1
|
Carlock C, Bai Y, Paige-Hood A, Li Q, Nguele Meke F, Zhang ZY. PRL2 inhibition elevates PTEN protein and ameliorates progression of acute myeloid leukemia. JCI Insight 2023; 8:e170065. [PMID: 37665633 PMCID: PMC10619439 DOI: 10.1172/jci.insight.170065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Overexpression of phosphatases of regenerating liver 2 (PRL2), detected in numerous diverse cancers, is often associated with increased severity and poor patient prognosis. PRL2-catalyzed tyrosine dephosphorylation of the tumor suppressor PTEN results in increased PTEN degradation and has been identified as a mechanism underlying PRL2 oncogenic activity. Overexpression of PRL2, coincident with reduced PTEN protein, is frequently observed in patients with acute myeloid leukemia (AML). In the current study, a PTEN-knockdown AML animal model was generated to assess the effect of conditional PRL2 inhibition on the level of PTEN protein and the development and progression of AML. Inhibition of PRL2 resulted in a significant increase in median animal survival, from 40 weeks to greater than 60 weeks. The prolonged survival reflected delayed expansion of aberrantly differentiated hematopoietic stem cells into leukemia blasts, resulting in extended time required for clinically relevant leukemia blast accumulation in the BM niche. Leukemia blast suppression following PRL2 inhibition was correlated with an increase in PTEN and downregulation of AKT/mTOR-regulated pathways. These observations directly established, in a disease model, the viability of PRL2 inhibition as a therapeutic strategy for improving clinical outcomes in AML and potentially other PTEN-deficient cancers by slowing cancer progression.
Collapse
Affiliation(s)
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology
| | | | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology
- Department of Chemistry
- Institute for Cancer Research, and
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Fisher CL, Dillon R, Anguita E, Morris-Rosendahl DJ, Awan AR. A Novel Bead-Capture Nanopore Sequencing Method for Large Structural Rearrangement Detection in Cancer. J Mol Diagn 2022; 24:1264-1278. [PMID: 36243290 DOI: 10.1016/j.jmoldx.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Rapid, cost-effective genomic stratification of structural rearrangements in cancer is often of vital importance when determining treatment; however, existing diagnostic cytogenetic and molecular testing fails to deliver the required speed when deployed at scale. Next-generation sequencing-based methods are widely used, but these can lack sensitivity and require batching of samples to be cost-effective, with long turnaround times. Here we present a novel method for rearrangement detection from genomic DNA based on third-generation long-read sequencing that overcomes these time and cost issues. The utility of this approach for the genomic stratification of patients with acute myeloid leukemia is shown based on detection of four of the most prevalent structural rearrangements. The method not only determines the precise genomic breakpoint for each expected rearrangement but also discovers and validates novel translocations in one-third of the tested samples, 80% of which involve known oncogenes. This method may prove to be a powerful tool for the diagnosis, genomic stratification, and characterization of cancers.
Collapse
Affiliation(s)
- Chloe L Fisher
- Genomics Innovation Unit, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Richard Dillon
- Department of Medical and Molecular Genetics King's College London, London, United Kingdom; Department of Haematology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Eduardo Anguita
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos, Hospital Clínico San Carlos, Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy's and St Thomas' NHS Trust, London, United Kingdom; Molecular Genetics, NHLI, Imperial College London, London, United Kingdom
| | - Ali R Awan
- Genomics Innovation Unit, Guy's and St Thomas' NHS Trust, London, United Kingdom; Comprehensive Cancer Centre, King's College London, London, United Kingdom.
| |
Collapse
|
3
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Comparison of clonal architecture between primary and immunodeficient mouse-engrafted acute myeloid leukemia cells. Nat Commun 2022; 13:1624. [PMID: 35338146 PMCID: PMC8956585 DOI: 10.1038/s41467-022-29304-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2022] [Indexed: 01/23/2023] Open
Abstract
Patient-derived xenografts (PDX) are widely used as human cancer models. Previous studies demonstrated clonal discordance between PDX and primary cells. However, in acute myeloid leukemia (AML)-PDX models, the significance of the clonal dynamics occurring in PDX remains unclear. By evaluating changes in the variant allele frequencies (VAF) of somatic mutations in serial samples of paired primary AML and their PDX bone marrow cells, we identify the skewing engraftment of relapsed or refractory (R/R) AML clones in 57% of PDX models generated from multiclonal AML cells at diagnosis, even if R/R clones are minor at <5% of VAF in patients. The event-free survival rate of patients whose AML cells successfully engraft in PDX models is consistently lower than that of patients with engraftment failure. We herein demonstrate that primary AML cells including potentially chemotherapy-resistant clones dominantly engraft in AML-PDX models and they enrich pre-existing treatment-resistant subclones.
Collapse
|
5
|
Al Outa A, Abubaker D, Madi J, Nasr R, Shirinian M. The Leukemic Fly: Promises and Challenges. Cells 2020; 9:E1737. [PMID: 32708107 PMCID: PMC7409271 DOI: 10.3390/cells9071737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
Leukemia involves different types of blood cancers, which lead to significant mortality and morbidity. Murine models of leukemia have been instrumental in understanding the biology of the disease and identifying therapeutics. However, such models are time consuming and expensive in high throughput genetic and drug screening. Drosophilamelanogaster has emerged as an invaluable in vivo model for studying different diseases, including cancer. Fruit flies possess several hematopoietic processes and compartments that are in close resemblance to their mammalian counterparts. A number of studies succeeded in characterizing the fly's response upon the expression of human leukemogenic proteins in hematopoietic and non-hematopoietic tissues. Moreover, some of these studies showed that these models are amenable to genetic screening. However, none were reported to be tested for drug screening. In this review, we describe the Drosophila hematopoietic system, briefly focusing on leukemic diseases in which fruit flies have been used. We discuss myeloid and lymphoid leukemia fruit fly models and we further highlight their roles for future therapeutic screening. In conclusion, fruit fly leukemia models constitute an interesting area which could speed up the process of integrating new therapeutics when complemented with mammalian models.
