1
|
Wang X, Ren G, Chen B. Integrating metabolomics and network pharmacology to study the mechanism of Er-Xian decoction in improving intervertebral disc degeneration. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119702. [PMID: 40139579 DOI: 10.1016/j.jep.2025.119702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Intervertebral disc degeneration (IDD) is the progressive deterioration of the structure and function of an intervertebral disc (IVD), which manifests as excessive catabolism of the IVD extracellular matrix, which may lead to the gradual loss of IVD proteoglycans and water, thus altering the IVD composition and eventually leading to degeneration. As a traditional Chinese medicine, Er-Xian decoction (EXD) can balance the body's yin and yang, tonify the liver and kidney, invigorate blood circulation, and prevent blood stasis. Pharmacological research has shown that EXD regulates antioxidant and endocrine metabolism, maintains immune balance, and improves microcirculation. AIMS OF THE STUDY To clarify the efficacy of EXD on treating IDD. MATERIALS AND METHODS Serum was collected from model IDD rabbits treated with EXD for metabolomics analysis, and its mechanism of action was predicted on the basis of the metabolomics and network pharmacology data. Nucleus pulposus cells (NPCs) were induced with IL-1β to build an in vitro IDD model, and EXD was administered along with an inhibitor. All groups of cells were subjected to CCK-8 assays, ELISA and flow cytometry, immunohistochemistry, Western blot, and immunofluorescence staining analyses to explore how EXD protects NPCs and the underlying mechanism. RESULTS EXD reduced inflammatory processes, restored IVD height, and alleviated IDD in rabbits. Integrated metabolomics and network pharmacology analyses revealed that EXD exerts its therapeutic effects on IDD primarily via the mTOR and HIF-1 signalling pathways, and the active components of EXD, including anhydroicaritin, β-sitosterol, kaempferol, quercetin, and stigmasterol, bound strongly to pivotal targets within these pathways. Moreover, EXD reduced the inflammatory factor levels, inhibited NPC apoptosis, and upregulated the key proteins p-mTOR, HIF-1α, and p-AKT. Conversely, the HIF-1 inhibitor BAY872243 increased the inflammatory factor levels and led to NPC deterioration. CONCLUSION EXD regulates disc cell metabolism and inflammatory responses by modulating the mTOR and HIF-1 signalling pathways, thereby slowing or reversing IDD.
Collapse
Affiliation(s)
- Xiaobo Wang
- Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, Zhejiang Province, China
| | - Guoqiang Ren
- Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, Zhejiang Province, China
| | - Binhui Chen
- Ningbo Medical Center Lihuili Hospital, 57 Xingning Road, Yinzhou District, Ningbo City, Zhejiang Province, China.
| |
Collapse
|
2
|
Ghanbari M, Ebrahimi H, Bagheri A, Khonakdar-Tarsi A, Mousavi H. Investigating Network and Experimental Effect of Silibinin on Lipin-1 and Lipin-2 Gene Expression during Ischemia-reperfusion of the Liver in Rats. Cell Biochem Biophys 2025:10.1007/s12013-025-01751-0. [PMID: 40246771 DOI: 10.1007/s12013-025-01751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
This study aims to investigate the impact of silibinin (SILI) on the expression of the Lipin-1 and Lipin-2 genes during warm ischemia-reperfusion (I/R) of the liver. Network pharmacology was employed to identify potential targets of SILI in the context of liver inflammation and to elucidate the mechanism underlying the regulation of Lipin gene expression. The rats were allocated into four groups, each comprising eight individuals: vehicle group: These rats underwent a median laparotomy, and were administered normal saline. (2) SILI group: Rats in this group received 50 mg/kg of SILI after laparotomy. (3) I/R group: Rats in this group experienced I/R and were administered normal saline. (4) I/R+SILI group: In this group, rats were treated with SILI in conjunction with the I/R procedure. Western and real-time PCR were used to measure protein levels, and assess Lipin-1 and Lipin-2 gene expression. The analysis identified 18 shared targets between SILI (Severe Acute Liver Injury) and liver inflammation, linking them to 107 KEGG pathways, with the mTOR signaling pathway standing out as a critical connection to Lipin. Docking studies of targets in the mTOR signaling pathway revealed binding energies of -9.7 kcal/mol for PIK3CA and -10.4 kcal/mol for mTOR protein. Furthermore, the protein level and gene expression of Lipin-1 and Lipin-2 genes were significantly elevated during I/R compared to the vehicle group (P < 0.001). However, SILI was observed to reduce their expression during I/R (P < 0.05). The beneficial effects of SILI can be attributed to the modulation of Lipin-1 and Lipin-2 gene expression during I/R, which is likely one of the mechanisms underlying its beneficial effects during I/R.
