash Institute of Pharmacological Sciences, Monash University, Parkville, VIC, Australia
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Mantha OL, Huneau JF, Mathé V, Hermier D, Khodorova N, Mariotti F, Fouillet H. Differential changes to splanchnic and peripheral protein metabolism during the diet-induced development of metabolic syndrome in rats. Am J Physiol Endocrinol Metab 2020; 319:E175-E186. [PMID: 32459526 DOI: 10.1152/ajpendo.00061.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the effects of the development of metabolic syndrome (MS) on protein and amino acid (AA) metabolism. During this study, we took advantage of the variability in interindividual susceptibility to high fat diet-induced MS to study the relationships between MS, protein synthesis, and AA catabolism in multiple tissues in rats. After 4 mo of high-fat feeding, an MS score (ZMS) was calculated as the average of the z-scores for individual MS components [weight, adiposities, homeostasis model for the assessment of insulin resistance (HOMA-IR), and triglycerides]. In the small intestine, liver, plasma, kidneys, heart, and muscles, tissue protein synthesis was measured by 2H2O labeling, and we evaluated the proportion of tissue AA catabolism (relative to protein synthesis) and nutrient routing to nonindispensable AAs in tissue proteins using natural nitrogen and carbon isotopic distances between tissue proteins and nutrients (Δ15N and Δ13C), respectively. In the liver, protein mass and synthesis increased, whereas the proportion of AA catabolism decreased with ZMS. By contrast, in muscles, we found no association between ZMS and protein mass, protein synthesis (except for a weak positive association in the gastrocnemius muscle only), and proportion of AA catabolism. The development of MS was also associated with altered metabolic flexibility and fatty acid oxidation, as shown by less routing of dietary lipids to nonindispensable AA synthesis in liver and muscle. In conclusion, MS development is associated with a greater gain of both fat and protein masses, with higher protein anabolism that mainly occurs in the liver, whereas muscles probably develop anabolic resistance due to insulin resistance.
Collapse
Affiliation(s)
- O L Mantha
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - J-F Huneau
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - V Mathé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - D Hermier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - N Khodorova
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - F Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - H Fouillet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| |
Collapse
|
10
|
Qiu K, Xu D, Wang L, Zhang X, Jiao N, Gong L, Yin J. Association Analysis of Single-Cell RNA Sequencing and Proteomics Reveals a Vital Role of Ca 2+ Signaling in the Determination of Skeletal Muscle Development Potential. Cells 2020; 9:E1045. [PMID: 32331484 PMCID: PMC7225978 DOI: 10.3390/cells9041045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022] Open
Abstract
This study is aimed at exploring the mechanism underlying the homeostasis between myogenesis and adipogenesis in skeletal muscle using a special porcine model with a distinct phenotype on muscle growth rate and intramuscular fat deposition. Differentiation potential of muscle-derived Myo-lineage cells of lean-type pigs was significantly enhanced relative to obese-type pigs, while that of their Adi-lineage cells was similar. Single-cell RNA sequencing revealed that lean-type pigs reserved a higher proportion of Myo-lineage cells in skeletal muscle relative to obese-type pigs. Besides, Myo-lineage cells of the lean-type pig settled closer to the original stage of muscle-derived progenitor cells. Proteomics analysis found that differentially expressed proteins between two sources of Myo-lineage cells are mainly involved in muscle development, cell proliferation and differentiation, ion homeostasis, apoptosis, and the MAPK signaling pathway. The regulation of intracellular ion homeostasis, Ca2+ in particular, significantly differed between two sources of Myo-lineage cells. Ca2+ concentration in both cytoplasm and endoplasmic reticulum was lower in Myo-lineage cells of lean-type pigs relative to obese-type pigs. In conclusion, a higher proportion and stronger differentiation capacity of Myo-lineage cells are the main causes for the higher capability of myogenic differentiation and lower intramuscular fat deposition. Relative low concentration of cellular Ca2+ is advantageous for Myo-lineage cells to keep a potent differentiation potential.