Collapse
Affiliation(s)
- Amani Al Outa
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Dana Abubaker
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Joelle Madi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
6
|
Kurihara M, Komatsu K, Awane R, Inoue YH. Loss of Histone Locus Bodies in the Mature Hemocytes of Larval Lymph Gland Result in Hyperplasia of the Tissue in mxc Mutants of Drosophila. Int J Mol Sci 2020; 21:E1586. [PMID: 32111032 PMCID: PMC7084650 DOI: 10.3390/ijms21051586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
Mutations in the multi sex combs (mxc) gene in Drosophila results in malignant hyperplasia in larval hematopoietic tissues, called lymph glands (LG). mxc encodes a component of the histone locus body (HLB) that is essential for cell cycle-dependent transcription and processing of histone mRNAs. The mammalian nuclear protein ataxia-telangiectasia (NPAT) gene, encoded by the responsible gene for ataxia telangiectasia, is a functional Mxc orthologue. However, their roles in tumorigenesis are unclear. Genetic analyses of the mxc mutants and larvae having LG-specific depletion revealed that a reduced activity of the gene resulted in the hyperplasia, which is caused by hyper-proliferation of immature LG cells. The depletion of mxc in mature hemocytes of the LG resulted in the hyperplasia. Furthermore, the inhibition of HLB formation was required for LG hyperplasia. In the mutant larvae, the total mRNA levels of the five canonical histones decreased, and abnormal forms of polyadenylated histone mRNAs, detected rarely in normal larvae, were generated. The ectopic expression of the polyadenylated mRNAs was sufficient for the reproduction of the hyperplasia. The loss of HLB function, especially 3-end processing of histone mRNAs, is critical for malignant LG hyperplasia in this leukemia model in Drosophila. We propose that mxc is involved in the activation to induce adenosine deaminase-related growth factor A (Adgf-A), which suppresses immature cell proliferation in LG.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan; (M.K.); (K.K.); (R.A.)
| |
Collapse
|
7
|
Noguera NI, Catalano G, Banella C, Divona M, Faraoni I, Ottone T, Arcese W, Voso MT. Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies. Cancers (Basel) 2019; 11:cancers11101591. [PMID: 31635329 PMCID: PMC6826966 DOI: 10.3390/cancers11101591] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
This review highlights new findings that have deepened our understanding of the mechanisms of leukemogenesis, therapy and resistance in acute promyelocytic leukemia (APL). Promyelocytic leukemia-retinoic acid receptor α (PML-RARa) sets the cellular landscape of acute promyelocytic leukemia (APL) by repressing the transcription of RARa target genes and disrupting PML-NBs. The RAR receptors control the homeostasis of tissue growth, modeling and regeneration, and PML-NBs are involved in self-renewal of normal and cancer stem cells, DNA damage response, senescence and stress response. The additional somatic mutations in APL mainly involve FLT3, WT1, NRAS, KRAS, ARID1B and ARID1A genes. The treatment outcomes in patients with newly diagnosed APL improved dramatically since the advent of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). ATRA activates the transcription of blocked genes and degrades PML-RARα, while ATO degrades PML-RARa by promoting apoptosis and has a pro-oxidant effect. The resistance to ATRA and ATO may derive from the mutations in the RARa ligand binding domain (LBD) and in the PML-B2 domain of PML-RARa, but such mutations cannot explain the majority of resistances experienced in the clinic, globally accounting for 5-10% of cases. Several studies are ongoing to unravel clonal evolution and resistance, suggesting the therapeutic potential of new retinoid molecules and combinatorial treatments of ATRA or ATO with different drugs acting through alternative mechanisms of action, which may lead to synergistic effects on growth control or the induction of apoptosis in APL cells.
Collapse
Affiliation(s)
- N I Noguera
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - G Catalano
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - C Banella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - M Divona
- Policlinico Tor vergata, 00133 Rome, Italy.
