1
|
Allaire P, Mayer J, Moat L, Gabor R, Shay JW, He J, Zeng C, Bastarache L, Hebbring S. Long-telomeropathy is associated with tumor predisposition syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.26.24318007. [PMID: 39649603 PMCID: PMC11623752 DOI: 10.1101/2024.11.26.24318007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Telomeres protect chromosomal integrity, and telomere length (TL) is influenced by environmental and genetic factors. While short-telomeres are linked to rare telomeropathies, this study explored the hypothesis that a "long-telomeropathy" is associated with a cancer-predisposing syndrome. Using genomic and health data from 113,861 individuals, a trans-ancestry polygenic risk score for TL (PRS TL ) was developed. A phenome-wide association study (PheWAS) identified 65 tumor traits linked to elevated PRS TL . Using this result, a trans-ancestry phenotype risk score for a long-TL (PheRS LTL ) was develop and validated. Rare variant analyses revealed 13 genes associated with PheRS LTL . Individuals who were carriers of these rare variants had a predisposition for long-TL validating original hypothesis. Most of these genes were new to both cancer and telomere biology. In conclusion, this study identified a novel tumor-predisposing syndrome shaped by both common and rare genetic variants, broadening the understanding of telomeropathies to those with a predisposition for long telomeres.
Collapse
|
2
|
Bories C, Lejour T, Adolphe F, Kermasson L, Couvé S, Tanguy L, Luszczewska G, Watzky M, Poillerat V, Garnier P, Groisman R, Ferlicot S, Richard S, Saparbaev M, Revy P, Gad S, Renaud F. DCLRE1B/Apollo germline mutations associated with renal cell carcinoma impair telomere protection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167107. [PMID: 38430974 DOI: 10.1016/j.bbadis.2024.167107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Hereditary renal cell carcinoma (RCC) is caused by germline mutations in a subset of genes, including VHL, MET, FLCN, and FH. However, many familial RCC cases do not harbor mutations in the known predisposition genes. Using Whole Exome Sequencing, we identified two germline missense variants in the DCLRE1B/Apollo gene (ApolloN246I and ApolloY273H) in two unrelated families with several RCC cases. Apollo encodes an exonuclease involved in DNA Damage Response and Repair (DDRR) and telomere integrity. We characterized these two functions in the human renal epithelial cell line HKC8. The decrease or inhibition of Apollo expression sensitizes these cells to DNA interstrand crosslink damage (ICLs). HKC8 Apollo-/- cells appear defective in the DDRR and present an accumulation of telomere damage. Wild-type and mutated Apollo forms could interact with TRF2, a shelterin protein involved in telomere protection. However, only ApolloWT can rescue the telomere damage in HKC8 Apollo-/- cells. Our results strongly suggest that ApolloN246I and ApolloY273H are loss-of-function mutants that cause impaired telomere integrity and could lead to genomic instability. Altogether, our results suggest that mutations in Apollo could induce renal oncogenesis.
Collapse
Affiliation(s)
- Charlie Bories
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Thomas Lejour
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Florine Adolphe
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Nationale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Sophie Couvé
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Laura Tanguy
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Gabriela Luszczewska
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Manon Watzky
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Victoria Poillerat
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Pauline Garnier
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Regina Groisman
- UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Sophie Ferlicot
- UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France; Département de Pathologie, AP-HP, Université Paris-Saclay, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Stéphane Richard
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France; Réseau National de Référence pour Cancers Rares de l'Adulte PREDIR labellisé par l'INCa, Hôpital de Bicêtre, AP-HP, et Service d'Urologie, Le Kremlin-Bicêtre, France
| | - Murat Saparbaev
- UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Nationale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Sophie Gad
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France
| | - Flore Renaud
- EPHE, PSL Université, Paris, France; UMR 9019 CNRS, Gustave Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, Villejuif 94800, France.
| |
Collapse
|
3
|
Martinez MZ, Olmo F, Taylor MC, Caudron F, Wilkinson SR. Dissecting the interstrand crosslink DNA repair system of Trypanosoma cruzi. DNA Repair (Amst) 2023; 125:103485. [PMID: 36989950 DOI: 10.1016/j.dnarep.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that can block essential biological processes. Here we show Trypanosoma cruzi, the causative agent of Chagas disease, is susceptible to ICL-inducing compounds including mechlorethamine and novel nitroreductase-activated prodrugs that have potential in treating this infection. To resolve such lesions, cells co-opt enzymes from "classical" DNA repair pathways that alongside dedicated factors operate in replication-dependent and -independent mechanisms. To assess ICL repair in T. cruzi, orthologues of SNM1, MRE11 and CSB were identified and their function assessed. The T. cruzi enzymes could complement the mechlorethamine susceptibility phenotype displayed by corresponding yeast and/or T. brucei null confirming their role as ICL repair factors while GFP-tagged TcSNM1, TcMRE11 and TcCSB were shown to localise to the nuclei of insect and/or intracellular form parasites. Gene disruption demonstrated that while each activity was non-essential for T. cruzi viability, nulls displayed a growth defect in at least one life cycle stage with TcMRE11-deficient trypomastigotes also compromised in mammalian cell infectivity. Phenotyping revealed all nulls were more susceptible to mechlorethamine than controls, a trait complemented by re-expression of the deleted gene. To assess interplay, the gene disruption approach was extended to generate T. cruzi deficient in TcSNM1/TcMRE11 or in TcSNM1/TcCSB. Analysis demonstrated these activities functioned across two ICL repair pathways with TcSNM1 and TcMRE11 postulated to operate in a replication-dependent system while TcCSB helps resolve transcription-blocking lesions. By unravelling how T. cruzi repairs ICL damage, specific inhibitors targeting repair components could be developed and used to increase the potency of trypanocidal ICL-inducing compounds.
Collapse
Affiliation(s)
- Monica Zavala Martinez
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Fabrice Caudron
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
4
|
Somashekara SC, Muniyappa K. Dual targeting of Saccharomyces cerevisiae Pso2 to mitochondria and the nucleus, and its functional relevance in the repair of DNA interstrand crosslinks. G3 (BETHESDA, MD.) 2022; 12:jkac066. [PMID: 35482533 PMCID: PMC9157068 DOI: 10.1093/g3journal/jkac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 11/12/2022]
Abstract
Repair of DNA interstrand crosslinks involves a functional interplay among different DNA surveillance and repair pathways. Previous work has shown that interstrand crosslink-inducing agents cause damage to Saccharomyces cerevisiae nuclear and mitochondrial DNA, and its pso2/snm1 mutants exhibit a petite phenotype followed by loss of mitochondrial DNA integrity and copy number. Complex as it is, the cause and underlying molecular mechanisms remains elusive. Here, by combining a wide range of approaches with in vitro and in vivo analyses, we interrogated the subcellular localization and function of Pso2. We found evidence that the nuclear-encoded Pso2 contains 1 mitochondrial targeting sequence and 2 nuclear localization signals (NLS1 and NLS2), although NLS1 resides within the mitochondrial targeting sequence. Further analysis revealed that Pso2 is a dual-localized interstrand crosslink repair protein; it can be imported into both nucleus and mitochondria and that genotoxic agents enhance its abundance in the latter. While mitochondrial targeting sequence is essential for mitochondrial Pso2 import, either NLS1 or NLS2 is sufficient for its nuclear import; this implies that the 2 nuclear localization signal motifs are functionally redundant. Ablation of mitochondrial targeting sequence abrogated mitochondrial Pso2 import, and concomitantly, raised its levels in the nucleus. Strikingly, mutational disruption of both nuclear localization signal motifs blocked the nuclear Pso2 import; at the same time, they enhanced its translocation into the mitochondria, consistent with the notion that the relationship between mitochondrial targeting sequence and nuclear localization signal motifs is competitive. However, the nuclease activity of import-deficient species of Pso2 was not impaired. The potential relevance of dual targeting of Pso2 into 2 DNA-bearing organelles is discussed.