Collapse
Affiliation(s)
- Kai Qiu
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Doudou Xu
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Liqi Wang
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Xin Zhang
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ning Jiao
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| | - Jingdong Yin
- College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (K.Q.); (D.X.); (L.W.); (X.Z.); (N.J.); (L.G.)
| |
Collapse
|
11
|
Uranga RM, Keller JN. The Complex Interactions Between Obesity, Metabolism and the Brain. Front Neurosci 2019; 13:513. [PMID: 31178685 PMCID: PMC6542999 DOI: 10.3389/fnins.2019.00513] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity is increasing at unprecedented levels globally, and the overall impact of obesity on the various organ systems of the body is only beginning to be fully appreciated. Because of the myriad of direct and indirect effects of obesity causing dysfunction of multiple tissues and organs, it is likely that there will be heterogeneity in the presentation of obesity effects in any given population. Taken together, these realities make it increasingly difficult to understand the complex interplay between obesity effects on different organs, including the brain. The focus of this review is to provide a comprehensive view of metabolic disturbances present in obesity, their direct and indirect effects on the different organ systems of the body, and to discuss the interaction of these effects in the context of brain aging and the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Romina María Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jeffrey Neil Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| |
Collapse
|
12
|
Early changes in tissue amino acid metabolism and nutrient routing in rats fed a high-fat diet: evidence from natural isotope abundances of nitrogen and carbon in tissue proteins. Br J Nutr 2018; 119:981-991. [PMID: 29502540 DOI: 10.1017/s0007114518000326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Little is known about how diet-induced obesity and insulin resistance affect protein and amino acid (AA) metabolism in tissues. The natural relative abundances of the heavy stable isotopes of C (δ 13C) and N (δ 15N) in tissue proteins offer novel and promising biomarkers of AA metabolism. They, respectively, reflect the use of dietary macronutrients for tissue AA synthesis and the relative metabolic use of tissue AA for oxidation v. protein synthesis. In this study, δ 13C and δ 15N were measured in the proteins of various tissues in young adult rats exposed perinatally and/or fed after weaning with a normal- or a high-fat (HF) diet, the aim being to characterise HF-induced tissue-specific changes in AA metabolism. HF feeding was shown to increase the routing of dietary fat to all tissue proteins via non-indispensable AA synthesis, but did not affect AA allocation between catabolic and anabolic processes in most tissues. However, the proportion of AA directed towards oxidation rather than protein synthesis was increased in the small intestine and decreased in the tibialis anterior muscle and adipose tissue. In adipose tissue, the AA reallocation was observed in the case of perinatal or post-weaning exposure to HF, whereas in the small intestine and tibialis anterior muscle the AA reallocation was only observed after HF exposure that covered both the perinatal and post-weaning periods. In conclusion, HF exposure induced an early reorganisation of AA metabolism involving tissue-specific effects, and in particular a decrease in the relative allocation of AA to oxidation in several peripheral tissues.
Collapse
|
13
|
Campbell LE, Langlais PR, Day SE, Coletta RL, Benjamin TR, De Filippis EA, Madura JA, Mandarino LJ, Roust LR, Coletta DK. Identification of Novel Changes in Human Skeletal Muscle Proteome After Roux-en-Y Gastric Bypass Surgery. Diabetes 2016; 65:2724-31. [PMID: 27207528 PMCID: PMC5001187 DOI: 10.2337/db16-0004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
Abstract
The mechanisms of metabolic improvements after Roux-en-Y gastric bypass (RYGB) surgery are not entirely clear. Therefore, the aim of our study was to investigate the role of obesity and RYGB on the human skeletal muscle proteome. Basal muscle biopsies were obtained from seven obese (BMI >40 kg/m(2)) female subjects (45.1 ± 3.6 years) pre- and 3 months post-RYGB, and euglycemic-hyperinsulinemic clamps were used to assess insulin sensitivity. Four age-matched (48.5 ± 4.7 years) lean (BMI <25 kg/m(2)) females served as control subjects. We performed quantitative mass spectrometry and microarray analyses on protein and RNA isolated from the muscle biopsies. Significant improvements in fasting plasma glucose (104.2 ± 7.8 vs. 86.7 ± 3.1 mg/dL) and BMI (42.1 ± 2.2 vs. 35.3 ± 1.8 kg/m(2)) were demonstrated in the pre- versus post-RYGB, both P < 0.05. Proteomic analysis identified 2,877 quantifiable proteins. Of these, 395 proteins were significantly altered in obesity before surgery, and 280 proteins differed significantly post-RYGB. Post-RYGB, 49 proteins were returned to normal levels after surgery. KEGG pathway analysis revealed a decreased abundance in ribosomal and oxidative phosphorylation proteins in obesity, and a normalization of ribosomal proteins post-RYGB. The transcriptomic data confirmed the normalization of the ribosomal proteins. Our results provide evidence that obesity and RYGB have a dynamic effect on the skeletal muscle proteome.