| | - I Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - T Ottone
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - W Arcese
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| | - M T Voso
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| |
Collapse
|
8
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
9
|
Torres-Ruiz R, Rodriguez-Perales S, Bueno C, Menendez P. Modeling mixed-lineage-rearranged leukemia initiation in CD34 + cells: a "CRISPR" solution. Haematologica 2017; 102:1467-1468. [PMID: 28860233 DOI: 10.3324/haematol.2017.173740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain .,Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain .,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys, Barcelona, Spain
| |
Collapse
|
10
|
PML-RARA-associated cooperating mutations belong to a transcriptional network that is deregulated in myeloid leukemias. Leukemia 2016; 31:1975-1986. [DOI: 10.1038/leu.2016.386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
|
11
|
Aihara H, Nakagawa T, Mizusaki H, Yoneda M, Kato M, Doiguchi M, Imamura Y, Higashi M, Ikura T, Hayashi T, Kodama Y, Oki M, Nakayama T, Cheung E, Aburatani H, Takayama KI, Koseki H, Inoue S, Takeshima Y, Ito T. Histone H2A T120 Phosphorylation Promotes Oncogenic Transformation via Upregulation of Cyclin D1. Mol Cell 2016; 64:176-188. [DOI: 10.1016/j.molcel.2016.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/30/2016] [Accepted: 09/08/2016] [Indexed: 01/04/2023]
|
12
|
Wang K, Sanchez-Martin M, Wang X, Knapp KM, Koche R, Vu L, Nahas MK, He J, Hadler M, Stein EM, Tallman MS, Donahue AL, Frampton GM, Lipson D, Roels S, Stephens PJ, Sanford EM, Brennan T, Otto GA, Yelensky R, Miller VA, Kharas MG, Levine RL, Ferrando A, Armstrong SA, Krivtsov AV. Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias. Leukemia 2016; 31:151-158. [PMID: 27363283 PMCID: PMC5203983 DOI: 10.1038/leu.2016.166] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
Abstract
Genomic studies have identified recurrent somatic mutations in acute leukemias. However, current murine models do not sufficiently encompass the genomic complexity of human leukemias. To develop pre-clinical models, we transplanted 160 samples from patients with acute leukemia (AML, MLL, B-ALL and T-ALL) into immunodeficient mice. Of these, 119 engrafted with expected immunophenotype. Targeted sequencing of 374 genes and 265 frequently rearranged RNAs detected recurrent and novel genetic lesions in 48 paired primary tumor (PT) and patient-derived xenotransplant (PDX) samples. Overall, the frequencies of 274 somatic variant alleles correlated between PT and PDX samples, although the data were highly variable for variant alleles present at 0-10%. 17% of variant alleles were detected in either PT or PDX samples only. Based on variant allele frequency changes, 24 PT-PDX pairs were classified as concordant while the other 24 pairs showed various degree of clonal discordance. There was no correlation of clonal concordance with clinical parameters of diseases. Significantly more bone marrow samples than peripheral blood samples engrafted discordantly. These data demonstrate the utility of developing PDX banks for modeling human leukemia, and emphasize the importance of genomic profiling of PDX and patient samples to ensure concordance before performing mechanistic or therapeutic studies.
Collapse
Affiliation(s)
- K Wang
- Foundation Medicine, Cambridge, MA, USA
| | - M Sanchez-Martin
- Institute for Cancer Genetics Columbia University, New York, NY, USA
| | - X Wang
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - K M Knapp
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R Koche
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - L Vu
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M K Nahas
- Foundation Medicine, Cambridge, MA, USA
| | - J He
- Foundation Medicine, Cambridge, MA, USA
| | - M Hadler
- Foundation Medicine, Cambridge, MA, USA
| | - E M Stein
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M S Tallman
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - D Lipson
- Foundation Medicine, Cambridge, MA, USA
| | - S Roels
- Foundation Medicine, Cambridge, MA, USA
| | | | | | - T Brennan
- Foundation Medicine, Cambridge, MA, USA
| | - G A Otto
- Foundation Medicine, Cambridge, MA, USA
| | | | | | - M G Kharas
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R L Levine
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ferrando
- Institute for Cancer Genetics Columbia University, New York, NY, USA
| | - S A Armstrong
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A V Krivtsov
- Center for Epigenetic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
13
|
Brenner AK, Reikvam H, Lavecchia A, Bruserud Ø. Therapeutic targeting the cell division cycle 25 (CDC25) phosphatases in human acute myeloid leukemia--the possibility to target several kinases through inhibition of the various CDC25 isoforms. Molecules 2014; 19:18414-47. [PMID: 25397735 PMCID: PMC6270710 DOI: 10.3390/molecules191118414] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/28/2014] [Accepted: 11/02/2014] [Indexed: 01/26/2023] Open
Abstract
The cell division cycle 25 (CDC25) phosphatases include CDC25A, CDC25B and CDC25C. These three molecules are important regulators of several steps in the cell cycle, including the activation of various cyclin-dependent kinases (CDKs). CDC25s seem to have a role in the development of several human malignancies, including acute myeloid leukemia (AML); and CDC25 inhibition is therefore considered as a possible anticancer strategy. Firstly, upregulation of CDC25A can enhance cell proliferation and the expression seems to be controlled through PI3K-Akt-mTOR signaling, a pathway possibly mediating chemoresistance in human AML. Loss of CDC25A is also important for the cell cycle arrest caused by differentiation induction of malignant hematopoietic cells. Secondly, high CDC25B expression is associated with resistance against the antiproliferative effect of PI3K-Akt-mTOR inhibitors in primary human AML cells, and inhibition of this isoform seems to reduce AML cell line proliferation through effects on NFκB and p300. Finally, CDC25C seems important for the phenotype of AML cells at least for a subset of patients. Many of the identified CDC25 inhibitors show cross-reactivity among the three CDC25 isoforms. Thus, by using such cross-reactive inhibitors it may become possible to inhibit several molecular events in the regulation of cell cycle progression and even cytoplasmic signaling, including activation of several CDKs, through the use of a single drug. Such combined strategies will probably be an advantage in human cancer treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Håkon Reikvam
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway
| | - Antonio Lavecchia
- "Drug Discovery" Laboratory, Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, 5021, Norway.
