1
|
Garutti M, Sirico M, Noto C, Foffano L, Hopkins M, Puglisi F. Hallmarks of Appetite: A Comprehensive Review of Hunger, Appetite, Satiation, and Satiety. Curr Obes Rep 2025; 14:12. [PMID: 39849268 DOI: 10.1007/s13679-024-00604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/25/2025]
Abstract
PURPOSE OF REVIEW The present review describes the available literature on the physiologic mechanisms that modulate hunger, appetite, satiation, and satiety with a particular focus on well-established and emerging factors involved in the classic satiety cascade model. RECENT FINDING Obesity is a significant risk factor for numerous chronic conditions like cancer, cardiovascular diseases, and diabetes. As excess energy intake is considered by some to be the primary driver of weight gain, tremendous collective effort should be directed toward reducing excessive feeding at the individual and population levels. From this perspective, detailed understanding of physiologic mechanisms that control appetite, and in turn, the design of effective interventions to manage appetite, may represent key strategies in controlling the obesity epidemic. With the obesity's prevalence on the rise worldwide, research on hunger, appetite, satiation and satiety is more relevant than ever. This research aims to provide practical insights for medical practitioners, nutrition professionals, and the broader scientific community in the fight against this global health challenge.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy.
| | - Marianna Sirico
- Medical Oncology and Breast Unit, IRCCS Istituto Romagnolo Per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Forli-Cesena, Italy
| | - Claudia Noto
- Medical Oncology, Azienda Sanitaria Universitaria Integrata Di Trieste, Ospedale Maggiore, Piazza Dell'Ospitale 1, 34125, Trieste, Italy
| | - Lorenzo Foffano
- CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Mark Hopkins
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Fabio Puglisi
- CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, 33100, Udine, Italy
| |
Collapse
|
2
|
Giuntini EB, Sardá FAH, de Menezes EW. The Effects of Soluble Dietary Fibers on Glycemic Response: An Overview and Futures Perspectives. Foods 2022; 11:foods11233934. [PMID: 36496742 PMCID: PMC9736284 DOI: 10.3390/foods11233934] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The properties of each food, composition, and structure affect the digestion and absorption of nutrients. Dietary fiber (DF), especially viscous DF, can contribute to a reduction in the glycemic response resulting from the consumption of carbohydrate-rich foods. Target and control of postprandial glycemic values are critical for diabetes prevention and management. Some mechanisms have been described for soluble DF action, from the increase in chyme viscosity to the production of short-chain fatty acids resulting from fermentation, which stimulates gastrointestinal motility and the release of GLP-1 and PYY hormones. The postprandial glycemic response due to inulin and resistant starch ingestion is well established. However, other soluble dietary fibers (SDF) can also contribute to glycemic control, such as gums, β-glucan, psyllium, arabinoxylan, soluble corn fiber, resistant maltodextrin, glucomannan, and edible fungi, which can be added alone or together in different products, such as bread, beverages, soups, biscuits, and others. However, there are technological challenges to be overcome, despite the benefits provided by the SDF, as it is necessary to consider the palatability and maintenance of their proprieties during production processes. Studies that evaluate the effect of full meals with enriched SDF on postprandial glycemic responses should be encouraged, as this would contribute to the recommendation of viable dietary options and sustainable health goals.
Collapse
Affiliation(s)
- Eliana Bistriche Giuntini
- Food Research Center (FoRC/CEPID/FAPESP), University of São Paulo (USP) Rua do Lago, 250 Cidade Universitária CEP, São Paulo 05508-080, Brazil
- Correspondence:
| | - Fabiana Andrea Hoffmann Sardá
- Faculty of Science & Engineering, University of Limerick (UL), V94XD21 Limerick, Ireland
- Health Research Institute (UL), V94T9PX Limerick, Ireland
- Bernal Institute (UL), V94T9PX Limerick, Ireland
| | - Elizabete Wenzel de Menezes
- Food Research Center (FoRC/CEPID/FAPESP), University of São Paulo (USP) Rua do Lago, 250 Cidade Universitária CEP, São Paulo 05508-080, Brazil
| |
Collapse
|
3
|
Rakha A, Mehak F, Shabbir MA, Arslan M, Ranjha MMAN, Ahmed W, Socol CT, Rusu AV, Hassoun A, Aadil RM. Insights into the constellating drivers of satiety impacting dietary patterns and lifestyle. Front Nutr 2022; 9:1002619. [PMID: 36225863 PMCID: PMC9549911 DOI: 10.3389/fnut.2022.1002619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Food intake and body weight regulation are of special interest for meeting today's lifestyle essential requirements. Since balanced energy intake and expenditure are crucial for healthy living, high levels of energy intake are associated with obesity. Hence, regulation of energy intake occurs through short- and long-term signals as complex central and peripheral physiological signals control food intake. This work aims to explore and compile the main factors influencing satiating efficiency of foods by updating recent knowledge to point out new perspectives on the potential drivers of satiety interfering with food intake regulation. Human internal factors such as genetics, gender, age, nutritional status, gastrointestinal satiety signals, gut enzymes, gastric emptying rate, gut microbiota, individual behavioral response to foods, sleep and circadian rhythms are likely to be important in determining satiety. Besides, the external factors (environmental and behavioral) impacting satiety efficiency are highlighted. Based on mechanisms related to food consumption and dietary patterns several physical, physiological, and psychological factors affect satiety or satiation. A complex network of endocrine and neuroendocrine mechanisms controls the satiety pathways. In response to food intake and other behavioral cues, gut signals enable endocrine systems to target the brain. Intestinal and gastric signals interact with neural pathways in the central nervous system to halt eating or induce satiety. Moreover, complex food composition and structures result in considerable variation in satiety responses for different food groups. A better understanding of foods and factors impacting the efficiency of satiety could be helpful in making smart food choices and dietary recommendations for a healthy lifestyle based on updated scientific evidence.