Collapse
Affiliation(s)
| | | | - Samantha E Day
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Richard L Coletta
- School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ
| | | | | | | | - Lawrence J Mandarino
- Mayo Clinic, Scottsdale, AZ School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ
| | | | - Dawn K Coletta
- Mayo Clinic, Scottsdale, AZ School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| |
Collapse
|
14
|
Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit. PLoS One 2016; 11:e0160057. [PMID: 27532680 PMCID: PMC4988792 DOI: 10.1371/journal.pone.0160057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/13/2016] [Indexed: 01/12/2023] Open
Abstract
Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.
Collapse
|
15
|
Bollinger LM, Powell JJS, Houmard JA, Witczak CA, Brault JJ. Skeletal muscle myotubes in severe obesity exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux. Obesity (Silver Spring) 2015; 23:1185-93. [PMID: 26010327 PMCID: PMC4445474 DOI: 10.1002/oby.21081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/28/2015] [Accepted: 02/18/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Whole-body protein metabolism is dysregulated with obesity. The goal of the study was to determine whether activity and expression of major protein degradation pathways are compromised specifically in human skeletal muscle with obesity. METHODS Primary human skeletal muscle (HSkM) cell cultures were utilized since cellular mechanisms can be studied absent of hormones and contractile activity that could independently influence metabolism. HSkM from 10 lean women (BMI ≤ 26.0 kg/m(2) ) and 8 women with severe obesity (BMI ≥ 39.0) were examined basally and when stimulated to atrophy (serum and amino acid starvation). RESULTS HSkM from obese donors had a lower proportion of type I myosin heavy chain and slower flux through the autophagic/lysosomal pathway. During starvation, flux through the ubiquitin-proteasome system diverged according to obesity status, with a decrease in lean subjects and an increase in HSkM from subjects with obesity. HSkM in obesity also displayed elevated proteasome activity despite no difference in proteasome content. Atrophy-related gene expression and myotube area were similar in myotubes derived from individuals with and without obesity under basal and starved conditions. CONCLUSIONS Our data indicate that muscle cells in lean individuals and in those with severe obesity have innate differences in management of protein degradation, which may explain their metabolic differences.
Collapse
Affiliation(s)
- Lance M. Bollinger
- Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jonathan J. S. Powell
- Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC
| | - Joseph A. Houmard
- Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Carol A. Witczak
- Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jeffrey J. Brault
- Human Performance Lab, Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| |
Collapse
|
16
|
Chevalier S, Burgos SA, Morais JA, Gougeon R, Bassil M, Lamarche M, Marliss EB. Protein and glucose metabolic responses to hyperinsulinemia, hyperglycemia, and hyperaminoacidemia in obese men. Obesity (Silver Spring) 2015; 23:351-8. [PMID: 25452199 DOI: 10.1002/oby.20943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/29/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVE In insulin-resistant states, resistance of protein anabolism occurs concurrently with that of glucose, but can be compensated for by abundant amino acid (AA) provision. This effect and its mechanism were sought in obesity. METHODS Pancreatic clamps were performed in 8 lean and 11 obese men, following 5-h postabsorptive, 3-h infusions of octreotide, basal glucagon, and growth hormone, with clamped postprandial-level insulin, glucose, and AA. Whole-body [1-(13) C]-leucine and [3-(3) H]-glucose kinetics, skeletal muscle protein ((2) H5 -phenylalanine) fractional synthesis rates, and insulin signaling were determined. RESULTS Clamp Δ insulin and Δ branched-chain AA did not differ; fasting glucagon and growth hormone were maintained. Glucose uptake was 20% less in obese concurrent with less Akt(Ser473) , but also less IRS-1(Ser636/639) phosphorylation. Stimulation of whole-body, myofibrillar, and sarcoplasmic protein synthesis was similar. Whole-body protein catabolism suppression tended to be less (P=0.06), resulting in lesser net balance (1.09 ± 0.07 vs. 1.31 ± 0.08 μmol [kg FFM(-1) ] min(-1) , P=0.048). Increments in muscle S6K1(Thr389) phosphorylation were less in the obese, but 4E-BP1(Ser65) did not differ. CONCLUSIONS Hyperaminoacidemia with hyperinsulinemia stimulated protein synthesis (possibly via nutrient signaling) normally in obesity, but suppression of proteolysis may be compromised. Whether long-term high protein intakes could compensate for the insulin resistance of protein anabolism remains to be determined.