| |
Collapse
|
14
|
Prognostic implication of gene mutations on overall survival in the adult acute myeloid leukemia patients receiving or not receiving allogeneic hematopoietic stem cell transplantations. Leuk Res 2014; 38:1278-84. [PMID: 25260824 DOI: 10.1016/j.leukres.2014.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022]
Abstract
Several gene mutations have been shown to provide clinical implications in patients with acute myeloid leukemia (AML). However, the prognostic impact of gene mutations in the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unclear. We retrospectively evaluated the clinical implications of 8 gene mutations in 325 adult AML patients; 100 of them received allo-HSCT and 225 did not. The genetic alterations analyzed included NPM1, FLT3-ITD, FLT3-TKD, CEBPA, RUNX1, RAS, MLL-PTD, and WT1. In patients who did not receive allo-HSCT, older age, higher WBC count, higher lactate dehydrogenase level, unfavorable karyotype, and RUNX1 mutation were significantly associated with poor overall survival (OS), while CEBPA double mutation (CEBPA(double-mut)) and NPM1(mut)/FLT3-ITD(neg) were associated with good outcome. However, in patients who received allo-HSCT, only refractory disease status at the time of HSCT and unfavorable karyotype were independent poor prognostic factors. Surprisingly, RUNX1 mutation was an independent good prognostic factor for OS in multivariate analysis. The prognostic impact of FLT3-ITD or NPM1(mut)/FLT3-ITD(neg) was lost in this group of patients receiving allo-HSCT, while CEBPA(double-mut) showed a trend to be a good prognostic factor. In conclusion, allo-HSCT can ameliorate the unfavorable influence of some poor-risk gene mutations in AML patients. Unexpectedly, the RUNX1 mutation showed a favorable prognostic impact in the context of allo-HSCT. These results need to be confirmed by further studies with more AML patients.
Collapse
|
15
|
CXXC5 (retinoid-inducible nuclear factor, RINF) is a potential therapeutic target in high-risk human acute myeloid leukemia. Oncotarget 2014; 4:1438-48. [PMID: 23988457 PMCID: PMC3824541 DOI: 10.18632/oncotarget.1195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The retinoid-responsive gene CXXC5 localizes to the 5q31.2 chromosomal region and encodes a retinoid-inducible nuclear factor (RINF) that seems important during normal myelopoiesis. We investigated CXXC5/RINF expression in primary human acute myeloid leukemia (AML) cells derived from 594 patients, and a wide variation in CXXC5/RINF mRNA levels was observed both in the immature leukemic myeloblasts and in immature acute lymphoblastic leukemia cells. Furthermore, patients with low-risk cytogenetic abnormalities showed significantly lower levels compared to patients with high-risk abnormalities, and high RINF/CXXC5/ mRNA levels were associated with decreased overall survival for patients receiving intensive chemotherapy for newly diagnosed AML. This association with prognosis was seen both when investigating (i) an unselected patient population as well as for patients with (ii) normal cytogenetic and (iii) core-binding factor AML. CXXC5/RINF knockdown in AML cell lines caused increased susceptibility to chemotherapy-induced apoptosis, and regulation of apoptosis also seemed to differ between primary human AML cells with high and low RINF expression. The association with adverse prognosis together with the antiapoptotic effect of CXXC5/RINF suggests that targeting of CXXC5/RINF should be considered as a possible therapeutic strategy, especially in high-risk patients who show increased expression in AML cells compared with normal hematopoietic cells.
Collapse
|
16
|
Sonnet M, Claus R, Becker N, Zucknick M, Petersen J, Lipka DB, Oakes CC, Andrulis M, Lier A, Milsom MD, Witte T, Gu L, Kim-Wanner SZ, Schirmacher P, Wulfert M, Gattermann N, Lübbert M, Rosenbauer F, Rehli M, Bullinger L, Weichenhan D, Plass C. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia. Genome Med 2014; 6:34. [PMID: 24944583 PMCID: PMC4062060 DOI: 10.1186/gm551] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/25/2014] [Indexed: 12/13/2022] Open
Abstract
Background Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown. Methods We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylation levels of selected genes were correlated with methylation levels of CD34+ cells and lineage negative, CD127-, c-Kit+, Sca-1+ cells; common myeloid progenitors; granulocyte-macrophage progenitors; and megakaryocyte-erythroid progenitors. Results We identified 1,184 hypermethylated array probes covering 762 associated genes in the preleukemic stage. During disease progression, the number of hypermethylated genes increased to 5,465 in the late leukemic disease stage. Using publicly available data, we found a significant enrichment of PU.1 binding sites in the preleukemic hypermethylated genes, suggesting that shortage of PU.1 makes PU.1 binding sites in the DNA accessible for aberrant methylation. Many known AML associated genes such as RUNX1 and HIC1 were found among the preleukemic hypermethylated genes. Nine novel hypermethylated genes, FZD5, FZD8, PRDM16, ROBO3, CXCL14, BCOR, ITPKA, HES6 and TAL1, the latter four being potential PU.1 targets, were confirmed to be hypermethylated in human normal karyotype AML patients, underscoring the relevance of the mouse model for human AML. Conclusions Our study identified early aberrantly methylated genes as potential contributors to onset and progression of AML.
Collapse
Affiliation(s)
- Miriam Sonnet
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Rainer Claus
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany ; Department of Hematology/Oncology, University Medical Center, D-79106 Freiburg, Germany
| | - Natalia Becker
- Division of Biostatistics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Manuela Zucknick
- Division of Biostatistics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Jana Petersen
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Daniel B Lipka
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Christopher C Oakes
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Mindaugas Andrulis
- Department of General Pathology, Institute of Pathology, University Heidelberg, D-69120 Heidelberg, Germany
| | - Amelie Lier
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Michael D Milsom
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Tania Witte
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Lei Gu
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany ; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Soo-Zin Kim-Wanner
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Peter Schirmacher
- Department of General Pathology, Institute of Pathology, University Heidelberg, D-69120 Heidelberg, Germany
| | - Michael Wulfert
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Michael Lübbert
- Department of Hematology/Oncology, University Medical Center, D-79106 Freiburg, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, Westfälische Wilhelms Universität, D-48149 Münster, Germany
| | - Michael Rehli
- Department of Hematology and Oncology, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University of Ulm, D-89081 Ulm, Germany
| | - Dieter Weichenhan
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Christoph Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Riva L, Ronchini C, Bodini M, Lo-Coco F, Lavorgna S, Ottone T, Martinelli G, Iacobucci I, Tarella C, Cignetti A, Volorio S, Bernard L, Russo A, Melloni GEM, Luzi L, Alcalay M, Dellino GI, Pelicci PG. Acute promyelocytic leukemias share cooperative mutations with other myeloid-leukemia subgroups. Blood Cancer J 2013; 3:e147. [PMID: 24036946 PMCID: PMC3789210 DOI: 10.1038/bcj.2013.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- L Riva
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, at the IFOM-IEO Campus, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
UNLABELLED The rapid increase in information about genes and their associations with human diseases has highlighted the need for model organisms suitable for genetic manipulation and drug testing. The zebrafish is a valuable vertebrate animal model that offers many advantages, including the relative ease of husbandry and genetic manipulation and the capacity for high-throughput screens. In this review, we describe the zebrafish as a model for paediatric diseases, with particular emphasis on haematopoietic and infectious diseases. CONCLUSION The zebrafish has become an established vertebrate model in which to elucidate the molecular mechanisms of various human diseases.