Collapse
Affiliation(s)
- Allah Rakha
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fakiha Mehak
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Asim Shabbir
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Vasile Rusu
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Rana Muhammad Aadil
| |
Collapse
|
4
|
Li Y, Huang J, Zhang S, Yang F, Zhou H, Song Y, Wang B, Li H. Sodium alginate and galactooligosaccharides ameliorate metabolic disorders and alter the composition of the gut microbiota in mice with high-fat diet-induced obesity. Int J Biol Macromol 2022; 215:113-122. [PMID: 35718141 DOI: 10.1016/j.ijbiomac.2022.06.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 12/12/2022]
Abstract
We aimed to investigate the effects of sodium alginate (SA) and galactooligosaccharides (GOS) on the metabolism and gut microbiota of high-fat diet (HFD)-fed obese mice. GOS and SA delayed high-fat diet-induced obesity, reduced the epididymal fat and liver indices, and improved the circulating lipid profile. Low- and high-dose GOS reduced weight gain by 48.8 % and 35.3 %, and low- and high-dose SA reduced it by 37.7 % and 34.4 %, respectively. GOS and SA reduced blood glucose concentration, probably by increasing the expression of glucose transporter 4. GOS and SA increased the expression of tight junction proteins (ZO-1 and occludin), reduced the D-lactic acid (D-LA) and lipopolysaccharide concentrations, and reduced the expression of toll-like receptors, consistent with improved intestinal barrier function. GOS and SA also increased the abundance of Bacteroidota, Bifidobacterium, and Lactobacillus; and reduced that of Patescibacteria in the gut. The abundance of Parabacteroides positively correlated with the circulating low-density lipoprotein-cholesterol (LDL-C) concentration; that of Lactobacillus negatively correlated with LDL-C, D-LA, and tumor necrosis factor-α concentration; and that of Bifidobacterium positively correlated with high-density lipoprotein-cholesterol concentration, according to Spearman correlation analysis. In conclusion, SA and GOS ameliorate obesity and the associated metabolic disorders in mice, and also modulate their gut microbial composition.
Collapse
Affiliation(s)
- Yao Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Juan Huang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Silu Zhang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Fan Yang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Haolin Zhou
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Yang Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China.
| |
Collapse
|
5
|
Jin Y, Wilde PJ, Hou Y, Wang Y, Han J, Liu W. An evolving view on food viscosity regulating gastric emptying. Crit Rev Food Sci Nutr 2022; 63:5783-5799. [PMID: 34985365 DOI: 10.1080/10408398.2021.2024132] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viscosity is a property of most foods. The consumption of the high-viscosity food is associated with a variety of physiological responses, one of which is their ability to regulate gastric emptying and modulate postprandial glycemic response. Gastric emptying has been proven to be a key step affecting the digestion and absorption of food, whereas, the relationship between viscosity and gastric emptying is still far away from being understood. Here, we reviewed the factors that influence food viscosity and food viscosity changes during digestion. Besides, the effect of food viscosity on gastric emptying and food-viscosity-physiological response were highlighted. Finally, "quantitative relationship" of viscosity and gastric emptying was discussed. This review can contribute to the understanding that how food viscosity affects gastric emptying, and help for developing foods that could control satiety and manage body weight for the specific populations.
Collapse
Affiliation(s)
- Yangyi Jin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peter J Wilde
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Yingying Hou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanping Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
6
|
Vaughan K, Ranawana V, Cooper D, Aceves-Martins M. Effect of brown seaweed on plasma glucose in healthy, at-risk, and type 2 diabetic individuals: systematic review and meta-analysis. Nutr Rev 2021; 80:1194-1205. [PMID: 34549293 PMCID: PMC8990535 DOI: 10.1093/nutrit/nuab069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context Sustained hyperglycemia triggers chronic disease, including type 2 diabetes. A considerable volume of research has explored the effects of brown seaweed on plasma glucose control, but equivocal findings have been reported. Objective A systematic review and meta-analysis was conducted to assess the evidence from human randomized controlled trials (RCTs) on the effects of brown seaweed on plasma glucose in healthy, at-risk, and individuals with type 2 diabetes. Data Sources MEDLINE/PubMed, EMBASE, and the Cochrane Library were searched for reports published between 2000 and 2020. Data Extraction Population, intervention, comparator, outcome, and study design data were extracted. Data Analysis Eighteen RCTs met our inclusion criteria. The reported results varied across and between populations. Meta-analyses showed a significant effect, favoring the intervention group for both fasting (mean difference –4.6 [95% CI –7.88, –1.33]) and postprandial (mean difference –7.1 [95% CI –7.4, –6.9]) plasma glucose. Conclusion Brown seaweed and its extracts show potential for preventing and managing hyperglycemia. Our meta-analysis confirms that brown seaweed positively affects plasma glucose homeostasis, with particularly promising postprandial plasma glucose effects. However, further research is needed because no high-quality RCT was identified. Species-specific and dose–response research is also required. Systematic Review Registration PROSPERO registration no. CRD42020187849.
Collapse
Affiliation(s)
- Kate Vaughan
- K. Vaughan and M. Aceves-Martins are with the The Rowett Institute, University of Aberdeen, Aberdeen, UK. V. Ranawana is with the School of Health and Related Research, University of Sheffield, Sheffield, UK. D. Cooper is with the Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - Viren Ranawana
- K. Vaughan and M. Aceves-Martins are with the The Rowett Institute, University of Aberdeen, Aberdeen, UK. V. Ranawana is with the School of Health and Related Research, University of Sheffield, Sheffield, UK. D. Cooper is with the Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - David Cooper
- K. Vaughan and M. Aceves-Martins are with the The Rowett Institute, University of Aberdeen, Aberdeen, UK. V. Ranawana is with the School of Health and Related Research, University of Sheffield, Sheffield, UK. D. Cooper is with the Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - Magaly Aceves-Martins
- K. Vaughan and M. Aceves-Martins are with the The Rowett Institute, University of Aberdeen, Aberdeen, UK. V. Ranawana is with the School of Health and Related Research, University of Sheffield, Sheffield, UK. D. Cooper is with the Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
7
|
Appleton KM, Newbury A, Almiron‐Roig E, Yeomans MR, Brunstrom JM, de Graaf K, Geurts L, Kildegaard H, Vinoy S. Sensory and physical characteristics of foods that impact food intake without affecting acceptability: Systematic review and meta-analyses. Obes Rev 2021; 22:e13234. [PMID: 33754456 PMCID: PMC8365638 DOI: 10.1111/obr.13234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022]
Abstract
This systematic review with meta-analyses aimed to identify the sensory and physical characteristics of foods/beverages which increase satiation and/or decrease/delay subsequent consumption without affecting acceptability. Systematic searches were first undertaken to identify review articles investigating the effects of any sensory and physical food characteristic on food intake. These articles provided some evidence that various textural parameters (aeration, hardness, homogeneity, viscosity, physical form, added water) can impact food intake. Individual studies investigating these effects while also investigating acceptability were then assessed. Thirty-seven individual studies investigated a textural manipulation and provided results on food intake and acceptability, 13 studies (27 comparisons, 898 participants) investigated effects on satiation, and 29 studies (54 comparisons, 916 participants) investigated effects on subsequent intake. Meta-analyses of within-subjects comparisons (random-effects models) demonstrated greater satiation (less weight consumed) from food products that were harder, chunkier, more viscous, voluminous, and/or solid, while demonstrating no effects on acceptability. Textural parameters had limited effects on subsequent consumption. Between-subjects studies and sensitivity analyses confirmed these results. These findings provide some evidence that textural parameters can increase satiation without affecting acceptability. The development of harder, chunkier, more viscous, voluminous, and/or solid food/beverage products may be of value in reducing overconsumption.