Collapse
Affiliation(s)
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
5
|
Kermasson L, Churikov D, Awad A, Smoom R, Lainey E, Touzot F, Audebert-Bellanger S, Haro S, Roger L, Costa E, Mouf M, Bottero A, Oleastro M, Abdo C, de Villartay JP, Géli V, Tzfati Y, Callebaut I, Danielian S, Soares G, Kannengiesser C, Revy P. Inherited human Apollo deficiency causes severe bone marrow failure and developmental defects. Blood 2022; 139:2427-2440. [PMID: 35007328 PMCID: PMC11022855 DOI: 10.1182/blood.2021010791] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are a group of disorders typified by impaired production of 1 or several blood cell types. The telomere biology disorders dyskeratosis congenita (DC) and its severe variant, Høyeraal-Hreidarsson (HH) syndrome, are rare IBMFSs characterized by bone marrow failure, developmental defects, and various premature aging complications associated with critically short telomeres. We identified biallelic variants in the gene encoding the 5'-to-3' DNA exonuclease Apollo/SNM1B in 3 unrelated patients presenting with a DC/HH phenotype consisting of early-onset hypocellular bone marrow failure, B and NK lymphopenia, developmental anomalies, microcephaly, and/or intrauterine growth retardation. All 3 patients carry a homozygous or compound heterozygous (in combination with a null allele) missense variant affecting the same residue L142 (L142F or L142S) located in the catalytic domain of Apollo. Apollo-deficient cells from patients exhibited spontaneous chromosome instability and impaired DNA repair that was complemented by CRISPR/Cas9-mediated gene correction. Furthermore, patients' cells showed signs of telomere fragility that were not associated with global reduction of telomere length. Unlike patients' cells, human Apollo KO HT1080 cell lines showed strong telomere dysfunction accompanied by excessive telomere shortening, suggesting that the L142S and L142F Apollo variants are hypomorphic. Collectively, these findings define human Apollo as a genome caretaker and identify biallelic Apollo variants as a genetic cause of a hitherto unrecognized severe IBMFS that combines clinical hallmarks of DC/HH with normal telomere length.
Collapse
Affiliation(s)
- Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Dmitri Churikov
- U1068 INSERM, Unité Mixte de Recherche (UMR) 7258 (CNRS), Equipe Labellisée Ligue Nationale Contre le Cancer, Marseille Cancer Research Center (CRCM), Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Elodie Lainey
- Hematology Laboratory, Robert Debré Hospital-Assistance Publique-Hôpitaux de Paris (APHP); INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris, France
| | - Fabien Touzot
- Department of Immunology-Rheumatology, Department of Pediatrics, Centre Hospitalier Universitaire (CHU), Sainte Justine Research Center, Université de Montréal, Montréal, Quebec, Canada
| | | | - Sophie Haro
- Department of Paediatrics and Medical Genetics, CHU de Brest, Brest, France
| | - Lauréline Roger
- Structure and Instability of Genomes laboratory, “Muséum National d'Histoire Naturelle” (MNHN), INSERM U1154, CNRS UMR 7196, Paris, France
| | - Emilia Costa
- Serviço de Pediatria, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Maload Mouf
- 68HAL Meddle Laboratory, Zenon Skelter Institute, Green Hills, Eggum, Norway
| | | | - Matias Oleastro
- Rheumathology and Immunology Service, Hospital Nacional de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Chrystelle Abdo
- Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Université de Paris and Institut Necker Enfants Malades, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Vincent Géli
- U1068 INSERM, Unité Mixte de Recherche (UMR) 7258 (CNRS), Equipe Labellisée Ligue Nationale Contre le Cancer, Marseille Cancer Research Center (CRCM), Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| | - Isabelle Callebaut
- UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Silvia Danielian
- Department of Immunology, JP Garrahan National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Gabriela Soares
- Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Caroline Kannengiesser
- Service de Génétique, Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Université Paris Diderot, Paris, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Laboratoire labellisé Ligue Naionale contre le Cancer, INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
6
|
Wu HY, Zheng Y, Laciak AR, Huang NN, Koszelak-Rosenblum M, Flint AJ, Carr G, Zhu G. Structure and Function of SNM1 Family Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:1-26. [PMID: 35708844 DOI: 10.1007/5584_2022_724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Three human nucleases, SNM1A, SNM1B/Apollo, and SNM1C/Artemis, belong to the SNM1 gene family. These nucleases are involved in various cellular functions, including homologous recombination, nonhomologous end-joining, cell cycle regulation, and telomere maintenance. These three proteins share a similar catalytic domain, which is characterized as a fused metallo-β-lactamase and a CPSF-Artemis-SNM1-PSO2 domain. SNM1A and SNM1B/Apollo are exonucleases, whereas SNM1C/Artemis is an endonuclease. This review contains a summary of recent research on SNM1's cellular and biochemical functions, as well as structural biology studies. In addition, protein structure prediction by the artificial intelligence program AlphaFold provides a different view of the proteins' non-catalytic domain features, which may be used in combination with current results from X-ray crystallography and cryo-EM to understand their mechanism more clearly.
Collapse
|
7
|
Baddock H, Newman J, Yosaatmadja Y, Bielinski M, Schofield C, Gileadi O, McHugh P. A phosphate binding pocket is a key determinant of exo- versus endo-nucleolytic activity in the SNM1 nuclease family. Nucleic Acids Res 2021; 49:9294-9309. [PMID: 34387694 PMCID: PMC8450094 DOI: 10.1093/nar/gkab692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
The SNM1 nucleases which help maintain genome integrity are members of the metallo-β-lactamase (MBL) structural superfamily. Their conserved MBL-β-CASP-fold SNM1 core provides a molecular scaffold forming an active site which coordinates the metal ions required for catalysis. The features that determine SNM1 endo- versus exonuclease activity, and which control substrate selectivity and binding are poorly understood. We describe a structure of SNM1B/Apollo with two nucleotides bound to its active site, resembling the product state of its exonuclease reaction. The structure enables definition of key SNM1B residues that form contacts with DNA and identifies a 5' phosphate binding pocket, which we demonstrate is important in catalysis and which has a key role in determining endo- versus exonucleolytic activity across the SNM1 family. We probed the capacity of SNM1B to digest past sites of common endogenous DNA lesions and find that base modifications planar to the nucleobase can be accommodated due to the open architecture of the active site, but lesions axial to the plane of the nucleobase are not well tolerated due to constriction around the altered base. We propose that SNM1B/Apollo might employ its activity to help remove common oxidative lesions from telomeres.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | | | - Marcin Bielinski
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | - Opher Gileadi
- Centre for Medicines Discovery, University of Oxford, ORCRB, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| |
Collapse
|
8
|
Baddock HT, Yosaatmadja Y, Newman JA, Schofield CJ, Gileadi O, McHugh PJ. The SNM1A DNA repair nuclease. DNA Repair (Amst) 2020; 95:102941. [PMID: 32866775 PMCID: PMC7607226 DOI: 10.1016/j.dnarep.2020.102941] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 01/17/2023]
Abstract
Unrepaired, or misrepaired, DNA damage can contribute to the pathogenesis of a number of conditions, or disease states; thus, DNA damage repair pathways, and the proteins within them, are required for the safeguarding of the genome. Human SNM1A is a 5'-to-3' exonuclease that plays a role in multiple DNA damage repair processes. To date, most data suggest a role of SNM1A in primarily ICL repair: SNM1A deficient cells exhibit hypersensitivity to ICL-inducing agents (e.g. mitomycin C and cisplatin); and both in vivo and in vitro experiments demonstrate SNM1A and XPF-ERCC1 can function together in the 'unhooking' step of ICL repair. SNM1A further interacts with a number of other proteins that contribute to genome integrity outside canonical ICL repair (e.g. PCNA and CSB), and these may play a role in regulating SNM1As function, subcellular localisation, and post-translational modification state. These data also provide further insight into other DNA repair pathways to which SNM1A may contribute. This review aims to discuss all aspects of the exonuclease, SNM1A, and its contribution to DNA damage tolerance.