Collapse
Affiliation(s)
- Stéphanie Chevalier
- Crabtree Nutrition Laboratories, Department of Medicine, McGill University, and Research Institute of the McGill University Health Centre, Montreal, Quebec City, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Tardif N, Salles J, Guillet C, Tordjman J, Reggio S, Landrier J, Giraudet C, Patrac V, Bertrand‐Michel J, Migne C, Collin M, Chardigny J, Boirie Y, Walrand S. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2α activation. Aging Cell 2014; 13:1001-11. [PMID: 25139155 PMCID: PMC4326920 DOI: 10.1111/acel.12263] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2014] [Indexed: 12/25/2022] Open
Abstract
Obesity and aging are characterized by decreased insulin sensitivity (IS) and muscle protein synthesis. Intramuscular ceramide accumulation has been implicated in insulin resistance during obesity. We aimed to measure IS, muscle ceramide level, protein synthesis, and activation of intracellular signaling pathways involved in translation initiation in male Wistar young (YR, 6-month) and old (OR, 25-month) rats receiving a low- (LFD) or a high-fat diet (HFD) for 10 weeks. A corresponding cellular approach using C2C12 myotubes treated with palmitate to induce intracellular ceramide deposition was taken. A decreased ability of adipose tissue to store lipids together with a reduced adipocyte diameter and a development of fibrosis were observed in OR after the HFD. Consequently, OR fed the HFD were insulin resistant, showed a strong increase in intramuscular ceramide level and a decrease in muscle protein synthesis associated with increased eIF2α phosphorylation. The accumulation of intramuscular lipids placed a lipid burden on mitochondria and created a disconnect between metabolic and regulating pathways in skeletal muscles of OR. In C2C12 cells, palmitate-induced ceramide accumulation was associated with a decreased protein synthesis together with upregulated eIF2α phosphorylation. In conclusion, a reduced ability to expand adipose tissues was found in OR, reflecting a lower lipid buffering capacity. Muscle mitochondrial activity was affected in OR conferring a reduced ability to oxidize fatty acids entering the muscle cell. Hence, OR were more prone to ectopic muscle lipid accumulation than YR, leading to decreased muscle protein anabolism. This metabolic change is a potential therapeutic target to counter sarcopenic obesity.
Collapse
Affiliation(s)
- Nicolas Tardif
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Jérôme Salles
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Christelle Guillet
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Joan Tordjman
- UPMC Inserm U872 Equipe 7 Centre de Recherche des Cordeliers Paris F‐75006France
| | - Sophie Reggio
- UPMC Inserm U872 Equipe 7 Centre de Recherche des Cordeliers Paris F‐75006France
| | | | - Christophe Giraudet
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Véronique Patrac
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | | | - Carole Migne
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Marie‐Laure Collin
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Jean‐Michel Chardigny
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Yves Boirie
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
- CHU Clermont‐Ferrand Service de Nutrition Clinique Clermont‐Ferrand F‐63003France
| | - Stéphane Walrand
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| |
Collapse
|
18
|
Liebau F, Jensen MD, Nair KS, Rooyackers O. Upper-body obese women are resistant to postprandial stimulation of protein synthesis. Clin Nutr 2014; 33:802-7. [PMID: 24269078 PMCID: PMC4019711 DOI: 10.1016/j.clnu.2013.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Upper-body, i.e. visceral, obesity is associated with insulin resistance and impaired protein synthesis. It is unclear whether postprandial stimulation of protein synthesis is affected by body fat distribution. We investigated the postprandial protein anabolic response in a cohort of obese women. METHODS Participants were studied after an overnight fast and after a mixed meal, grouped as upper-body obese (UBO, waist-to-hip ratio, WHR, >0.85, n = 6) vs. lower-body obese (LBO, WHR <0.80, n = 7). Lipid and carbohydrate metabolism were assessed by measurements of plasma free fatty acids (FFA), insulin and glucose plasma concentrations, and calculation of the Quicki index from fasting glucose and insulin values. Different labels of stable isotopes of phenylalanine were administered intravenously and orally, and leg and whole-body protein breakdown and synthesis were calculated from phenylalanine/tyrosine isotopic enrichments in femoral arterial and venous blood, using equations for steady-state kinetics. Data are denoted as mean ± SD. RESULTS Age (38 vs. 40, p = 0.549) and body-mass index (33.7 ± 1.9 vs. 35.0 ± 1.8, p = 0.241) were similar in both groups. UBO subjects had more visceral fat (p = 0.002) and higher fat-free body mass (FFM) (p = 0.015). Plasma insulin concentrations were greater in UBO than LBO women (p = 0.013), and UBO were less insulin sensitive (Quicki = 0.32 ± 0.01 vs. 0.36 ± 0.02, p = 0.005). Protein kinetics across the leg were not different between groups. Fasting whole body protein balance was similarly negative in both groups (UBO -6.5 ± 2.4 vs. LBO -7.6 ± 0.9 μmol/kgFFM/h, p = 1.0). Postprandially, whole body protein balance became less positive in UBO than in LBO (14.8 ± 3.7 vs. 20.2 ± 3.7 μmol/kgFFM/h, p = 0.017). CONCLUSIONS Whole-body protein balance following a meal is less positive in upper-body obese, insulin-resistant, women than in lower-body obese women.