Collapse
Affiliation(s)
| | - Annie Newbury
- Department of PsychologyBournemouth UniversityBournemouthUK
| | - Eva Almiron‐Roig
- Center for Nutrition ResearchUniversity of NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNa)PamplonaSpain
| | | | | | - Kees de Graaf
- Division of Human Nutrition and HealthWageningen University and ResearchWageningenNetherlands
| | | | | | - Sophie Vinoy
- Nutrition DepartmentMondelez International R&DSaclayFrance
| |
Collapse
|
8
|
Lu X, Lu J, Fan Z, Liu A, Zhao W, Wu Y, Zhu R. Both Isocarbohydrate and Hypercarbohydrate Fruit Preloads Curbed Postprandial Glycemic Excursion in Healthy Subjects. Nutrients 2021; 13:nu13072470. [PMID: 34371978 PMCID: PMC8308803 DOI: 10.3390/nu13072470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the impact of fruit preloads on the acute postprandial glycemic response (PGR) and satiety response of a rice meal in healthy female subjects based on iso-carbohydrate (IC) and hyper-carbohydrate (HC) contents, respectively. The IC test meals including (1) rice preload (R + 35R), (2) orange preload (O + 35R), (3) apple preload (A + 35R) and (4) pear preload (P + 35R), contained 50.0 g available carbohydrates (AC) where the preload contributed 15.0 g and rice provided 35.0 g. The HC meals included (1) orange preload (O + 50R), (2) apple preload (A+50R) and (3) pear preload (P + 50R), each containing 65.0 g AC, where the fruits contributed 15.0 g and rice provided 50.0 g. Drinking water 30 min before the rice meal was taken as reference (W + 50R). All the preload treatments, irrespective of IC or HC meals, resulted in remarkable reduction (p < 0.001) in terms of incremental peak glucose (IPG) and the maximum amplitude of glycemic excursion in 180 min (MAGE0–180), also a significant decrease (p < 0.05) in the area of PGR contributed by per gram of AC (AAC), compared with the W + 50R. Apple elicited the lowest PGR among all test meals, as the A + 35R halved the IPG and slashed the incremental area under the curve in 180 min (iAUC0–180) by 45.7%, while the A + 50R reduced the IPG by 29.7%, compared with the W + 50R. All the preload meals and the reference meal showed comparable self-reported satiety in spite of the difference in AC. In conclusion, pre-meal consumption of three fruits effectively curbed post-meal glycemia even in the case of a 30% extra carbohydrate load.
Collapse
Affiliation(s)
- Xuejiao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Jiacan Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Zhihong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-62737717
| | - Anshu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Wenqi Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Yixue Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| | - Ruixin Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (J.L.); (A.L.); (W.Z.); (Y.W.); (R.Z.)
| |
Collapse
|
9
|
Impact of dietary supplementation with resistant dextrin (NUTRIOSE ®) on satiety, glycaemia, and related endpoints, in healthy adults. Eur J Nutr 2021; 60:4635-4643. [PMID: 34170392 PMCID: PMC8572182 DOI: 10.1007/s00394-021-02618-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/09/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE Resistant dextrin (RD) supplementation has been shown to alter satiety, glycaemia, and body weight, in overweight Chinese men; however, there are limited data on its effects in other demographic groups. Here, we investigated the effects of RD on satiety in healthy adults living in the United Kingdom. METHODS 20 normal weight and 16 overweight adults completed this randomised controlled cross-over study. Either RD (14 g/day NUTRIOSE® FB06) or maltodextrin control was consumed in mid-morning and mid-afternoon preload beverages over a 28-day treatment period with crossover after a 28-day washout. During 10-h study visits (on days 1, 14, and 28 of each treatment period), satietogenic, glycaemic and anorectic hormonal responses to provided meals were assessed. RESULTS Chronic supplementation with RD was associated with higher fasted satiety scores at day 14 (P = 0.006) and day 28 (P = 0.040), compared to control. RD also increased satiety after the mid-morning intervention drink, but it was associated with a reduction in post-meal satiety following both the lunch and evening meals (P < 0.01). The glycaemic response to the mid-morning intervention drink (0-30 min) was attenuated following RD supplementation (P < 0.01). Whilst not a primary endpoint we also observed lower systolic blood pressure at day 14 (P = 0.035) and 28 (P = 0.030), compared to day 1, following RD supplementation in the normal weight group. Energy intake and anthropometrics were unaffected. CONCLUSIONS RD supplementation modified satiety and glycaemic responses in this cohort, further studies are required to determine longer-term effects on body weight control and metabolic markers. CLINICALTRIALS. GOV REGISTRATION NCT02041975 (22/01/2014).
Collapse
|
10
|
Aoe S, Yamanaka C, Ohtoshi H, Nakamura F, Fujiwara S. Effects of Daily Kelp ( Laminaria japonica) Intake on Body Composition, Serum Lipid Levels, and Thyroid Hormone Levels in Healthy Japanese Adults: A Randomized, Double-Blind Study. Mar Drugs 2021; 19:352. [PMID: 34206160 PMCID: PMC8307228 DOI: 10.3390/md19070352] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
To investigate whether supplementation with iodine-reduced kelp (Laminaria japonica) powder decreases body fat composition in overweight Japanese subjects, a randomized, double-blind, placebo-controlled intervention study was conducted in 50 Japanese subjects with body mass index (BMI) ≥25 and <30 kg/m2. Subjects were randomly assigned to consume thirty tablets/d (10 tablets orally, 3 times/d) containing either iodine-reduced kelp powder (test, 6 g kelp powder corresponding to 3 g alginate/d) or kelp-free powder (placebo) for 8 weeks. Anthropometric measurements, blood lipids, and serum thyroid hormone levels were obtained before and after the trial. Body fat percentage was significantly decreased in male subjects from the test group compared with the placebo group. The same tendency was observed for body weight (p = 0.065) and BMI (p = 0.072) in male subjects. No significant changes in anthropometric measurements or visceral fat area were observed in female subjects. Serum thyroid hormone concentrations did not increase after 1.03 mg/d of iodine supplementation through kelp intake. The intake of iodine-reduced kelp powder led to significant and safe reductions in body fat percentage in overweight male subjects. The consumption of kelp high in alginate may contribute to preventing obesity without influencing thyroid function in Japanese subjects with a relatively high intake of iodine from seaweed.