Collapse
Affiliation(s)
- Hannah T Baddock
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK
| | | | - Joseph A Newman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA, UK
| | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, OX3 7DQ, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, UK.
| |
Collapse
|
9
|
Herwest S, Albers C, Schmiester M, Salewsky B, Hopfenmüller W, Meyer A, Bertram L, Demuth I. The hSNM1B/Apollo variant rs11552449 is associated with cellular sensitivity towards mitomycin C and ionizing radiation. DNA Repair (Amst) 2018; 72:93-98. [DOI: 10.1016/j.dnarep.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/03/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
|
10
|
Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones 2018; 23:303-315. [PMID: 28952019 PMCID: PMC5904076 DOI: 10.1007/s12192-017-0843-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 02/02/2023] Open
Abstract
Heat shock proteins (HSPs), also known as molecular chaperones, participate in important cellular processes, such as protein aggregation, disaggregation, folding, and unfolding. HSPs have cytoprotective functions that are commonly explained by their antiapoptotic role. Their involvement in anticancer drug resistance has been the focus of intense research efforts, and the relationship between HSP induction and DNA repair mechanisms has been in the spotlight during the past decades. Because DNA is permanently subject to damage, many DNA repair pathways are involved in the recognition and removal of a diverse array of DNA lesions. Hence, DNA repair mechanisms are key to maintain genome stability. In addition, the interactome network of HSPs with DNA repair proteins has become an exciting research field and so their use as emerging targets for cancer therapy. This article provides a historical overview of the participation of HSPs in DNA repair mechanisms as part of their molecular chaperone capabilities.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina
| | - Silvina B Nadin
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina.
| |
Collapse
|
11
|
SNM1B/Apollo in the DNA damage response and telomere maintenance. Oncotarget 2018; 8:48398-48409. [PMID: 28430596 PMCID: PMC5564657 DOI: 10.18632/oncotarget.16864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 01/26/2023] Open
Abstract
hSNM1B/Apollo is a member of the highly conserved β-CASP subgroup within the MBL superfamily of proteins. It interacts with several DNA repair proteins and functions within the Fanconi anemia pathway in response to DNA interstrand crosslinks. As a shelterin accessory protein, hSNM1B/Apollo is also vital for the generation and maintenance of telomeric overhangs. In this review, we will summarize studies on hSNM1B/Apollo's function, including its contribution to DNA damage signaling, replication fork maintenance, control of topological stress and telomere protection. Furthermore, we will highlight recent studies illustrating hSNM1B/Apollo's putative role in human disease.
Collapse
|
12
|
Abu-Zhayia ER, Khoury-Haddad H, Guttmann-Raviv N, Serruya R, Jarrous N, Ayoub N. A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks. Sci Rep 2017; 7:1002. [PMID: 28432356 PMCID: PMC5430778 DOI: 10.1038/s41598-017-01185-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
DNA damage response (DDR) is needed to repair damaged DNA for genomic integrity preservation. Defective DDR causes accumulation of deleterious mutations and DNA lesions that can lead to genomic instabilities and carcinogenesis. Identifying new players in the DDR, therefore, is essential to advance the understanding of the molecular mechanisms by which cells keep their genetic material intact. Here, we show that the core protein subunits Rpp29 and Rpp21 of human RNase P complex are implicated in DDR. We demonstrate that Rpp29 and Rpp21 depletion impairs double-strand break (DSB) repair by homology-directed repair (HDR), but has no deleterious effect on the integrity of non-homologous end joining. We also demonstrate that Rpp29 and Rpp21, but not Rpp14, Rpp25 and Rpp38, are rapidly and transiently recruited to laser-microirradiated sites. Rpp29 and Rpp21 bind poly ADP-ribose moieties and are recruited to DNA damage sites in a PARP1-dependent manner. Remarkably, depletion of the catalytic H1 RNA subunit diminishes their recruitment to laser-microirradiated regions. Moreover, RNase P activity is augmented after DNA damage in a PARP1-dependent manner. Altogether, our results describe a previously unrecognized function of the RNase P subunits, Rpp29 and Rpp21, in fine-tuning HDR of DSBs.
Collapse
Affiliation(s)
- Enas R Abu-Zhayia
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hanan Khoury-Haddad
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Noga Guttmann-Raviv
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Raphael Serruya
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel.
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
13
|
DNA Replication Origins and Fork Progression at Mammalian Telomeres. Genes (Basel) 2017; 8:genes8040112. [PMID: 28350373 PMCID: PMC5406859 DOI: 10.3390/genes8040112] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions.
Collapse
|
14
|
The Chemical Biology of Human Metallo-β-Lactamase Fold Proteins. Trends Biochem Sci 2016; 41:338-355. [PMID: 26805042 PMCID: PMC4819959 DOI: 10.1016/j.tibs.2015.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/30/2023]
Abstract
The αββα metallo β-lactamase (MBL) fold (MBLf) was first observed in bacterial enzymes that catalyze the hydrolysis of almost all β-lactam antibiotics, but is now known to be widely distributed. The MBL core protein fold is present in human enzymes with diverse biological roles, including cell detoxification pathways and enabling resistance to clinically important anticancer medicines. Human (h)MBLf enzymes can bind metals, including zinc and iron ions, and catalyze a range of chemically interesting reactions, including both redox (e.g., ETHE1) and hydrolytic processes (e.g., Glyoxalase II, SNM1 nucleases, and CPSF73). With a view to promoting basic research on MBLf enzymes and their medicinal targeting, here we summarize current knowledge of the mechanisms and roles of these important molecules. MBLs are mono- or di-zinc ion-dependent hydrolases that enable bacterial resistance to almost all β-lactam antibiotics. The αββα MBL core fold is widely distributed and supports a range of catalytic activities, including redox reactions. hMBL proteins are a small family of approximately 18 zinc- and iron-dependent proteins with roles in metabolism and/or detoxification and nucleic acid modification. In a notable parallel with the role of bacterial MBLs in antibiotic resistance, some hMBLf enzymes enable resistance to chemotherapy drugs, such as cisplatin and mitomycin C.
Collapse
|
15
|
Allerston CK, Lee SY, Newman JA, Schofield CJ, McHugh PJ, Gileadi O. The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities. Nucleic Acids Res 2015; 43:11047-60. [PMID: 26582912 PMCID: PMC4678830 DOI: 10.1093/nar/gkv1256] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 11/30/2022] Open
Abstract
The human SNM1A and SNM1B/Apollo proteins are members of an extended family of eukaryotic nuclease containing a motif related to the prokaryotic metallo-β-lactamase (MBL) fold. SNM1A is a key exonuclease during replication-dependent and transcription-coupled interstrand crosslink repair, while SNM1B/Apollo is required for maintaining telomeric overhangs. Here, we report the crystal structures of SNM1A and SNM1B at 2.16 Å. While both proteins contain a typical MBL-β-CASP domain, a region of positive charge surrounds the active site of SNM1A, which is absent in SNM1B and explains the greater apparent processivity of SNM1A. The structures of both proteins also reveal a putative, wide DNA-binding groove. Extensive mutagenesis of this groove, coupled with detailed biochemical analysis, identified residues that did not impact on SNM1A catalytic activity, but drastically reduced its processivity. Moreover, we identified a key role for this groove for efficient digestion past DNA interstrand crosslinks, facilitating the key DNA repair reaction catalysed by SNM1A. Together, the architecture and dimensions of this groove, coupled to the surrounding region of high positive charge, explain the remarkable ability of SNM1A to accommodate and efficiently digest highly distorted DNA substrates, such as those containing DNA lesions.