Collapse
Affiliation(s)
- Felix Liebau
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Huddinge and Karolinska Institutet, Stockholm, Sweden.
| | | | | | - Olav Rooyackers
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Huddinge and Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Yang X, Bi P, Kuang S. Fighting obesity: When muscle meets fat. Adipocyte 2014; 3:280-9. [PMID: 26317052 DOI: 10.4161/21623945.2014.964075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 12/25/2022] Open
Abstract
The prevalence of obesity has risen to an unprecedented level. According to World Health Organization, over 500 million adults, equivalent to 10%-14% of the world population, were obese with a body mass index (BMI) of 30 kg/m(2) or greater in 2008.(1) This rising prevalence and earlier onset of obesity is believed to be resulted from an interplay of genetic factors, over-nutrition and physical inactivity in modern lifestyles. Obesity also increases the susceptibility to metabolic syndromes, hypertension, cardiovascular diseases, Type 2 diabetes mellitus (T2DM) and cancer.(2-4) The global obesity epidemic has sparked substantial interests in the biology of adipose tissue (fat). In addition, the skeletal muscle and its secretive factors (myokines) have also been shown to play a critical role in controlling body energy balance, adipose homeostasis and inflammation status.(5) Interestingly, skeletal muscle cells share a common developmental origin with brown adipocytes,(6,7) which breaks down lipids to generate heat - thus reducing obesity. Here, we provide a brief overview of the basics and recent progress in muscle-fat crosstalk in the context of body energy metabolism, obesity, and diabetes. We summarize the different types of adipocytes, their developmental origins and implications in body composition. We highlight the role of several novel myokines in regulating fat mass and systemic energy balance, and evaluate the potential of skeletal muscles as a therapeutic target to treat obesity.
Collapse
|
20
|
Nilsson MI, Dobson JP, Greene NP, Wiggs MP, Shimkus KL, Wudeck EV, Davis AR, Laureano ML, Fluckey JD. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity. FASEB J 2013; 27:3905-16. [PMID: 23804240 DOI: 10.1096/fj.12-224006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity may impair protein synthesis rates and cause anabolic resistance to growth factors, hormones, and exercise, ultimately affecting skeletal muscle mass and function. To better understand muscle wasting and anabolic resistance with obesity, we assessed protein 24-h fractional synthesis rates (24-h FSRs) in selected hind-limb muscles of sedentary and resistance-exercised lean and obese Zucker rats. Despite atrophied hind-limb muscles (-28% vs. lean rats), 24-h FSRs of mixed proteins were significantly higher in quadriceps (+18%) and red or white gastrocnemius (+22 or +38%, respectively) of obese animals when compared to lean littermates. Basal synthesis rates of myofibrillar (+8%) and mitochondrial proteins (-1%) in quadriceps were not different between phenotypes, while manufacture of cytosolic proteins (+12%) was moderately elevated in obese cohorts. Western blot analyses revealed a robust activation of p70S6k (+178%) and a lower expression of the endogenous mTOR inhibitor DEPTOR (-28%) in obese rats, collectively suggesting that there is an obesity-induced increase in net protein turnover favoring degradation. Lastly, the protein synthetic response to exercise of mixed (-7%), myofibrillar (+6%), and cytosolic (+7%) quadriceps subfractions was blunted compared to the lean phenotype (+34, +40, and +17%, respectively), indicating a muscle- and subfraction-specific desensitization to the anabolic stimulus of exercise in obese animals.