Collapse
Affiliation(s)
- Seiichiro Aoe
- Department of Food Science, Otsuma Women’s University, Chiyoda-ku, Tokyo 102-8357, Japan
- The Institute of Human Culture Studies, Otsuma Women’s University, Chiyoda-ku, Tokyo 102-8357, Japan;
| | - Chiemi Yamanaka
- The Institute of Human Culture Studies, Otsuma Women’s University, Chiyoda-ku, Tokyo 102-8357, Japan;
| | | | - Fumiko Nakamura
- CPCC Company Limited, Chiyoda-ku, Tokyo 101-0047, Japan; (F.N.); (S.F.)
| | - Suguru Fujiwara
- CPCC Company Limited, Chiyoda-ku, Tokyo 101-0047, Japan; (F.N.); (S.F.)
| |
Collapse
|
11
|
du Preez R, Magnusson M, Majzoub ME, Thomas T, Praeger C, Glasson CRK, Panchal SK, Brown L. Brown Seaweed Sargassum siliquosum as an Intervention for Diet-Induced Obesity in Male Wistar Rats. Nutrients 2021; 13:1754. [PMID: 34064139 PMCID: PMC8224310 DOI: 10.3390/nu13061754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The therapeutic potential of Sargassum siliquosum grown in Australian tropical waters was tested in a rat model of metabolic syndrome. Forty-eight male Wistar rats were divided into four groups of 12 rats and each group was fed a different diet for 16 weeks: corn starch diet (C); high-carbohydrate, high-fat diet (H) containing fructose, sucrose, saturated and trans fats; and C or H diets with 5% S. siliquosum mixed into the food from weeks 9 to 16 (CS and HS). Obesity, hypertension, dyslipidaemia, impaired glucose tolerance, fatty liver and left ventricular fibrosis developed in H rats. In HS rats, S. siliquosum decreased body weight (H, 547 ± 14; HS, 490 ± 16 g), fat mass (H, 248 ± 27; HS, 193 ± 19 g), abdominal fat deposition and liver fat vacuole size but did not reverse cardiovascular and liver effects. H rats showed marked changes in gut microbiota compared to C rats, while S. siliquosum supplementation increased gut microbiota belonging to the family Muribaculaceae. This selective increase in gut microbiota likely complements the prebiotic actions of the alginates. Thus, S. siliquosum may be a useful dietary additive to decrease abdominal and liver fat deposition.
Collapse
Affiliation(s)
- Ryan du Preez
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Marie Magnusson
- School of Science, Environmental Research Institute, University of Waikato, Tauranga 3112, New Zealand; (M.M.); (C.R.K.G.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christina Praeger
- MACRO—The Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Christopher R. K. Glasson
- School of Science, Environmental Research Institute, University of Waikato, Tauranga 3112, New Zealand; (M.M.); (C.R.K.G.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (R.d.P.); (S.K.P.)
- School of Health and Wellbeing, University of Southern Queensland, Ipswich, QLD 4305, Australia
| |
Collapse
|
12
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
13
|
Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers (Basel) 2020; 12:E2417. [PMID: 33092194 PMCID: PMC7589871 DOI: 10.3390/polym12102417] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Initially used extensively as an additive and ingredient in the food industry, alginate has become an important compound for a wide range of industries and applications, such as the medical, pharmaceutical and cosmetics sectors. In the food industry, alginate has been used to coat fruits and vegetables, as a microbial and viral protection product, and as a gelling, thickening, stabilizing or emulsifying agent. Its biocompatibility, biodegradability, nontoxicity and the possibility of it being used in quantum satis doses prompted scientists to explore new properties for alginate usage. Thus, the use of alginate has been expanded so as to be directed towards the pharmaceutical and biomedical industries, where studies have shown that it can be used successfully as biomaterial for wound, hydrogel, and aerogel dressings, among others. Furthermore, the ability to encapsulate natural substances has led to the possibility of using alginate as a drug coating and drug delivery agent, including the encapsulation of probiotics. This is important considering the fact that, until recently, encapsulation and coating agents used in the pharmaceutical industry were limited to the use of lactose, a potentially allergenic agent or gelatin. Obtained at a relatively low cost from marine brown algae, this hydrocolloid can also be used as a potential tool in the management of diabetes, not only as an insulin delivery agent but also due to its ability to improve insulin resistance, attenuate chronic inflammation and decrease oxidative stress. In addition, alginate has been recognized as a potential weight loss treatment, as alginate supplementation has been used as an adjunct treatment to energy restriction, to enhance satiety and improve weight loss in obese individuals. Thus, alginate holds the promise of an effective product used in the food industry as well as in the management of metabolic disorders such as diabetes and obesity. This review highlights recent research advances on the characteristics of alginate and brings to the forefront the beneficial aspects of using alginate, from the food industry to the biomedical field.
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Andrei Lobiuc
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
| | - Mihai Dimian
- Department of Computers, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Health and Human Development, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.G.P.); (A.L.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
14
|
Guo L, Goff HD, Xu F, Liu F, Ma J, Chen M, Zhong F. The effect of sodium alginate on nutrient digestion and metabolic responses during both in vitro and in vivo digestion process. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105304] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
BARBER JAMESFP, THOMAS JOEL, NARANG BEN, HENGIST AARON, BETTS JAMESA, WALLIS GARETHA, GONZALEZ JAVIERT. Pectin-Alginate Does Not Further Enhance Exogenous Carbohydrate Oxidation in Running. Med Sci Sports Exerc 2020; 52:1376-1384. [DOI: 10.1249/mss.0000000000002262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Bermano G, Stoyanova T, Hennequart F, Wainwright CL. Seaweed-derived bioactives as potential energy regulators in obesity and type 2 diabetes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 87:205-256. [PMID: 32089234 DOI: 10.1016/bs.apha.2019.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is epidemiological evidence that dietary intake of seaweeds is associated with a lower prevalence of chronic diseases. While seaweeds are of high nutritious value, due to their high content of fiber, polyunsaturated fatty acids and minerals, they also contain an abundance of bioactive compounds. There is a growing body of scientific data that these bioactive moieties exert effects that could correct the metabolic dysregulation that is present in obesity and Type 2 diabetes (T2D). In this review we describe how the molecular mechanisms, specific to different tissues, that underly obesity and T2D are influenced by both seaweed extracts and seaweed-derived bioactive molecules. In obesity, modulation of antioxidant capacity and reduction of intracellular ROS levels within tissues, and regulation of signaling pathways involved in enhancing browning of white adipose tissue, have been highlighted as key mechanism and identified as a potential target for optimal energy metabolism. In T2D, management of post-prandial blood glucose by modulating α-glucosidase or α-amylase activities, modulation of the AMPK signaling pathway, and similarly to obesity, reduction of ROS and NO production with subsequent increased expression of antioxidant enzymes have been shown to play a key role in glucose metabolism and insulin signaling. Future studies aimed at discovering new therapeutic drugs from marine natural products should, therefore, focus on bioactive compounds from seaweed that exert antioxidant activity and regulate the expression of key signaling pathways involved in glucose homeostasis, mechanisms that are common to both obesity and T2D management. In addition, more data is required to provide evidence of clinical benefit.