Collapse
Affiliation(s)
- Charles K Allerston
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK
| | - Sook Y Lee
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Joseph A Newman
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Opher Gileadi
- Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
16
|
Parplys AC, Zhao W, Sharma N, Groesser T, Liang F, Maranon DG, Leung SG, Grundt K, Dray E, Idate R, Østvold AC, Schild D, Sung P, Wiese C. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Res 2015; 43:9817-34. [PMID: 26323318 PMCID: PMC4787752 DOI: 10.1093/nar/gkv859] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Torsten Groesser
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Eloïse Dray
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rupa Idate
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
17
|
Fachal L, Dunning AM. From candidate gene studies to GWAS and post-GWAS analyses in breast cancer. Curr Opin Genet Dev 2015; 30:32-41. [PMID: 25727315 DOI: 10.1016/j.gde.2015.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/16/2014] [Accepted: 01/21/2015] [Indexed: 12/31/2022]
Abstract
There are now more than 90 established breast cancer risk loci, with 57 new ones, revealed through genome-wide-association studies (GWAS) during the last two years. Established high, moderate and low penetrance genetic variants currently explain ∼49% of familial breast cancer risk. GWAS-discovered variants account for 14%, and it is estimated that another 1000 yet-to-be-discovered loci could contribute an additional ∼14% of familial risk. Polygenic risk scores can already be used to stratify breast cancer risk in the female population and could improve the targeting of mammographic screening programmes, which are at present largely based on age-specific risks. Fine-scale mapping and functional analyses are revealing candidate causal variants and the molecular mechanisms by which GWAS-hits may act. Better-powered GWAS and genome-wide sequencing projects are likely to continue identifying new breast cancer causal variants.
Collapse
Affiliation(s)
- Laura Fachal
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK; Genomic Medicine Group, CIBERER, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK.
| |
Collapse
|
18
|
Arcas A, Fernández-Capetillo O, Cases I, Rojas AM. Emergence and evolutionary analysis of the human DDR network: implications in comparative genomics and downstream analyses. Mol Biol Evol 2014; 31:940-61. [PMID: 24441036 PMCID: PMC3969565 DOI: 10.1093/molbev/msu046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The DNA damage response (DDR) is a crucial signaling network that preserves the integrity of the genome. This network is an ensemble of distinct but often overlapping subnetworks, where different components fulfill distinct functions in precise spatial and temporal scenarios. To understand how these elements have been assembled together in humans, we performed comparative genomic analyses in 47 selected species to trace back their emergence using systematic phylogenetic analyses and estimated gene ages. The emergence of the contribution of posttranslational modifications to the complex regulation of DDR was also investigated. This is the first time a systematic analysis has focused on the evolution of DDR subnetworks as a whole. Our results indicate that a DDR core, mostly constructed around metabolic activities, appeared soon after the emergence of eukaryotes, and that additional regulatory capacities appeared later through complex evolutionary process. Potential key posttranslational modifications were also in place then, with interacting pairs preferentially appearing at the same evolutionary time, although modifications often led to the subsequent acquisition of new targets afterwards. We also found extensive gene loss in essential modules of the regulatory network in fungi, plants, and arthropods, important for their validation as model organisms for DDR studies.
Collapse
Affiliation(s)
- Aida Arcas
- Computational Cell Biology Group, Institute for Predictive and Personalized Medicine of Cancer, Badalona, Spain
| | | | | | | |
Collapse
|
19
|
Bonetti D, Martina M, Falcettoni M, Longhese MP. Telomere-end processing: mechanisms and regulation. Chromosoma 2013; 123:57-66. [PMID: 24122006 DOI: 10.1007/s00412-013-0440-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Telomeres are specialized nucleoprotein complexes that provide protection to the ends of eukaryotic chromosomes. Telomeric DNA consists of tandemly repeated G-rich sequences that terminate with a 3' single-stranded overhang, which is important for telomere extension by the telomerase enzyme. This structure, as well as most of the proteins that specifically bind double and single-stranded telomeric DNA, are conserved from yeast to humans, suggesting that the mechanisms underlying telomere identity are based on common principles. The telomeric 3' overhang is generated by different events depending on whether the newly synthesized strand is the product of leading- or lagging-strand synthesis. Here, we review the mechanisms that regulate these processes at Saccharomyces cerevisiae and mammalian telomeres.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | | | |
Collapse
|
20
|
Munari FM, Guecheva TN, Bonatto D, Henriques JAP. New features on Pso2 protein family in DNA interstrand cross-link repair and in the maintenance of genomic integrity in Saccharomyces cerevisiae. Fungal Genet Biol 2013; 60:122-32. [PMID: 24076078 DOI: 10.1016/j.fgb.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/11/2013] [Accepted: 09/15/2013] [Indexed: 11/27/2022]
Abstract
Pso2 protein, a member of the highly conserved metallo-β-lactamase (MBL) super family of nucleases, plays a central role in interstrand crosslink repair (ICL) in yeast. Pso2 protein is the founder member of a distinct group within the MBL superfamily, called β-CASP family. Three mammalian orthologs of this protein that act on DNA were identified: SNM1A, SNM1B/Apollo and SNM1C/Artemis. Yeast Pso2 and all three mammalian orthologs proteins have been shown to possess nuclease activity. Besides Pso2, ICL repair involves proteins of several DNA repair pathways. Over the last years, new homologs for human proteins have been identified in yeast. In this review, we will focus on studies clarifying the function of Pso2 protein during ICL repair in yeast, emphasizing the contribution of Brazilian research groups in this topic. New sub-pathways in the mechanisms of ICL repair, such as recently identified conserved Fanconi Anemia pathway in yeast as well as a contribution of non-homologous end joining are discussed.
Collapse
Affiliation(s)
- Fernanda Mosena Munari
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
21
|
Budd ME, Campbell JL. Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres. J Biol Chem 2013; 288:29414-29. [PMID: 23963457 DOI: 10.1074/jbc.m113.472456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3'-GT-overhangs that extend beyond the complementary 5'-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5'-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5'-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.
Collapse
Affiliation(s)
- Martin E Budd
- From Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
22
|
Mason JM, Das I, Arlt M, Patel N, Kraftson S, Glover TW, Sekiguchi JM. The SNM1B/APOLLO DNA nuclease functions in resolution of replication stress and maintenance of common fragile site stability. Hum Mol Genet 2013; 22:4901-13. [PMID: 23863462 DOI: 10.1093/hmg/ddt340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SNM1B/Apollo is a DNA nuclease that has important functions in telomere maintenance and repair of DNA interstrand crosslinks (ICLs) within the Fanconi anemia (FA) pathway. SNM1B is required for efficient localization of key repair proteins, such as the FA protein, FANCD2, to sites of ICL damage and functions epistatically to FANCD2 in cellular survival to ICLs and homology-directed repair. The FA pathway is also activated in response to replication fork stalling. Here, we sought to determine the importance of SNM1B in cellular responses to stalled forks in the absence of a blocking lesion, such as ICLs. We found that depletion of SNM1B results in hypersensitivity to aphidicolin, a DNA polymerase inhibitor that causes replication stress. We observed that the SNM1B nuclease is required for efficient localization of the DNA repair proteins, FANCD2 and BRCA1, to subnuclear foci upon aphidicolin treatment, thereby indicating SNM1B facilitates direct repair of stalled forks. Consistent with a role for SNM1B subsequent to recognition of the lesion, we found that SNM1B is dispensable for upstream events, including activation of ATR-dependent signaling and localization of RPA, γH2AX and the MRE11/RAD50/NBS1 complex to aphidicolin-induced foci. We determined that a major consequence of SNM1B depletion is a marked increase in spontaneous and aphidicolin-induced chromosomal gaps and breaks, including breakage at common fragile sites. Thus, this study provides evidence that SNM1B functions in resolving replication stress and preventing accumulation of genomic damage.