Collapse
Affiliation(s)
- Olli Lohi
- Paediatric Research Centre, University of Tampere Medical School and Tampere University Hospital, Tampere, Finland
| | | | | |
Collapse
|
19
|
Multiplexed mAbs: a new strategy in preclinical time-domain imaging of acute myeloid leukemia. Blood 2012; 121:e34-42. [PMID: 23243270 DOI: 10.1182/blood-2012-05-429555] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Antibodies play a fundamental role in diagnostic immunophenotyping of leukemias and in cell-targeting therapy. However, this versatility is not reflected in imaging diagnostics. In the present study, we labeled anti–human mAbs monochromatically against selected human myeloid markers expressed on acute myeloid leukemia (AML) cells, all with the same near-infrared fluorochrome. In a novel “multiplexing” strategy, we then combined these mAbs to overcome the limiting target-to-background ratio to image multiple xenografts of AML. Time-domain imaging was used to discriminate autofluorescence from the distinct fluorophore-conjugated antibodies. Imaging with multiplexed mAbs demonstrated superior imaging of AML to green fluorescent protein or bioluminescence and permitted evaluation of therapeutic efficacy with the standard combination of anthracycline and cytarabine in primary patient xenografts. Multiplexing mAbs against CD11b and CD11c provided surrogate imaging biomarkers of differentiation therapy in an acute promyelocytic leukemia model treated with all-trans retinoic acid combined with the histone-deacetylase inhibitor valproic acid. We present herein an optimizedapplication of multiplexed immunolabeling in vivo for optical imaging of AML cellxenografts that provides reproducible, highly accurate disease staging and monitoring of therapeutic effects.
Collapse
|
20
|
Expression and function of PML-RARA in the hematopoietic progenitor cells of Ctsg-PML-RARA mice. PLoS One 2012; 7:e46529. [PMID: 23056333 PMCID: PMC3466302 DOI: 10.1371/journal.pone.0046529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 09/05/2012] [Indexed: 12/26/2022] Open
Abstract
Because PML-RARA-induced acute promyelocytic leukemia (APL) is a morphologically differentiated leukemia, many groups have speculated about whether its leukemic cell of origin is a committed myeloid precursor (e.g. a promyelocyte) versus an hematopoietic stem/progenitor cell (HSPC). We originally targeted PML-RARA expression with CTSG regulatory elements, based on the early observation that this gene was maximally expressed in cells with promyelocyte morphology. Here, we show that both Ctsg, and PML-RARA targeted to the Ctsg locus (in Ctsg-PML-RARA mice), are expressed in the purified KLS cells of these mice (KLS = Kit+Lin−Sca+, which are highly enriched for HSPCs), and this expression results in biological effects in multi-lineage competitive repopulation assays. Further, we demonstrate the transcriptional consequences of PML-RARA expression in Ctsg-PML-RARA mice in early myeloid development in other myeloid progenitor compartments [common myeloid progenitors (CMPs) and granulocyte/monocyte progenitors (GMPs)], which have a distinct gene expression signature compared to wild-type (WT) mice. Although PML-RARA is indeed expressed at high levels in the promyelocytes of Ctsg-PML-RARA mice and alters the transcriptional signature of these cells, it does not induce their self-renewal. In sum, these results demonstrate that in the Ctsg-PML-RARA mouse model of APL, PML-RARA is expressed in and affects the function of multipotent progenitor cells. Finally, since PML/Pml is normally expressed in the HSPCs of both humans and mice, and since some human APL samples contain TCR rearrangements and express T lineage genes, we suggest that the very early hematopoietic expression of PML-RARA in this mouse model may closely mimic the physiologic expression pattern of PML-RARA in human APL patients.
Collapse
|
21
|
Krämer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK. SIAH proteins: critical roles in leukemogenesis. Leukemia 2012; 27:792-802. [PMID: 23038274 DOI: 10.1038/leu.2012.284] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The delicate balance between the synthesis and the degradation of proteins ensures cellular homeostasis. Proteases act in an irreversible manner and therefore have to be strictly regulated. The ubiquitin-proteasome system (UPS) is a major pathway for the proteolytic degradation of cellular proteins. As dysregulation of the UPS is observed in most cancers including leukemia, the UPS is a valid target for therapeutic intervention strategies. Ubiquitin-ligases selectively bind substrates to target them for poly-ubiquitinylation and proteasomal degradation. Therefore, pharmacological modulation of these proteins could allow a specific level of control. Increasing evidence accumulates that ubiquitin-ligases termed mammalian seven in absentia homologs (SIAHs) are not only critical for the pathogenesis of solid tumors but also for leukemogenesis. However, the relevance and therapeutic potential of SIAH-dependent processes has not been fully elucidated. Here, we summarize functions of SIAH ubiquitin-ligases in leukemias, how they select leukemia-relevant substrates for proteasomal degradation, and how the expression and activity of SIAH1 and SIAH2 can be modulated in vivo. We also discuss that epigenetic drugs belonging to the group of histone deacetylase inhibitors induce SIAH-dependent proteasomal degradation to accelerate the turnover of leukemogenic proteins. In addition, our review highlights potential areas for future research on SIAH proteins.