Collapse
Affiliation(s)
- Giovanna Bermano
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Teodora Stoyanova
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | | | - Cherry L Wainwright
- Centre for Natural Products in Health, School of Pharmacy & Life Sciences, Robert Gordon University, Aberdeen, United Kingdom.
| |
Collapse
|
17
|
Xi M, Dragsted LO. Biomarkers of seaweed intake. GENES & NUTRITION 2019; 14:24. [PMID: 31428206 PMCID: PMC6694598 DOI: 10.1186/s12263-019-0648-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/19/2019] [Indexed: 01/18/2023]
Abstract
Seaweeds are marine macroalgae, some of which are edible. They are rich in specific dietary fibers and also contain other characteristic biological constituents. Biological activities have been investigated mainly in animal studies, while very few results are available from human studies. Biomarkers of food intake (BFIs) specific to seaweed could play an important role as objective measurements in observational studies and dietary intervention studies. Thus, the health effects of seaweeds can be explored and understood by discovering and applying BFIs. This review summarizes studies to identify candidate BFIs of seaweed intake. These BFIs are evaluated by a structured validation scheme. Hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol, diphloroethol, fucophloroethol, dioxinodehydroeckol, and/or their glucuronides or sulfate esters which all belong to the phlorotannins are considered candidate biomarkers for brown seaweed. Fucoxanthinol, the main metabolite of fucoxanthin, is also regarded as a candidate biomarker for brown seaweed. Further validation will be needed due to the very limited number of human studies. Further studies are also needed to identify additional candidate biomarkers, relevant specifically for the red and green seaweeds, for which no candidate biomarkers emerged from the literature search. Reliable BFIs should also ideally be found for the whole seaweed food group.
Collapse
Affiliation(s)
- Muyao Xi
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Houghton D, Wilcox MD, Brownlee IA, Chater PI, Seal CJ, Pearson JP. Acceptability of alginate enriched bread and its effect on fat digestion in humans. Food Hydrocoll 2019; 93:395-401. [PMID: 32226189 PMCID: PMC7086458 DOI: 10.1016/j.foodhyd.2019.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lifestyle interventions and physical activity remain the cornerstone of obesity management, as pharmacological therapies (orlistat) are associated with gastrointestinal (GI) side effects. Combining orlistat with fibers can reduce side effects, improving compliance. Therefore, a fiber that inhibits lipase without side effects could help treat obesity. The aims of the present work were to assess whether alginate enriched bread could inhibit fat digestion, and assess the acceptability of alginate bread and its effect on GI wellbeing. A double-blind, randomised, controlled cross-over pilot study (NCT03350958) assessed the impact of an alginate bread meal on; lipid content in ileal effluent and circulating triacylglycerol levels. This was compared against the same meal with non-enriched (control) bread. GI wellbeing and acceptability of alginate bread was compared to control bread through daily wellbeing questionnaires and food diaries (NCT03477981). Control bread followed by alginate bread were consumed for two weeks respectively. Consumption of alginate bread reduced circulating triacylglycerol compared to control (2% reduction in AUC) and significantly increased lipid content in ileal effluent (3.8 g ± 1.6 after 210 min). There were no significant changes to GI wellbeing when comparing alginate bread to control bread. A significant increase in the feeling of fullness occurred with alginate bread compared to baseline and the first week of control bread consumption. This study showed that sustained consumption of alginate enriched bread does not alter GI wellbeing and can decrease lipolysis, increasing lipid leaving the small intestine. Further studies are required to demonstrate that reduced fat digestion through the action of alginate can reduce fat mass or body weight. Alginate can be incorporated into a highly acceptable loaf at 4%. Sustained (two weeks) consumption of alginate bread did not affect GI wellbeing. Consumption of alginate bread decreases circulating triglyceride after the meal. Consumption of alginate bread increases lipid leaving the ileum after the meal.
Collapse
Affiliation(s)
- David Houghton
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Matthew D Wilcox
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Iain A Brownlee
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Peter I Chater
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Chris J Seal
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, M2.054 Leech Building, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeffrey P Pearson
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
19
|
Abstract
Recent interest in seaweeds as a source of macronutrients, micronutrients, and bioactive components has highlighted prospective applications within the functional food and nutraceutical industries, with impetus toward the alleviation of risk factors associated with noncommunicable diseases such as obesity, type 2 diabetes, and cardiovascular disease. This narrative review summarizes the nutritional composition of edible seaweeds; evaluates the evidence regarding the health benefits of whole seaweeds, extracted bioactive components, and seaweed-based food products in humans; and assesses the potential adverse effects of edible seaweeds, including those related to ingestion of excess iodine and arsenic. If the potential functional food and nutraceutical applications of seaweeds are to be realized, more evidence from human intervention studies is needed to evaluate the nutritional benefits of seaweeds and the efficacy of their purported bioactive components. Mechanistic evidence, in particular, is imperative to substantiate health claims.
Collapse
Affiliation(s)
- Paul Cherry
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | | - Pamela J Magee
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health, School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
20
|
Hervik AK, Svihus B. The Role of Fiber in Energy Balance. J Nutr Metab 2019; 2019:4983657. [PMID: 30805214 PMCID: PMC6360548 DOI: 10.1155/2019/4983657] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/10/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022] Open
Abstract
Excessive energy intake is linked with obesity and subsequent diet-related health problems, and it is therefore a major nutritional challenge. Compared with the digestible carbohydrates starch and sugars, fiber has a low energy density and may have an attenuating effect on appetite. This narrative review attempts to clarify the net energy contributions of various fibers, and the effect of fiber on satiety and thus appetite regulation. Fibers, broadly defined as nonstarch polysaccharides, are a varied class of substances with vastly different physicochemical properties depending on their chemical arrangement. Thus, net energy content can vary from more than 10 kJ/g for soluble, nonviscous, and easily fermentable fibers such as those in many fruits, to less than zero for viscous fibers with anti-nutritive properties, such as certain types of fibers found in rye and other cereals. Likewise, some fibers will increase satiety by being viscous or contribute to large and/or swollen particles, which may facilitate mastication and increase retention time in the stomach, or potentially through fermentation and an ensuing satiety-inducing endocrine feedback from the colon. Thus, fibers may clearly contribute to energy balance. The metabolizable energy content is very often considerably lower than the commonly used level of 8 kJ per g fiber, and some fibers may reduce energy intake indirectly through satiety-inducing effects. A more precise characterization of fiber and its physicochemical effects are required before these beneficial effects can be fully exploited in human nutrition.