Collapse
|
23
|
Unno J, Takagi M, Piao J, Sugimoto M, Honda F, Maeda D, Masutani M, Kiyono T, Watanabe F, Morio T, Teraoka H, Mizutani S. Artemis-dependent DNA double-strand break formation at stalled replication forks. Cancer Sci 2013; 104:703-10. [PMID: 23465063 DOI: 10.1111/cas.12144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/26/2013] [Accepted: 03/02/2013] [Indexed: 11/28/2022] Open
Abstract
Stalled replication forks undergo DNA double-strand breaks (DSBs) under certain conditions. However, the precise mechanism underlying DSB induction and the cellular response to persistent replication fork stalling are not fully understood. Here we show that, in response to hydroxyurea exposure, DSBs are generated in an Artemis nuclease-dependent manner following prolonged stalling with subsequent activation of the ataxia-telangiectasia mutated (ATM) signaling pathway. The kinase activity of the catalytic subunit of the DNA-dependent protein kinase, a prerequisite for stimulation of the endonuclease activity of Artemis, is also required for DSB generation and subsequent ATM activation. Our findings indicate a novel function of Artemis as a molecular switch that converts stalled replication forks harboring single-stranded gap DNA lesions into DSBs, thereby activating the ATM signaling pathway following prolonged replication fork stalling.
Collapse
Affiliation(s)
- Junya Unno
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
KE SHIZHONG, NI XIAOYAN, ZHANG YUEHUA, WANG YINAN, WU BIN, GAO FENGGUANG. Camptothecin and cisplatin upregulate ABCG2 and MRP2 expression by activating the ATM/NF-κB pathway in lung cancer cells. Int J Oncol 2013; 42:1289-96. [DOI: 10.3892/ijo.2013.1805] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/04/2013] [Indexed: 11/06/2022] Open
|
25
|
Abstract
The protein Snm1B plays a key role in interstrand crosslink (ICL) repair. In a yeast two-hybrid screen we identified the protein PSF2 to bind Snm1B. PSF2 is a member of the GINS complex involved in replication initiation and elongation, and is known to play a role in ICL repair. Snm1B was shown to bind PSF2 in human cells through two regions, strongly to a 144 amino acid N-terminal region and weakly to a second smaller 37 amino acid C-terminal region. Ectopic expression of PSF2 increased the amount of Mus81, a protein component of the endonucleolytic complex involved in ICL repair, co-immunoprecipitating with Snm1B. Moreover, deleting the N-terminal, but not C-terminal region of Snm1B reduced the amount of co-immunoprecipitated Mus81. Conversely, the telomere-binding protein TRF2 competed with PSF2 for binding to the C-terminus of Snm1B, and deletion of this region, but not the N-terminal region, reduced Snm1B chromatin association. We speculate that the N-terminal region of Snm1B forms a complex containing PSF2 and Mus81, while the C-terminal region is important for PSF2-mediated chromatin association.
Collapse
Affiliation(s)
- Jay R. Stringer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher M. Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Duquette ML, Zhu Q, Taylor ER, Tsay AJ, Shi LZ, Berns MW, McGowan CH. CtIP is required to initiate replication-dependent interstrand crosslink repair. PLoS Genet 2012; 8:e1003050. [PMID: 23144634 PMCID: PMC3493458 DOI: 10.1371/journal.pgen.1003050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 09/12/2012] [Indexed: 11/26/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that block the progression of replication and transcription. CtIP is a conserved DNA repair protein that facilitates DNA end resection in the double-strand break (DSB) repair pathway. Here we show that CtIP plays a critical role during initiation of ICL processing in replicating human cells that is distinct from its role in DSB repair. CtIP depletion sensitizes human cells to ICL inducing agents and significantly impairs the accumulation of DNA damage response proteins RPA, ATR, FANCD2, γH2AX, and phosphorylated ATM at sites of laser generated ICLs. In contrast, the appearance of γH2AX and phosphorylated ATM at sites of laser generated double strand breaks (DSBs) is CtIP-independent. We present a model in which CtIP functions early in ICL repair in a BRCA1– and FANCM–dependent manner prior to generation of DSB repair intermediates. One of the most lethal forms of DNA damage is the interstrand crosslink (ICL). An ICL is a chemical bridge between two nucleotides on complementary strands of DNA. An unrepaired ICL is toxic because it poses an unsurpassable block to DNA replication and transcription. Certain forms of cancer treatment exploit the toxicity of ICL generating agents to target rapidly dividing cells. Sensitivity to crosslinking agents is a defining characteristic of Fanconi Anemia (FA), a hereditary syndrome characterized by an increased risk in cancer development and hematopoietic abnormalities frequently resulting in bone marrow failure. The mechanism underlying ICL repair is important to human health; however, the sequence of molecular events governing ICL repair is poorly understood. Here we describe how the repair protein CtIP functions to initiate ICL repair in replicating cells in a manner distinct from its previously described role in other forms of DNA repair.
Collapse
Affiliation(s)
- Michelle L Duquette
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gomez DE, Armando RG, Farina HG, Menna PL, Cerrudo CS, Ghiringhelli PD, Alonso DF. Telomere structure and telomerase in health and disease (review). Int J Oncol 2012; 41:1561-9. [PMID: 22941386 PMCID: PMC3583695 DOI: 10.3892/ijo.2012.1611] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/24/2012] [Indexed: 11/24/2022] Open
Abstract
Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells, proliferation potential is strictly limited and senescence follows approximately 50–70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. Undoubtedly, DNA polymerase is not capable of completely copying DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis and cell death. However, in tumor cells the system of telomere length maintenance is activated. Much work has been done regarding the complex telomere/telomerase as a unique target, highly specific in cancer cells. Telomeres have additional proteins that regulate the binding of telomerase. Telomerase, also associates with a number of proteins forming the sheltering complex having a central role in telomerase activity. This review focuses on the structure and function of the telomere/telomerase complex and its altered behavior leading to disease, mainly cancer. Although telomerase therapeutics are not approved yet for clinical use, we can assume that based on the promising in vitro and in vivo results and successful clinical trials, it can be predicted that telomerase therapeutics will be utilized soon in the combat against malignancies and degenerative diseases. The active search for modulators is justified, because the telomere/telomerase system is an extremely promising target offering possibilities to decrease or increase the viability of the cell for therapeutic purposes.
Collapse
Affiliation(s)
- Daniel E Gomez
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
28
|
Salewsky B, Schmiester M, Schindler D, Digweed M, Demuth I. The nuclease hSNM1B/Apollo is linked to the Fanconi anemia pathway via its interaction with FANCP/SLX4. Hum Mol Genet 2012; 21:4948-56. [DOI: 10.1093/hmg/dds338] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
McHugh PJ, Ward TA, Chovanec M. A prototypical Fanconi anemia pathway in lower eukaryotes? Cell Cycle 2012; 11:3739-44. [PMID: 22895051 DOI: 10.4161/cc.21727] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA interstrand cross-links (ICLs) present a major challenge to cells, preventing separation of the two strands of duplex DNA and blocking major chromosome transactions, including transcription and replication. Due to the complexity of removing this form of DNA damage, no single DNA repair pathway has been shown to be capable of eradicating ICLs. In eukaryotes, ICL repair is a complex process, principally because several repair pathways compete for ICL repair intermediates in a strictly cell cycle-dependent manner. Yeast cells require a combination of nucleotide excision repair, homologous recombination repair and postreplication repair/translesion DNA synthesis to remove ICLs. There are also a number of additional ICL repair factors originally identified in the budding yeast Saccharomyces cerevisiae, called Pso1 though 10, of which Pso2 has an apparently dedicated role in ICL repair. Mammalian cells respond to ICLs by a complex network guided by factors mutated in the inherited cancer-prone disorder Fanconi anemia (FA). Although enormous progress has been made over recent years in identifying and characterizing FA factors as well as in elucidating certain aspects of the biology of FA, the mechanistic details of the ICL repair defects in FA patients remain unknown. Dissection of the FA DNA damage response pathway has, in part, been limited by the absence of FA-like pathways in highly tractable model organisms, such as yeast. Although S. cerevisiae possesses putative homologs of the FA factors FANCM, FANCJ and FANCP (Mph1, Chl1 and Slx4, respectively) as well as of the FANCM-associated proteins MHF1 and MHF2 (Mhf1 and Mhf2), the corresponding mutants display no significant increase in sensitivity to ICLs. Nevertheless, we and others have recently shown that these FA homologs, along with several other factors, control an ICL repair pathway, which has an overlapping or redundant role with a Pso2-controlled pathway. This pathway acts in S-phase and serves to prevent ICL-stalled replication forks from collapsing into DNA double-strand breaks.