Collapse
Affiliation(s)
- O H Krämer
- Center for Molecular Biomedicine (CMB), Department of Biochemistry, University of Jena, Jena, Germany.
| | | | | | | | | |
Collapse
|
22
|
The zebrafish as a tool in leukemia research. Leuk Res 2012; 36:1082-8. [DOI: 10.1016/j.leukres.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/14/2012] [Accepted: 06/06/2012] [Indexed: 11/18/2022]
|
23
|
Distinct association between aberrant methylation of Wnt inhibitors and genetic alterations in acute myeloid leukaemia. Br J Cancer 2011; 105:1927-33. [PMID: 22095226 PMCID: PMC3251886 DOI: 10.1038/bjc.2011.471] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Aberrant activation of Wnt signalling through hypermethylation of Wnt inhibitor genes is involved in several human malignancies, including acute myeloid leukaemia (AML). It remains unclear whether hypermethylation of Wnt inhibitors is associated with molecular gene mutations in the development of AML. Methods: We investigated the association of the promoter hypermethylation of six Wnt inhibitors (Wif-1, SFRP1, SFRR2, SFRP4, SFRP5, and DKK1) with gene aberrations in the leukaemogenesis of 269 AML patients. Results: In total, 166 patients (61.7%) had hypermethylation of at least one Wnt inhibitor. The majority (68.5%) of patients with Wnt inhibitor hypermethylation had concurrent Class II gene mutations that affect transcription factors or cofactors. There was a close association of Wif-1 hypermethylation with t(15;17) (P=0.0005) and CEBPA mutation (P<0.0001), DKK1 hypermethylation with t(8;21) (P<0.0001) and ASXL1 mutation (P=0.0078), SFRP-1 hypermethylation with t(8;21) (P<0.0001), SFRP-2 hypermethylation with AML1/RUNX1 mutation (P=0.0012), and SFRP-5 hypermethylation with MLL/PTD (P=0.0505). On the other side, hypermethylation of Wnt inhibitors was always negatively associated with NPM1 mutation and FLT3/ITD. Conclusion: There was distinct association between hypermethylation of individual Wnt inhibitors and specific gene aberrations, especially Class II mutations. The Wnt inhibitor hypermethylation might interact with genetic alterations in the leukaemogenesis.
Collapse
|
24
|
Kumar CC. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2011; 2:95-107. [PMID: 21779483 DOI: 10.1177/1947601911408076] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/17/2011] [Indexed: 01/31/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disorder in which there are too many immature blood-forming cells accumulating in the bone marrow and interfering with the production of normal blood cells. It has long been recognized that AML is a clinically heterogeneous disease characterized by a multitude of chromosomal abnormalities and gene mutations, which translate to marked differences in responses and survival following chemotherapy. The cytogenetic and molecular genetic aberrations associated with AML are not mutually exclusive and often coexist in the leukemic cells. AML is a disease of the elderly, with a mean age of diagnosis of 70 years. Adverse cytogenetic abnormalities increase with age, and within each cytogenetic group, prognosis with standard treatment worsens with age. In the past 20 years, there has been little improvement in chemotherapeutic regimens and hence the overall survival for patients with AML. A huge unmet need exists for efficacious targeted therapies for elderly patients that are less toxic than available chemotherapy regimens. The multitude of chromosomal and genetic abnormalities makes the treatment of AML a challenging prospect. A detailed understanding of the molecular changes associated with the chromosomal and genetic abnormalities in AML is likely to provide a rationale for therapy design and biomarker development. This review summarizes the variety of cytogenetic and genetic changes observed in AML and gives an overview of the clinical status of new drugs in development.
Collapse
|
25
|
Acute myeloid leukemia with the t(8;21) translocation: clinical consequences and biological implications. J Biomed Biotechnol 2011; 2011:104631. [PMID: 21629739 PMCID: PMC3100545 DOI: 10.1155/2011/104631] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/31/2011] [Accepted: 02/22/2011] [Indexed: 12/20/2022] Open
Abstract
The t(8;21) abnormality occurs in a minority of acute myeloid leukemia (AML) patients. The translocation results in an in-frame fusion of two genes, resulting in a fusion protein of one N-terminal domain from the AML1 gene and four C-terminal domains from the ETO gene. This protein has multiple effects on the regulation of the proliferation, the differentiation, and the viability of leukemic cells. The translocation can be detected as the only genetic abnormality or as part of more complex abnormalities. If t(8;21) is detected in a patient with bone marrow pathology, the diagnosis AML can be made based on this abnormality alone. t(8;21) is usually associated with a good prognosis. Whether the detection of the fusion gene can be used for evaluation of minimal residual disease and risk of leukemia relapse remains to be clarified. To conclude, detection of t(8;21) is essential for optimal handling of these patients as it has both diagnostic, prognostic, and therapeutic implications.