Collapse
Affiliation(s)
- Astrid Kolderup Hervik
- Inland Norway University of Applied Sciences and University of South-Eastern Norway, P.O. Box 4, 3199 Borre, Norway
| | - Birger Svihus
- Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway
| |
Collapse
|
21
|
Hoffmann V, Lanz M, Mackert J, Müller T, Tschöp M, Meissner K. Effects of Placebo Interventions on Subjective and Objective Markers of Appetite-A Randomized Controlled Trial. Front Psychiatry 2018; 9:706. [PMID: 30618877 PMCID: PMC6305288 DOI: 10.3389/fpsyt.2018.00706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Patients' expectations about the benefit of an intervention are important determinants of the placebo effect. Little is known about the extent to which expectations influence outcomes of treatments in the field of appetite regulation. This study aimed to investigate the effects of treatment-related expectations on subjective and objective markers of appetite. Methods: 90 healthy participants of normal weight were randomly allocated to either an appetite-enhancing placebo group, a satiety-enhancing placebo group, or a control group. All participants received a placebo capsule along with group-specific verbal suggestions to either be appetite-promoting, or satiety-enhancing, or to have no effect on appetite. Before and during the 2 h following randomization, participants were repeatedly asked to rate feelings of hunger and satiety on visual analog scales (VAS), and blood samples were taken repeatedly to assess plasma ghrelin levels as a physiological marker of hunger. Results: In comparison to the control group, the satiety-enhancing placebo intervention significantly reduced appetite and increased satiety. The appetite-enhancing placebo intervention did not alter subjective levels of hunger, but increased plasma ghrelin levels in females. Conclusions: Results provide the first experimental evidence that appetite-regulating placebo interventions can elicit a psychobiological response. Expectations are important factors to consider when evaluating the effects of interventions in the field of appetite regulation.
Collapse
Affiliation(s)
- Verena Hoffmann
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marina Lanz
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jennifer Mackert
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Timo Müller
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
- German Center for Diabetes Research (DZD), Garching bei München, Germany
| | - Matthias Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
- German Center for Diabetes Research (DZD), Garching bei München, Germany
| | - Karin Meissner
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
- Division of Health Promotion, Coburg University of Applied Sciences, Coburg, Germany
| |
Collapse
|
22
|
Catarino MD, Silva AMS, Cardoso SM. Phycochemical Constituents and Biological Activities of Fucus spp. Mar Drugs 2018; 16:E249. [PMID: 30060505 PMCID: PMC6117670 DOI: 10.3390/md16080249] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022] Open
Abstract
Seaweeds are known to be a good supply of key nutrients including carbohydrates, protein, minerals, polyunsaturated lipids, as well as several other health-promoting compounds capable of acting on a wide spectrum of disorders and/or diseases. While these marine macroalgae are deeply rooted in the East Asian culture and dietary habits, their major application in Western countries has been in the phycocolloid industry. This scenario has however been gradually changing, since seaweed consumption is becoming more common worldwide. Among the numerous edible seaweeds, members of the genus Fucus have a high nutritional value and are considered good sources of dietary fibers and minerals, especially iodine. Additionally, their wealth of bioactive compounds such as fucoidan, phlorotannins, fucoxanthin and others make them strong candidates for multiple therapeutic applications (e.g., antioxidant, anti-inflammatory, anti-tumor, anti-obesity, anti-coagulant, anti-diabetes and others). This review presents an overview of the nutritional and phytochemical composition of Fucus spp., and their claimed biological activities, as well as the beneficial effects associated to their consumption. Furthermore, the use of Fucus seaweeds and/or their components as functional ingredients for formulation of novel and enhanced foods is also discussed.
Collapse
Affiliation(s)
- Marcelo D Catarino
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| | - Susana M Cardoso
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
23
|
Younes M, Aggett P, Aguilar F, Crebelli R, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Brimer L, Lindtner O, Mosesso P, Christodoulidou A, Horváth Z, Lodi F, Dusemund B. Re-evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E 400-E 404) as food additives. EFSA J 2017; 15:e05049. [PMID: 32625343 PMCID: PMC7010146 DOI: 10.2903/j.efsa.2017.5049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The present opinion deals with the re-evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E 400-E 404) when used as food additives. Alginic acid and its salts (E 400-E 404) are authorised food additives in the EU in accordance with Annex II and Annex III to Regulation (EC) No 1333/2008. Following the conceptual framework for the risk assessment of certain food additives re-evaluated under Commission Regulation (EU) No 257/2010, the Panel concluded that there was no need for a numerical Acceptable Daily Intake (ADI) for alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404), and that there was no safety concern at the level of the refined exposure assessment for the reported uses of alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) as food additives. The Panel further concluded that exposure of infants and young children to alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) by the use of these food additives should stay below therapeutic dosages for these population groups at which side-effects could occur. Concerning the use of alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) in 'dietary foods for special medical purposes and special formulae for infants' (Food category 13.1.5.1) and 'in dietary foods for babies and young children for special medical purposes as defined in Directive 1999/21/EC' (Food category 13.1.5.2), the Panel further concluded that the available data did not allow an adequate assessment of the safety of alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) in infants and young children consuming the food belonging to the categories 13.1.5.1 and 13.1.5.2.
Collapse
|
24
|
Arshad MU, Ishtiaq S, Anjum FM, Saeed F, Chatha SAS, Imran A. Acute effects of different dietary polysaccharides added in milk on food intake, postprandial appetite and glycemic responses in healthy young females. Int J Food Sci Nutr 2016; 67:715-22. [DOI: 10.1080/09637486.2016.1191446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Muhammad Umair Arshad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
- Department of Nutritional Sciences, University of Toronto, Canada
| | - Saima Ishtiaq
- Department of Home Economics, Government College for Women University, Faisalabad, Pakistan
| | - Faqir Muhammad Anjum
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | | | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
25
|
El Khoury D, Goff HD, Anderson GH. The role of alginates in regulation of food intake and glycemia: a gastroenterological perspective. Crit Rev Food Sci Nutr 2016; 55:1406-24. [PMID: 24915329 DOI: 10.1080/10408398.2012.700654] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of food intake through modulation of gastrointestinal responses to ingested foods is an ever-growing component of the therapeutic approaches targeting the obesity epidemic. Alginates, viscous and gel-forming soluble fibers isolated from the cell wall of brown seaweeds and some bacteria, are recently receiving considerable attention because of their potential role in satiation, satiety, and food intake regulation in the short term. Enhancement of gastric distension, delay of gastric emptying, and attenuation of postprandial glucose responses may constitute the basis of their physiological benefits. Offering physical, chemical, sensorial, and physiological advantages over other viscous and gel-forming fibers, alginates constitute promising functional food ingredients for the food industry. Therefore, the current review explores the role of alginates in food intake and glycemic regulation, their underlying modes of action and their potential in food applications.
Collapse
Affiliation(s)
- D El Khoury
- a Department of Nutritional Sciences, Faculty of Medicine, University of Toronto , Toronto , M5S 3E2 , ON , Canada
| | | | | |
Collapse
|
26
|
Hu X, Tao N, Wang X, Xiao J, Wang M. Marine-derived bioactive compounds with anti-obesity effect: A review. J Funct Foods 2016; 21:372-387. [DOI: 10.1016/j.jff.2015.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
27
|
Lange KW, Hauser J, Nakamura Y, Kanaya S. Dietary seaweeds and obesity. FOOD SCIENCE AND HUMAN WELLNESS 2015. [DOI: 10.1016/j.fshw.2015.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Potential Bioactive Compounds from Seaweed for Diabetes Management. Mar Drugs 2015; 13:5447-91. [PMID: 26308010 PMCID: PMC4557030 DOI: 10.3390/md13085447] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes’ activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.