Collapse
Affiliation(s)
- Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
30
|
A DNA-damage selective role for BRCA1 E3 ligase in claspin ubiquitylation, CHK1 activation, and DNA repair. Curr Biol 2012; 22:1659-66. [PMID: 22863316 DOI: 10.1016/j.cub.2012.07.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/09/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND The breast and ovarian cancer suppressor BRCA1 is essential for cellular responses to DNA damage. It heterodimerizes with BARD1 to acquire an E3 ubiquitin (Ub) ligase activity that is often compromised by cancer-associated mutations. Neither the significance of this activity to damage responses, nor a relevant in vivo substrate, is clear. RESULTS We have separated DNA-damage responses requiring the BRCA1 E3 ligase from those independent of it, using a gene-targeted point mutation in vertebrate DT40 cells that abrogates BRCA1's catalytic activity without perturbing BARD1 binding. We show that BRCA1 ubiquitylates claspin, an essential coactivator of the CHK1 checkpoint kinase, after topoisomerase inhibition, but not DNA crosslinking by mitomycin C. BRCA1 E3 inactivation decreases chromatin-bound claspin levels and impairs homology-directed DNA repair by interrupting signal transduction from the damage-activated ATR kinase to its effector, CHK1. CONCLUSIONS Our findings identify claspin as an in vivo substrate for the BRCA1 E3 ligase and suggest that its modification selectively triggers CHK1 activation for the homology-directed repair of a subset of genotoxic lesions. This mechanism unexpectedly defines an essential but selective function for BRCA1 E3 ligase activity in cellular responses to DNA damage.
Collapse
|
31
|
Wu P, Takai H, de Lange T. Telomeric 3' overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 2012; 150:39-52. [PMID: 22748632 DOI: 10.1016/j.cell.2012.05.026] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/12/2012] [Accepted: 05/01/2012] [Indexed: 11/18/2022]
Abstract
A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout the cell cycle and at leading- and lagging-end telomeres. Apollo, a nuclease bound to the shelterin subunit TRF2, initiates formation of the 3' overhang at leading-, but not lagging-end telomeres. Hyperresection by Apollo is blocked at both ends by the shelterin protein POT1b. Exo1 extensively resects both telomere ends, generating transient long 3' overhangs in S/G2. CST/AAF, a DNA polα.primase accessory factor, binds POT1b and shortens the extended overhangs produced by Exo1, likely through fill-in synthesis. 3' overhang formation is thus a multistep, shelterin-controlled process, ensuring functional telomeric overhangs at chromosome ends.
Collapse
Affiliation(s)
- Peng Wu
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
32
|
Sengerová B, Allerston CK, Abu M, Lee SY, Hartley J, Kiakos K, Schofield CJ, Hartley JA, Gileadi O, McHugh PJ. Characterization of the human SNM1A and SNM1B/Apollo DNA repair exonucleases. J Biol Chem 2012; 287:26254-67. [PMID: 22692201 PMCID: PMC3406710 DOI: 10.1074/jbc.m112.367243] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two proteins. Both SNM1A and SNM1B digest double-stranded and single-stranded DNA with a 5'-to-3' directionality in a reaction that is stimulated by divalent cations, and both nucleases are inhibited by the zinc chelator o-phenanthroline. We find that SNM1A has greater affinity for single-stranded DNA over double-stranded DNA that is not observed with SNM1B. Although both proteins demonstrate a low level of processivity on low molecular weight DNA oligonucleotide substrates, when presented with high molecular weight DNA, SNM1A alone is rendered much more active, being capable of digesting kilobase-long stretches of DNA. Both proteins can digest past ICLs induced by the non-distorting minor groove cross-linking agent SJG-136, albeit with SNM1A showing a greater capacity to achieve this. This is consistent with the proposal that SNM1A and SNM1B might exhibit some redundancy in ICL repair. Together, our work establishes differences in the substrate selectivities of SNM1A and SNM1B that are likely to be relevant to their in vivo roles and which might be exploited in the development of selective inhibitors.
Collapse
Affiliation(s)
- Blanka Sengerová
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sengerová B, Wang AT, McHugh PJ. Orchestrating the nucleases involved in DNA interstrand cross-link (ICL) repair. Cell Cycle 2011; 10:3999-4008. [PMID: 22101340 DOI: 10.4161/cc.10.23.18385] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DNA interstrand cross-links (ICLs) pose a significant threat to genomic and cellular integrity by blocking essential cellular processes, including replication and transcription. In mammalian cells, much ICL repair occurs in association with DNA replication during S phase, following the stalling of a replication fork at the block caused by an ICL lesion. Here, we review recent work showing that the XPF-ERCC1 endonuclease and the hSNM1A exonuclease act in the same pathway, together with SLX4, to initiate ICL repair, with the MUS81-EME1 fork incision activity becoming important in the absence of the XPF-SNM1A-SLX4-dependent pathway. Another nuclease, the Fanconi anemia-associated nuclease (FAN1), has recently been implicated in the repair of ICLs, and we discuss the possible ways in which the activities of different nucleases at the ICL-stalled replication fork may be coordinated. In relation to this, we briefly speculate on the possible role of SLX4, which contains XPF and MUS81- interacting domains, in the coordination of ICL repair nucleases.
Collapse
Affiliation(s)
- Blanka Sengerová
- Department of Oncology, Weatherall Institute of Molecular Medicine,University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
34
|
Abstract
Many types of DNA structures are generated in response to DNA damage, repair and recombination that require processing via specialized nucleases. DNA hairpins represent one such class of structures formed during V(D)J recombination, palindrome extrusion, DNA transposition and some types of double-strand breaks. Here we present biochemical and genetic evidence to suggest that Pso2 is a robust DNA hairpin opening nuclease in budding yeast. Pso2 (SNM1A in mammals) belongs to a small group of proteins thought to function predominantly during interstrand crosslink (ICL) repair. In this study, we characterized the nuclease activity of Pso2 toward a variety of DNA substrates. Unexpectedly, Pso2 was found to be an efficient, structure-specific DNA hairpin opening endonuclease. This activity was further shown to be required in vivo for repair of chromosomal breaks harboring closed hairpin ends. These findings provide the first evidence that Pso2 may function outside ICL repair and open the possibility that Pso2 may function at least in part during ICL repair by processing DNA intermediates including DNA hairpins or hairpin-like structures.
Collapse
Affiliation(s)
- Tracy Tiefenbach
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | |
Collapse
|
35
|
Wang AT, Sengerová B, Cattell E, Inagawa T, Hartley JM, Kiakos K, Burgess-Brown NA, Swift LP, Enzlin JH, Schofield CJ, Gileadi O, Hartley JA, McHugh PJ. Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev 2011; 25:1859-70. [PMID: 21896658 PMCID: PMC3175721 DOI: 10.1101/gad.15699211] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/20/2011] [Indexed: 12/24/2022]
Abstract
One of the major DNA interstrand cross-link (ICL) repair pathways in mammalian cells is coupled to replication, but the mechanistic roles of the critical factors involved remain largely elusive. Here, we show that purified human SNM1A (hSNM1A), which exhibits a 5'-3' exonuclease activity, can load from a single DNA nick and digest past an ICL on its substrate strand. hSNM1A-depleted cells are ICL-sensitive and accumulate replication-associated DNA double-strand breaks (DSBs), akin to ERCC1-depleted cells. These DSBs are Mus81-induced, indicating that replication fork cleavage by Mus81 results from the failure of the hSNM1A- and XPF-ERCC1-dependent ICL repair pathway. Our results reveal how collaboration between hSNM1A and XPF-ERCC1 is necessary to initiate ICL repair in replicating human cells.