Collapse
|
26
|
Rara haploinsufficiency modestly influences the phenotype of acute promyelocytic leukemia in mice. Blood 2010; 117:2460-8. [PMID: 21190992 DOI: 10.1182/blood-2010-08-300087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RARA (retinoic acid receptor alpha) haploinsufficiency is an invariable consequence of t(15;17)(q22;q21) translocations in acute promyelocytic leukemia (APL). Retinoids and RARA activity have been implicated in hematopoietic self-renewal and neutrophil maturation. We and others therefore predicted that RARA haploinsufficiency would contribute to APL pathogenesis. To test this hypothesis, we crossed Rara(+/-) mice with mice expressing PML (promyelocytic leukemia)-RARA from the cathepsin G locus (mCG-PR). We found that Rara haploinsufficiency cooperated with PML-RARA, but only modestly influenced the preleukemic and leukemic phenotype. Bone marrow from mCG-PR(+/-) × Rara(+/-) mice had decreased numbers of mature myeloid cells, increased ex vivo myeloid cell proliferation, and increased competitive advantage after transplantation. Rara haploinsufficiency did not alter mCG-PR-dependent leukemic latency or penetrance, but did influence the distribution of leukemic cells; leukemia in mCG-PR(+/-) × Rara(+/-) mice presented more commonly with low to normal white blood cell counts and with myeloid infiltration of lymph nodes. APL cells from these mice were responsive to all-trans retinoic acid and had virtually no differences in expression profiling compared with tumors arising in mCG-PR(+/-) × Rara(+/+) mice. These data show that Rara haploinsufficiency (like Pml haploinsufficiency and RARA-PML) can cooperate with PML-RARA to influence the pathogenesis of APL in mice, but that PML-RARA is the t(15;17) disease-initiating mutation.
Collapse
|
27
|
Abdul-Nabi AM, Yassin ER, Varghese N, Deshmukh H, Yaseen NR. In vitro transformation of primary human CD34+ cells by AML fusion oncogenes: early gene expression profiling reveals possible drug target in AML. PLoS One 2010; 5:e12464. [PMID: 20805992 PMCID: PMC2929205 DOI: 10.1371/journal.pone.0012464] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 08/03/2010] [Indexed: 01/08/2023] Open
Abstract
Different fusion oncogenes in acute myeloid leukemia (AML) have distinct clinical and laboratory features suggesting different modes of malignant transformation. Here we compare the in vitro effects of representatives of 4 major groups of AML fusion oncogenes on primary human CD34+ cells. As expected from their clinical similarities, MLL-AF9 and NUP98-HOXA9 had very similar effects in vitro. They both caused erythroid hyperplasia and a clear block in erythroid and myeloid maturation. On the other hand, AML1-ETO and PML-RARA had only modest effects on myeloid and erythroid differentiation. All oncogenes except PML-RARA caused a dramatic increase in long-term proliferation and self-renewal. Gene expression profiling revealed two distinct temporal patterns of gene deregulation. Gene deregulation by MLL-AF9 and NUP98-HOXA9 peaked 3 days after transduction. In contrast, the vast majority of gene deregulation by AML1-ETO and PML-RARA occurred within 6 hours, followed by a dramatic drop in the numbers of deregulated genes. Interestingly, the p53 inhibitor MDM2 was upregulated by AML1-ETO at 6 hours. Nutlin-3, an inhibitor of the interaction between MDM2 and p53, specifically inhibited the proliferation and self-renewal of primary human CD34+ cells transduced with AML1-ETO, suggesting that MDM2 upregulation plays a role in cell transformation by AML1-ETO. These data show that differences among AML fusion oncogenes can be recapitulated in vitro using primary human CD34+ cells and that early gene expression profiling in these cells can reveal potential drug targets in AML.
Collapse
MESH Headings
- Antigens, CD34/metabolism
- Cell Differentiation/genetics
- Cell Line
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oncogene Fusion
- Oncogenes/genetics
- Proto-Oncogene Proteins c-mdm2/genetics
- Time Factors
Collapse
Affiliation(s)
- Anmaar M. Abdul-Nabi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Enas R. Yassin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nobish Varghese
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hrishikesh Deshmukh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nabeel R. Yaseen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
28
|
|
29
|
Osman D, Gobert V, Haenlin M, Waltzer L. [Drosophila as a new model system for leukaemia]. Med Sci (Paris) 2010; 26:9-11. [PMID: 20132762 DOI: 10.1051/medsci/20102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009; 114:5352-61. [DOI: 10.1182/blood-2009-05-223784] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractSomatic mutation of the AML1/RUNX1(RUNX1) gene is seen in acute myeloid leukemia (AML) M0 subtype and in AML transformed from myelodysplastic syndrome, but the impact of this gene mutation on survival in AML patients remains unclear. In this study, we sought to determine the clinical implications of RUNX1 mutations in 470 adult patients with de novo non-M3 AML. Sixty-three distinct RUNX1 mutations were identified in 62 persons (13.2%); 32 were in N-terminal and 31, C-terminal. The RUNX1 mutation was closely associated with male sex, older age, lower lactic dehydrogenase value, French-American-British M0/M1 subtypes, and expression of HLA-DR and CD34, but inversely correlated with CD33, CD15, CD19, and CD56 expression. Furthermore, the mutation was positively associated with MLL/PTD but negatively associated with CEBPA and NPM1 mutations. AML patients with RUNX1 mutations had a significantly lower complete remission rate and shorter disease-free and overall survival than those without the mutation. Multivariate analysis demonstrated that RUNX1 mutation was an independent poor prognostic factor for overall survival. Sequential analysis in 133 patients revealed that none acquired novel RUNX1 mutations during clinical courses. Our findings provide evidence that RUNX1 mutations are associated with distinct biologic and clinical characteristics and poor prognosis in patients with de novo AML.