Collapse
Affiliation(s)
- Mats I Nilsson
- 1Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fu S, Fan J, Blanco J, Gimenez-Cassina A, Danial NN, Watkins SM, Hotamisligil GS. Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting. PLoS Genet 2012; 8:e1002902. [PMID: 22927828 PMCID: PMC3426552 DOI: 10.1371/journal.pgen.1002902] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/02/2012] [Indexed: 01/12/2023] Open
Abstract
Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)–associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity. Chronic diseases including obesity and associated metabolic abnormalities have become the greatest threat to human health worldwide. How metabolic organs and organelles adapt to nutritional fluctuations, or fail to do so, remains incompletely understood. To explore these issues, we developed a new platform to explore translational responses in the liver, a critical organ for metabolic homeostasis. In this translatomic platform, we integrated polysome profiling and global analysis of polysome-associated mRNAs to systematically quantify protein synthesis on each transcript in obesity and during fasting. Our analysis demonstrated for the first time that protein synthesis is progressively suppressed in the obese liver and that the overall translatome profile of obese liver markedly resembles that of fasting lean mice, particularly in mitochondrial function and bile metabolism. We also examined the physiological impact of some of these alterations and concluded that aberrant bile acid metabolism in the obese liver represents a novel mechanism contributing to hyperglycemia and continuous weight gain. Together, our work reveals abnormal translational regulation as a novel aspect of obesity that could impact future directions in metabolic disease treatment, and we believe translatome profiling represents a new approach to unravel complex mechanisms regulating cellular function and disease pathology.
Collapse
Affiliation(s)
- Suneng Fu
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Masgrau A, Mishellany-Dutour A, Murakami H, Beaufrère AM, Walrand S, Giraudet C, Migné C, Gerbaix M, Metz L, Courteix D, Guillet C, Boirie Y. Time-course changes of muscle protein synthesis associated with obesity-induced lipotoxicity. J Physiol 2012; 590:5199-210. [PMID: 22802586 DOI: 10.1113/jphysiol.2012.238576] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The object of the study was to investigate the sequential changes of protein synthesis in skeletal muscle during establishment of obesity, considering muscle typology. Adult Wistar rats were fed a standard diet for 16 weeks (C; n = 14), or a high-fat, high-sucrose diet for 16 (HF16; n = 14) or 24 weeks (HF24; n = 15). Body composition was measured using a dual-energy X-ray absorptiometry scanner. The fractional synthesis rates (FSRs) of muscle protein fractions were calculated in tibialis anterior (TA) and soleus muscles by incorporation of l-13C-valine in muscle protein. Muscle lipid and mitochondria contents were determined using histochemical analysis. Obesity occurred in an initial phase, from 1 to 16 weeks, with an increase in weight (P < 0.05), fat mass (P < 0.001), muscle mass (P < 0.001) and FSR in TA (actin: 5.3 ± 0.2 vs. 8.8 ± 0.5% day−1, C vs. HF16, P < 0.001) compared with standard diet. The second phase, from 16 to 24 weeks, was associated with a weight stabilization, a decrease in muscle mass (P < 0.05) and a decrease in FSR in TA (mitochondrial: 5.6 ± 0.2 vs. 4.2 ± 0.4% day−1, HF16 vs. HF24, P < 0.01) compared with HF16 group. Muscle lipid content was increased in TA in the second phase of obesity development (P < 0.001). Muscle mass, lipid infiltration and muscle protein synthesis were differently affected, depending on the stage of obesity development and muscle typology. Chronic lipid infiltration in glycolytic muscle is concomitant with a reduction of muscle protein synthesis, suggesting that muscle lipid infiltration in response to a high-fat diet is deleterious for the incorporation of amino acid in skeletal muscle proteins.
Collapse
Affiliation(s)
- Aurélie Masgrau
- French National Institute for Agricultural Research (INRA), UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tardif N, Salles J, Guillet C, Gadéa E, Boirie Y, Walrand S. Obésité sarcopénique et altérations du métabolisme protéique musculaire. NUTR CLIN METAB 2011. [DOI: 10.1016/j.nupar.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|