Collapse
Affiliation(s)
- Anderson T. Wang
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Blanka Sengerová
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Emma Cattell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Takabumi Inagawa
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Janet M. Hartley
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Konstantinos Kiakos
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | | | - Lonnie P. Swift
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Jacqueline H. Enzlin
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - John A. Hartley
- Cancer Research UK Drug–DNA Interactions Research Group, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Peter J. McHugh
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
36
|
Mason JM, Sekiguchi JM. Snm1B/Apollo functions in the Fanconi anemia pathway in response to DNA interstrand crosslinks. Hum Mol Genet 2011; 20:2549-59. [PMID: 21478198 DOI: 10.1093/hmg/ddr153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia (FA) is an inherited chromosomal instability disorder characterized by childhood aplastic anemia, developmental abnormalities and cancer predisposition. One of the hallmark phenotypes of FA is cellular hypersensitivity to agents that induce DNA interstrand crosslinks (ICLs), such as mitomycin C (MMC). FA is caused by mutation in at least 14 genes which function in the resolution of ICLs during replication. The FA proteins act within the context of a protein network in coordination with multiple repair factors that function in distinct pathways. SNM1B/Apollo is a member of metallo-β-lactamase/βCASP family of nucleases and has been demonstrated to function in ICL repair. However, the relationship between SNM1B and the FA protein network is not known. In the current study, we establish that SNM1B functions epistatically to the central FA factor, FANCD2, in cellular survival after ICL damage and homology-directed repair of DNA double-strand breaks. We also demonstrate that MMC-induced chromosomal anomalies are increased in SNM1B-depleted cells, and this phenotype is not further exacerbated upon depletion of either FANCD2 or another key FA protein, FANCI. Furthermore, we find that SNM1B is required for proper localization of critical repair factors, including FANCD2, BRCA1 and RAD51, to MMC-induced subnuclear foci. Our findings demonstrate that SNM1B functions within the FA pathway during the repair of ICL damage.
Collapse
Affiliation(s)
- Jennifer M Mason
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
37
|
Diotti R, Loayza D. Shelterin complex and associated factors at human telomeres. Nucleus 2011; 2:119-35. [PMID: 21738835 PMCID: PMC3127094 DOI: 10.4161/nucl.2.2.15135] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/09/2011] [Accepted: 02/11/2011] [Indexed: 12/17/2022] Open
Abstract
The processes regulating telomere function have major impacts on fundamental issues in human cancer biology. First, active telomere maintenance is almost always required for full oncogenic transformation of human cells, through cellular immortalization by endowment of an infinite replicative potential. Second, the attrition that telomeres undergo upon replication is responsible for the finite replicative life span of cells in culture, a process called senescence, which is of paramount importance for tumor suppression in vivo. The process of telomere-based senescence is intimately coupled to the induction of a DNA damage response emanating from telomeres, which can be elicited by both the ATM and ATR dependent pathways. At telomeres, the shelterin complex is constituted by a group of six proteins which assembles quantitatively along the telomere tract, and imparts both telomere maintenance and telomere protection. Shelterin is known to regulate the action of telomerase, and to prevent inappropriate DNA damage responses at chromosome ends, mostly through inhibition of ATM and ATR. The roles of shelterin have increasingly been associated with transient interactions with downstream factors that are not associated quantitatively or stably with telomeres. Here, some of the important known interactions between shelterin and these associated factors and their interplay to mediate telomere functions are reviewed.
Collapse
Affiliation(s)
- Raffaella Diotti
- Department of Biological Sciences, Hunter College, New York, NY, USA
| | | |
Collapse
|
38
|
Akhter S, Lam YC, Chang S, Legerski RJ. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development. Aging Cell 2010; 9:1047-56. [PMID: 20854421 DOI: 10.1111/j.1474-9726.2010.00631.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice.
Collapse
Affiliation(s)
- Shamima Akhter
- Department of Genetics, The UT MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
39
|
Yan Y, Akhter S, Zhang X, Legerski R. The multifunctional SNM1 gene family: not just nucleases. Future Oncol 2010; 6:1015-29. [PMID: 20528238 DOI: 10.2217/fon.10.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-beta-lactamase and beta-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis.
Collapse
Affiliation(s)
- Yiyi Yan
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
40
|
Ye J, Lenain C, Bauwens S, Rizzo A, Saint-Léger A, Poulet A, Benarroch D, Magdinier F, Morere J, Amiard S, Verhoeyen E, Britton S, Calsou P, Salles B, Bizard A, Nadal M, Salvati E, Sabatier L, Wu Y, Biroccio A, Londoño-Vallejo A, Giraud-Panis MJ, Gilson E. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 2010; 142:230-42. [PMID: 20655466 DOI: 10.1016/j.cell.2010.05.032] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 12/21/2009] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres.
Collapse
Affiliation(s)
- Jing Ye
- Shanghai Ruijin Hospital, School of Medicine of Shanghai Jiaotong University, 200025 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Apollo contributes to G overhang maintenance and protects leading-end telomeres. Mol Cell 2010; 39:606-17. [PMID: 20619712 DOI: 10.1016/j.molcel.2010.06.031] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/14/2010] [Accepted: 06/24/2010] [Indexed: 12/19/2022]
Abstract
Mammalian telomeres contain a single-stranded 3' overhang that is thought to mediate telomere protection. Here we identify the TRF2-interacting factor Apollo as a nuclease that contributes to the generation/maintenance of this overhang. The function of mouse Apollo was determined using Cre-mediated gene deletion, complementation with Apollo mutants, and the TRF2-F120A mutant that cannot bind Apollo. Cells lacking Apollo activated the ATM kinase at their telomeres in S phase and showed leading-end telomere fusions. These telomere dysfunction phenotypes were accompanied by a reduction in the telomeric overhang signal. The telomeric functions of Apollo required its TRF2-interaction and nuclease motifs. Thus, TRF2 recruits the Apollo nuclease to process telomere ends synthesized by leading-strand DNA synthesis, thereby creating a terminal structure that avoids ATM activation and resists end-joining. These data establish that the telomeric overhang is required for the protection of telomeres from the DNA damage response.
Collapse
|
42
|
Rahn JJ, Adair GM, Nairn RS. Multiple roles of ERCC1-XPF in mammalian interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:567-581. [PMID: 20658648 DOI: 10.1002/em.20583] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
DNA interstrand crosslinks (ICLs) are among the most deleterious cytotoxic lesions encountered by cells, mainly due to the covalent linkage these lesions create between the two strands of DNA which effectively blocks replication and transcription. Although ICL repair in mammalian cells is not fully understood, processing of these lesions is thought to begin by "unhooking" at the site of the damaged base accompanied by the generation of a double strand break and ultimately repair through translesion synthesis and homologous recombination. A key player in this repair process is the heterodimeric protein complex ERCC1-XPF. Although some models of ICL repair restrict ERCC1-XPF activity to the unhooking step, recent data suggest that this protein complex acts in additional downstream steps. Here, we review the evidence implicating ERCC1-XPF in multiple steps of ICL repair.
Collapse
Affiliation(s)
- Jennifer J Rahn
- Department of Carcinogenesis, Science Park-Research Division, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957, USA.
| | | | | |
Collapse
|
43
|
Legerski RJ. Repair of DNA interstrand cross-links during S phase of the mammalian cell cycle. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:540-551. [PMID: 20658646 PMCID: PMC2911997 DOI: 10.1002/em.20566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
DNA interstrand cross-linking (ICL) agents are widely used in anticancer chemotherapy regimens, yet our understanding of the DNA repair mechanisms by which these lesions are removed from the genome remains incomplete. This is at least in part due to the enormously complicated nature and variety of the biochemical pathways that operate on these complex lesions. In this review, we have focused specifically on the S-phase pathway of ICL repair in mammalian cells, which appears to be the major mechanism by which these lesions are removed in cycling cells. The various stages and components of this pathway are discussed, and a putative molecular model is presented. In addition, we propose an explanation as to how this pathway can lead to the observed high levels of sister chromatid exchanges known to be induced by ICLs.