Collapse
|
31
|
Sutherland MK, Yu C, Lewis TS, Miyamoto JB, Morris-Tilden CA, Jonas M, Sutherland J, Nesterova A, Gerber HP, Sievers EL, Grewal IS, Law CL. Anti-leukemic activity of lintuzumab (SGN-33) in preclinical models of acute myeloid leukemia. MAbs 2009; 1:481-90. [PMID: 20065652 DOI: 10.4161/mabs.1.5.9288] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite therapeutic advances, the long-term survival rates for acute myeloid leukemia (AML) are estimated to be 10% or less, pointing to the need for better treatment options. AML cells express the myeloid marker CD33, making it amenable to CD33-targeted therapy. Thus, the in vitro and in vivo anti-tumor activities of lintuzumab (SGN-33), a humanized monoclonal anti-CD33 antibody undergoing clinical evaluation, were investigated. In vitro assays were used to assess the ability of lintuzumab to mediate effector functions and to decrease the production of growth factors from AML cells. SCID mice models of disseminated AML with the multi-drug resistance (MDR)-negative HL60 and the MDR(+), HEL9217 and TF1-alpha, cell lines were developed and applied to examine the in vivo antitumor activity. In vitro, lintuzumab significantly reduced the production of TNFalpha-induced pro-inflammatory cytokines and chemokines by AML cells. Lintuzumab promoted tumor cell killing through antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) activities against MDR(-) and MDR(+) AML cell lines and primary AML patient samples. At doses from 3 to 30 mg/kg, lintuzumab significantly enhanced survival and reduced tumor burden in vivo, regardless of MDR status. Survival of the mice was dependent upon the activity of resident macrophages and neutrophils. The results suggest that lintuzumab may exert its therapeutic effects by modulating the cytokine milieu in the tumor microenvironment and through effector mediated cell killing. Given that lintuzumab induced meaningful responses in a phase 1 clinical trial, the preclinical antitumor activities defined in this study may underlie its observed therapeutic efficacy in AML patients.
Collapse
Affiliation(s)
- May Kung Sutherland
- Department of Pre-Clinical Therapeutics, Seattle Genetics, Inc., Bothell, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc Natl Acad Sci U S A 2009; 106:12043-8. [PMID: 19581587 DOI: 10.1073/pnas.0902449106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The t(8:21)(q22;q22) translocation is 1 of the most common chromosomal abnormalities linked to acute myeloid leukemia (AML). AML1-ETO, the product of this translocation, fuses the N-terminal portion of the RUNX transcription factor AML1 (also known as RUNX1), including its DNA-binding domain, to the almost entire transcriptional corepressor ETO (also known as MTG8 or RUNX1T1). This fusion protein acts primarily by interfering with endogenous AML1 function during myeloid differentiation, although relatively few genes are known that participate with AML1-ETO during leukemia progression. Here, we assessed the consequences of expressing this chimera in Drosophila blood cells. Reminiscent of what is observed in AML, AML1-ETO specifically inhibited the differentiation of the blood cell lineage whose development depends on the RUNX factor Lozenge (LZ) and induced increased numbers of LZ(+) progenitors. Using an in vivo RNAi-based screen for suppressors of AML1-ETO, we identified calpainB as required for AML1-ETO-induced blood cell disorders in Drosophila. Remarkably, calpain inhibition triggered AML1-ETO degradation and impaired the clonogenic potential of the human t(8;21) leukemic blood cell line Kasumi-1. Therefore Drosophila provides a promising genetically tractable model to investigate the conserved basis of leukemogenesis and to open avenues in AML therapy.
Collapse
|
33
|
Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci U S A 2009; 106:2853-8. [PMID: 19202074 DOI: 10.1073/pnas.0810558106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although both heterodimeric subunits of core binding factors (AML1/RUNX1 and CBFbeta) essential for normal hematopoiesis are frequently mutated to form different chimeric fusion proteins in acute leukemia, the underlying molecular mechanisms and structural domains required for cellular transformation remain largely unknown. Despite the critical role of CBFbeta for wild-type AML1 function and its direct involvement in chromosomal translocation, we demonstrate that both the expression and interaction with CBFbeta are superfluous for AML1-ETO (AE)-mediated transformation of primary hematopoietic cells. Similarly, the hetero-oligomeric interaction with transcriptional repressor ETO family proteins and the highly conserved NHR1 domain in AE fusion are also dispensable for transforming activity. In contrast, AE-mediated transformation is critically dependent on the DNA binding and homo-oligomeric properties of the fusion. Abolishment of homo-oligomerization by a small-molecule inhibitor could specifically suppress AML1 fusion-mediated transformation of primary hematopoietic cells. Together, these results not only identify the essential molecular components but also potential avenues for therapeutic targeting of AE-mediated leukemogenesis.
Collapse
|
34
|
Aoki T, Miyamoto T, Yoshida S, Yamamoto A, Yamauchi T, Yoshimoto G, Mori Y, Kamezaki K, Iwasaki H, Takenaka K, Harada N, Nagafuji K, Teshima T, Akashi K. Additional acquisition of t(1;21)(p32;q22) in a patient relapsing with acute myelogenous leukemia with NUP98-HOXA9. Int J Hematol 2008; 88:571-574. [DOI: 10.1007/s12185-008-0198-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 09/30/2008] [Accepted: 10/12/2008] [Indexed: 12/13/2022]
|
35
|
Soria NM, Tussiwand R, Ziegler P, Manz MG, Heidenreich O. Transient depletion of RUNX1/RUNX1T1 by RNA interference delays tumour formation in vivo. Leukemia 2008; 23:188-90. [DOI: 10.1038/leu.2008.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|