Collapse
|
29
|
Houghton D, Wilcox MD, Chater PI, Brownlee IA, Seal CJ, Pearson JP. Biological activity of alginate and its effect on pancreatic lipase inhibition as a potential treatment for obesity. Food Hydrocoll 2015; 49:18-24. [PMID: 26146432 PMCID: PMC4429962 DOI: 10.1016/j.foodhyd.2015.02.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/13/2014] [Accepted: 02/15/2015] [Indexed: 12/18/2022]
Abstract
Alginates are classed as a dietary fibre and have been shown to inhibit digestive enzymes in vitro, and therefore could be used as an obesity treatment. The current study aims to assess whether alginate in a bread vehicle maintains its inhibition properties despite cooking and digestion, and may therefore be used as a potential treatment for obesity. After 180 min in a model gut that replicates digestion in the mouth, stomach and small intestines alginate bread (AB), control bread (CB), CB with Manucol® DM alginate, free DM alginate and model gut solution were collected. DM, LFR 5/60 and SF200 were heated at 37 °C and 200 °C, with DM also heated at 50, 100 and 150 °C. Samples from the model gut and heated alginate were assessed for molecular size and inhibition properties using viscosity, gel filtration and a lipase turbidity assay. AB does not significantly increase viscosity in the model gut. Viscosity of alginate reduces beyond 100 °C, although alginate retains its inhibition properties up to 150 °C. Cooking into the bread does not reduce the molecular size of the alginate or affect its inhibition properties. These data demonstrate the robustness of alginates lipase inhibition despite the cooking process and digestion. Therefore adding alginate to a bread vehicle may have the potential in the treatment for obesity. Alginate in bread is undigested and recoverable in an in-vitro model gut. Alginate molecular size appears unaffected by cooking, digestion and extraction. Alginate retains its inhibition properties despite being heated at 37, 50, 100 and 150 °C. Alginate extracted from the model gut retains its inhibition properties.
Collapse
Affiliation(s)
- David Houghton
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Matthew D Wilcox
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Peter I Chater
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Iain A Brownlee
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Chris J Seal
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom ; Human Nutrition Research Centre, School of Agriculture, Food & Rural Development, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jeffrey P Pearson
- Institute for Cell and Molecular Bioscience, Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
30
|
Ho IHH, Matia-Merino L, Huffman LM. Use of viscous fibres in beverages for appetite control: a review of studies. Int J Food Sci Nutr 2015; 66:479-90. [PMID: 26001088 DOI: 10.3109/09637486.2015.1034252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dietary fibres, particularly viscous fibres appear to be more effective for appetite control (reduce subjective appetite, energy intake and/or body weight). Three types of viscous fibres, pectin, alginate and cereal beta-glucan, were identified as potential satiety-enhancing ingredients. The aim of this review was to collect evidence from human intervention studies evaluating pectins, alginates and beta-glucans in beverages, liquid preloads and liquid test meals for their satiety effects. Our focused, narrative review of several satiety studies shows an overall consistent result on the effectiveness of pectin, alginate and beta-glucan for appetite control. Beverages or liquid test meals are probably the better delivery mode for these fibres, as their effect on satiety is affected by their physico-chemical properties. Most, if not all, of these reviewed studies gave little or no consideration to the potential effects of common food processing (e.g. pasteurisation, ultra-high temperature process) on the physico-chemical properties of these fibre-containing beverages. This is one of the research gaps we have identified warranting further work, which is likely to be of significance from the industry and consumer perspective.
Collapse
Affiliation(s)
- Irene H H Ho
- The New Zealand Institute for Plant & Food Research Limited , Palmerston North , New Zealand and
| | | | | |
Collapse
|
31
|
Astbury NM, Taylor MA, French SJ, Macdonald IA. Snacks containing whey protein and polydextrose induce a sustained reduction in daily energy intake over 2 wk under free-living conditions. Am J Clin Nutr 2014; 99:1131-40. [PMID: 24670946 DOI: 10.3945/ajcn.113.075978] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The manipulation of the composition of foods consumed as between-meal snacks may aid daily energy restriction. OBJECTIVES We compared the effects of the consumption of 2 energy-matched snack bars on appetite, energy intake (EI), and metabolic and endocrine responses. In addition, we investigated whether the acute effects of the consumption of snacks were maintained under free-living conditions and whether the habitual daily consumption of the snack over 14 d influenced these effects. DESIGN Ten lean men [mean ± SD age: 30.7 ± 9.7 y; body mass index (in kg/m(2)): 23.2 ± 2.8] consumed a whey protein and polydextrose (PPX) snack bar or an isoenergetic control snack bar as a midmorning, between-meal snack for 14 consecutive days in a double-blind, randomized, crossover design. The two 14-d intervention phases were separated by a 14-d washout period. On the first (day 1) and last (day 15) days of each intervention phase, appetite, food intake, and blood metabolite and endocrine responses were assessed under laboratory conditions. Free-living EI was recorded on days 4, 8, and 12 of interventions. RESULTS Total daily EI was significantly lower when the PPX snack was consumed during experimental days (10,149 ± 831 compared with 11,931 ± 896 kJ; P < 0.01), and daily EI remained lower when the PPX snack was consumed during the free-living part of the intervention (7904 ± 610 compared with 9041 ± 928 kJ; P < 0.05). The PPX snack was associated with lower glucose and ghrelin and higher glucagon-like peptide 1 and peptide tyrosine-tyrosine responses. CONCLUSION The manipulation of the composition of foods consumed as snacks is an effective way to limit subsequent EI. This trial was registered at clinicaltrials.gov as NCT01927926.