Collapse
Affiliation(s)
- Randy J Legerski
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
44
|
Ho TV, Schärer OD. Translesion DNA synthesis polymerases in DNA interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:552-566. [PMID: 20658647 DOI: 10.1002/em.20573] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
DNA interstrand crosslinks (ICLs) are induced by a number of bifunctional antitumor drugs such as cisplatin, mitomycin C, or the nitrogen mustards as well as endogenous agents formed by lipid peroxidation. The repair of ICLs requires the coordinated interplay of a number of genome maintenance pathways, leading to the removal of ICLs through at least two distinct mechanisms. The major pathway of ICL repair is dependent on replication, homologous recombination, and the Fanconi anemia (FA) pathway, whereas a minor, G0/G1-specific and recombination-independent pathway depends on nucleotide excision repair. A central step in both pathways in vertebrates is translesion synthesis (TLS) and mutants in the TLS polymerases Rev1 and Pol zeta are exquisitely sensitive to crosslinking agents. Here, we review the involvement of Rev1 and Pol zeta as well as additional TLS polymerases, in particular, Pol eta, Pol kappa, Pol iota, and Pol nu, in ICL repair. Biochemical studies suggest that multiple TLS polymerases have the ability to bypass ICLs and that the extent ofbypass depends upon the structure as well as the extent of endo- or exonucleolytic processing of the ICL. As has been observed for lesions that affect only one strand of DNA, TLS polymerases are recruited by ubiquitinated proliferating nuclear antigen (PCNA) to repair ICLs in the G0/G1 pathway. By contrast, this data suggest that a different mechanism involving the FA pathway is operative in coordinating TLS in the context of replication-dependent ICL repair.
Collapse
Affiliation(s)
- The Vinh Ho
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | | |
Collapse
|
45
|
Cattell E, Sengerová B, McHugh PJ. The SNM1/Pso2 family of ICL repair nucleases: from yeast to man. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:635-645. [PMID: 20175117 DOI: 10.1002/em.20556] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Efficient interstrand crosslink (ICL) repair in yeast depends on the Pso2/Snm1 protein. Pso2 is a member of the highly conserved metallo-beta-lactamase structural family of nucleases. Mammalian cells possess three SNM1/Pso2 related proteins, SNM1A, SNM1B/Apollo, and SNM1C/Artemis. Evidence that SNM1A and SNM1B contribute to ICL repair is mounting, whereas Artemis appears to primarily contribute to non-ICL repair pathways, particularly some double-strand break repair events. Yeast Pso2 and all three mammalian SNM1-family proteins have been shown to possess nuclease activity. Here, we review the biochemical, genetic, and cellular evidence for the SNM1 family as DNA repair factors, focusing on ICL repair.
Collapse
Affiliation(s)
- Emma Cattell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
46
|
SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair. EMBO J 2010; 29:2230-41. [PMID: 20551906 DOI: 10.1038/emboj.2010.58] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/19/2010] [Indexed: 11/08/2022] Open
Abstract
Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo's conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo(-/-)ATM(-/-) MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5'-3' exonuclease function of SNM1B/Apollo in the generation of 3' single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway.
Collapse
|
47
|
Kurosawa A, Adachi N. Functions and regulation of Artemis: a goddess in the maintenance of genome integrity. JOURNAL OF RADIATION RESEARCH 2010; 51:503-509. [PMID: 20543526 DOI: 10.1269/jrr.10017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Artemis is a structure-specific endonuclease when associated with and phosphorylated by DNA-dependent protein kinase catalytic subunit. This structure-specific endonuclease is responsible for the resolution of hairpin coding ends in V(D)J recombination. In DNA double-strand break repair, Artemis is implicated in the end-processing step of the non-homologous end-joining (NHEJ) pathway. Recently, we have demonstrated that the involvement of Artemis in NHEJ depends on the type of DNA damage. Interestingly, recent evidence suggests that the end-processing activity is not the only function of Artemis. Indeed, Artemis is rapidly phosphorylated by ataxia telangiectasia mutated in response to DNA damage, and such phosphorylation of Artemis appears to be involved in the regulation of cell cycle checkpoints. These findings suggest that Artemis is a multifunctional protein participating in the maintenance of genome integrity at two distinct levels; one at the end processing step of NHEJ, and the other at the signaling pathway of cell cycle regulation. Therefore, understanding Artemis function may give us profound insights into the DNA repair network. In this review, we summarize the functions and regulation of Artemis.
Collapse
Affiliation(s)
- Aya Kurosawa
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan.
| | | |
Collapse
|
48
|
Function of Apollo (SNM1B) at telomere highlighted by a splice variant identified in a patient with Hoyeraal-Hreidarsson syndrome. Proc Natl Acad Sci U S A 2010; 107:10097-102. [PMID: 20479256 DOI: 10.1073/pnas.0914918107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telomeres, the protein-DNA complexes at the ends of linear chromosomes, are protected and regulated by the shelterin molecules, the telomerase complex, and other accessory factors, among which is Apollo, a DNA repair factor of the beta-lactamase/beta-CASP family. Impaired telomere protection in humans causes dyskeratosis congenita and Hoyeraal-Hreidarsson (HH) syndrome, characterized by premature aging, bone marrow failure, and immunodeficiency. We identified a unique Apollo splice variant (designated Apollo-Delta) in fibroblasts from a patient with HH syndrome. Apollo-Delta generates a dominant negative form of Apollo lacking the telomeric repeat-binding factor homology (TRFH)-binding motif (TBM) required for interaction with the shelterin TRF2 at telomeres. Apollo-Delta hampers the proper replication of telomeres, leading to major telomeric dysfunction and cellular senescence, but maintains its DNA interstrand cross-link repair function in the whole genome. These results identify Apollo as a crucial actor in telomere maintenance in vivo, independent of its function as a general DNA repair factor.
Collapse
|
49
|
Influence of TEGDMA on the mammalian cell cycle in comparison with chemotherapeutic agents. Dent Mater 2010; 26:232-41. [DOI: 10.1016/j.dental.2009.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/09/2009] [Accepted: 10/16/2009] [Indexed: 01/08/2023]
|
50
|
Muniandy PA, Liu J, Majumdar A, Liu ST, Seidman MM. DNA interstrand crosslink repair in mammalian cells: step by step. Crit Rev Biochem Mol Biol 2010; 45:23-49. [PMID: 20039786 PMCID: PMC2824768 DOI: 10.3109/10409230903501819] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstrand DNA crosslinks (ICLs) are formed by natural products of metabolism and by chemotherapeutic reagents. Work in E. coli identified a two cycle repair scheme involving incisions on one strand on either side of the ICL (unhooking) producing a gapped intermediate with the incised oligonucleotide attached to the intact strand. The gap is filled by recombinational repair or lesion bypass synthesis. The remaining monoadduct is then removed by nucleotide excision repair (NER). Despite considerable effort, our understanding of each step in mammalian cells is still quite limited. In part this reflects the variety of crosslinking compounds, each with distinct structural features, used by different investigators. Also, multiple repair pathways are involved, variably operative during the cell cycle. G(1) phase repair requires functions from NER, although the mechanism of recognition has not been determined. Repair can be initiated by encounters with the transcriptional apparatus, or a replication fork. In the case of the latter, the reconstruction of a replication fork, stalled or broken by collision with an ICL, adds to the complexity of the repair process. The enzymology of unhooking, the identity of the lesion bypass polymerases required to fill the first repair gap, and the functions involved in the second repair cycle are all subjects of active inquiry. Here we will review current understanding of each step in ICL repair in mammalian cells.
Collapse
Affiliation(s)
- Parameswary A Muniandy
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|