Collapse
Affiliation(s)
- Nerys M Astbury
- University of Nottingham, School of Biomedical Sciences, Queen's Medical Centre, Clifton Boulevard, Nottingham, United Kingdom (NMA, MAT, and IAM), and Mars Inc, Slough, United Kingdom (SJF)
| | | | | | | |
Collapse
|
32
|
Effect of sodium alginate addition to chocolate milk on glycemia, insulin, appetite and food intake in healthy adult men. Eur J Clin Nutr 2014; 68:613-8. [DOI: 10.1038/ejcn.2014.53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/10/2014] [Accepted: 02/05/2014] [Indexed: 11/08/2022]
|
33
|
Brown EM, Allsopp PJ, Magee PJ, Gill CIR, Nitecki S, Strain CR, McSorley EM. Seaweed and human health. Nutr Rev 2014; 72:205-16. [DOI: 10.1111/nure.12091] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Emma M Brown
- Northern Ireland Centre for Food and Health; University of Ulster; County Londonderry UK
| | - Philip J Allsopp
- Northern Ireland Centre for Food and Health; University of Ulster; County Londonderry UK
| | - Pamela J Magee
- Northern Ireland Centre for Food and Health; University of Ulster; County Londonderry UK
| | - Chris IR Gill
- Northern Ireland Centre for Food and Health; University of Ulster; County Londonderry UK
| | - Sonja Nitecki
- Northern Ireland Centre for Food and Health; University of Ulster; County Londonderry UK
| | - Conall R Strain
- Northern Ireland Centre for Food and Health; University of Ulster; County Londonderry UK
| | - Emeir M McSorley
- Northern Ireland Centre for Food and Health; University of Ulster; County Londonderry UK
| |
Collapse
|
34
|
Abstract
Seaweeds are a characteristic part of the traditional diet in countries such as Japan and Korea; these countries also have a lower prevalence of metabolic syndrome than countries such as the USA and Australia. This suggests that seaweeds may contain compounds that reduce the characteristic signs of obesity, diabetes, hypertension, fatty liver and inflammation in the metabolic syndrome. Potentially bioactive compounds from seaweeds include polysaccharides, peptides, pigments, minerals and omega-3 fatty acids. This review emphasises current research on these compounds in isolated cells, animal models and patients. Key problems for future research include chemical characterisation of the bioactive principles, defining pharmacological responses in all aspects of the metabolic syndrome, determining if a therapeutic dose has been administered, and defining oral bioavailability of the active ingredients.
Collapse
|
35
|
Georg Jensen M, Pedersen C, Kristensen M, Frost G, Astrup A. Review: efficacy of alginate supplementation in relation to appetite regulation and metabolic risk factors: evidence from animal and human studies. Obes Rev 2013; 14:129-44. [PMID: 23145880 DOI: 10.1111/j.1467-789x.2012.01056.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/21/2012] [Accepted: 09/26/2012] [Indexed: 12/24/2022]
Abstract
This review provides a critical update on human and animal studies investigating the effect of alginate supplementation on appetite regulation, glycaemic and insulinemic responses, and lipid metabolism with discussion of the evidence on potential mechanisms, efficacy and tolerability. Dependent on vehicle applied for alginate supplementation, the majority of animal and human studies suggest that alginate consumption does suppress satiety and to some extent energy intake. Only one long-term intervention trial found effects on weight loss. In addition, alginates seem to exhibit beneficial influence on postprandial glucose absorption and insulin response in animals and humans. However, alginate supplementation was only found to have cholesterol-lowering properties in animals. Several mechanisms have been suggested for the positive effect observed, which involve delayed gastric emptying, increased viscosity of digesta and slowed nutrient absorption in the small intestine upon alginate gel formation. Despite reasonable efficacy and tolerability from the acute or short-term studies, we still realize there is a critical need for development of optimal alginate types and vehicles as well as studies on further long-term investigation on alginate supplementation in humans before inferring that it could be useful in the management of obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- M Georg Jensen
- Department of Human Nutrition, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
| | | | | | | | | |
Collapse
|
36
|
Rasoamanana R, Even PC, Darcel N, Tomé D, Fromentin G. Dietary fibers reduce food intake by satiation without conditioned taste aversion in mice. Physiol Behav 2012; 110-111:13-9. [PMID: 23268328 DOI: 10.1016/j.physbeh.2012.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/18/2012] [Indexed: 11/16/2022]
Abstract
It is well known that intake of dietary fiber (DF) potently decreases food intake and feelings of hunger and/or promotes satiety ratings. However, the mechanisms explaining these effects are not well characterized. This work was performed to determine which of satiation and/or satiety mechanisms provoke the decrease of food intake induced by DF in mice. We tested in an intra-group protocol a low-viscosity (LV, fructo-oligosaccharide), a viscous (VP, guar gum) and a high-viscosity (HV, mixture of guar gum and fructo-oligosaccharide) preload. These were given to mice by intra-gastric gavage. It appeared that viscous preloads such as VP and HV reduced the daily energy intake by 14% and 21% respectively. The strong effect of HV was mainly due to a large decrease of meal size (by 57%) and meal duration (by 65%) with no effect on ingestion rate during the first 30 min after administration. Therefore, the DF-induced decrease of energy intake was due to a satiation mechanism. This is further supported by a 3-fold increased sensitization of neurons in the nucleus of the solitary tract as observed by c-Fos protein immunolabelling. No compensation of food intake was observed during the rest of the day, a phenomenon that may be explained by the fact that metabolic rate remained high despite the lower food intake. We have also shown that the DF-induced inhibition of food intake was not paired with a conditioned taste aversion. To conclude, this work demonstrates that DF inhibits food intake by increasing satiation during ~1h after administration.
Collapse
Affiliation(s)
- Rojo Rasoamanana
- AgroParisTech, CRNH-IdF, UMR 914 Nutrition Physiology and Ingestive Behavior, F-75005 Paris, France
| | | | | | | | | |
Collapse
|
37
|
Rasoamanana R, Chaumontet C, Nadkarni N, Tomé D, Fromentin G, Darcel N. Dietary fibers solubilized in water or an oil emulsion induce satiation through CCK-mediated vagal signaling in mice. J Nutr 2012; 142:2033-9. [PMID: 23054308 DOI: 10.3945/jn.112.159848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study focused on the fate of the satiating potency of dietary fibers when solubilized in a fat-containing medium. Fourteen percent of either guar gum (GG) or fructo-oligosaccharide (FOS) or a mixture of the 2 (GG-FOS, 5% GG and 9% FOS) were solubilized in water or an oil emulsion (18-21% rapeseed oil in water, v:v) and administered by gavage to mice before their food intake was monitored. When compared with water (control), only GG-FOS solubilized in water or in the oil emulsion reduced daily energy intake by 21.1 and 14.1%, respectively. To further describe this effect, the meal pattern was characterized and showed that GG-FOS increased satiation without affecting satiety by diminishing the size and duration of meals for up to 9 h after administration independently of the solubilization medium. The peripheral blockade of gut peptide receptors showed that these effects were dependent on the peripheral signaling of cholecystokinin but not of glucagon-like peptide 1, suggesting that anorectic signals emerge from the upper intestine rather than from distal segments. Measurements of neuronal activation in the nucleus of solitary tract supported the hypothesis of vagal satiation signaling because a 3-fold increase in c-Fos protein expression was observed in that nucleus after the administration of GG-FOS, independently of the solubilization medium. Taken together, these data suggest that a mixture of GG and FOS can maintain its appetite suppressant effect in fatty media. Adding these dietary fibers to fat-containing foods might therefore be useful in managing food intake.
Collapse
|
38
|
Georg Jensen M, Kristensen M, Astrup A. Can alginate-based preloads increase weight loss beyond calorie restriction? A pilot study in obese individuals. Appetite 2011; 57:601-4. [DOI: 10.1016/j.appet.2011.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/23/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
|