Collapse
Affiliation(s)
- Mahboubeh Ghanbari
- Molecular and Cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Ebrahimi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Abouzar Bagheri
- Molecular and Cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar-Tarsi
- Molecular and Cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hadis Mousavi
- Molecular and Cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Clinical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett 2025; 30:2. [PMID: 39757165 DOI: 10.1186/s11658-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shiting Xia
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Selc M, Macova R, Babelova A. Novel Strategies Enhancing Bioavailability and Therapeutical Potential of Silibinin for Treatment of Liver Disorders. Drug Des Devel Ther 2024; 18:4629-4659. [PMID: 39444787 PMCID: PMC11498047 DOI: 10.2147/dddt.s483140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Silibinin, a bioactive component found in milk thistle extract (Silybum marianum), is known to have significant therapeutic potential in the treatment of various liver diseases. It is considered a key element of silymarin, which is traditionally used to support liver function. The main mechanisms of action of silibinin are attributed to its antioxidant properties protecting liver cells from damage caused by free radicals. Experimental studies conducted in vitro and in vivo have confirmed its ability to inhibit inflammatory and fibrotic processes, as well as promote the regeneration of damaged liver tissue. Therefore, silibinin represents a promising tool for the treatment of liver diseases. Since the silibinin molecule is insoluble in water and has poor bioavailability in vivo, new perspectives on solving this problem are being sought. The two most promising approaches are the water-soluble derivative silibinin-C-2',3-dihydrogen succinate, disodium salt, and the silibinin-phosphatidylcholine complex. Both drugs are currently under evaluation in liver disease clinical trials. Nevertheless, the mechanism underlying silibinin biological activity is still elusive and its more detailed understanding would undoubtedly increase its potential in the development of effective therapeutic strategies against liver diseases. This review is focused on the therapeutic potential of silibinin and its derivates, approaches to increase the bioavailability and the benefits in the treatment of liver diseases that have been achieved so far. The review discusses the relevant in vitro and in vivo studies that investigated the protective effects of silibinin in various forms of liver damage.
Collapse
Affiliation(s)
- Michal Selc
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radka Macova
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Andrea Babelova
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nanobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Dai W, Guo R, Na X, Jiang S, Liang J, Guo C, Fang Y, Na Z, Li D. Hypoxia and the endometrium: An indispensable role for HIF-1α as therapeutic strategies. Redox Biol 2024; 73:103205. [PMID: 38815332 PMCID: PMC11167393 DOI: 10.1016/j.redox.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a major molecular mediator of the hypoxic response. In the endometrium, local hypoxic conditions induced by hormonal fluctuations and endometrial vascular remodeling contribute to the production of HIF-1α, which plays an indispensable role in a series of physiological activities, such as menstruation and metamorphosis. The sensitive regulation of HIF-1α maintains the cellular viability and regenerative capacity of the endometrium against cellular stresses induced by hypoxia and excess reactive oxygen species. In contrast, abnormal HIF-1α levels exacerbate the development of various endometrial pathologies. This knowledge opens important possibilities for the development of promising HIF-1α-centered strategies to ameliorate endometrial disease. Nonetheless, additional efforts are required to elucidate the regulatory network of endometrial HIF-1α and promote the applications of HIF-1α-centered strategies in the human endometrium. Here, we summarize the role of the HIF-1α-mediated pathway in endometrial physiology and pathology, highlight the latest HIF-1α-centered strategies for treating endometrial diseases, and improve endometrial receptivity.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinni Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuishan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
6
|
Verdura S, Encinar JA, Gratchev A, Llop-Hernández À, López J, Serrano-Hervás E, Teixidor E, López-Bonet E, Martin-Castillo B, Micol V, Bosch-Barrera J, Cuyàs E, Menendez JA. Silibinin is a suppressor of the metastasis-promoting transcription factor ID3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155493. [PMID: 38484626 DOI: 10.1016/j.phymed.2024.155493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.
Collapse
Affiliation(s)
- Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Júlia López
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eduard Teixidor
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona 17007, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Unit of Clinical Research, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Joaquim Bosch-Barrera
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain; Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain.
| |
Collapse
|
7
|
Wei Q, Zhang YH. Flavonoids with Anti-Angiogenesis Function in Cancer. Molecules 2024; 29:1570. [PMID: 38611849 PMCID: PMC11013936 DOI: 10.3390/molecules29071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The formation of new blood vessels, known as angiogenesis, significantly impacts the development of multiple types of cancer. Consequently, researchers have focused on targeting this process to prevent and treat numerous disorders. However, most existing anti-angiogenic treatments rely on synthetic compounds and humanized monoclonal antibodies, often expensive or toxic, restricting patient access to these therapies. Hence, the pursuit of discovering new, affordable, less toxic, and efficient anti-angiogenic compounds is imperative. Numerous studies propose that natural plant-derived products exhibit these sought-after characteristics. The objective of this review is to delve into the anti-angiogenic properties exhibited by naturally derived flavonoids from plants, along with their underlying molecular mechanisms of action. Additionally, we summarize the structure, classification, and the relationship between flavonoids with their signaling pathways in plants as anti-angiogenic agents, including main HIF-1α/VEGF/VEGFR2/PI3K/AKT, Wnt/β-catenin, JNK1/STAT3, and MAPK/AP-1 pathways. Nonetheless, further research and innovative approaches are required to enhance their bioavailability for clinical application.
Collapse
Affiliation(s)
- Qiang Wei
- School of Medicine, Anhui Xinhua University, 555 Wangjiang West Road, Hefei 230088, China;
| | | |
Collapse
|
8
|
Ray PP, Islam MA, Islam MS, Han A, Geng P, Aziz MA, Mamun AA. A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment. Front Pharmacol 2024; 15:1349745. [PMID: 38487172 PMCID: PMC10937417 DOI: 10.3389/fphar.2024.1349745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Natural compounds hold promise in the search for cancer therapies due to their unique chemical structures and combinations that may effectively combat cancer while minimizing toxicity and side effects compared to conventional treatments. Silibinin, a natural lignan, has been found to possess strong anti-cancer activity against several types of human cancers based on emerging research. This study aims to provide an overview of the therapeutic potential of silibinin in the treatment and prevention of cancers. A comprehensive search was conducted using various internet databases such as PubMed, Google Scholar, and ScienceDirect to identify relevant research papers. Silibinin has been shown to exhibit anticancer activity against several types of cancers, including liver, lungs, breast, prostate, colorectal, skin, and bladder cancers. Its multifaceted mechanisms of action contribute to its therapeutic effects. Silibinin exerts antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic activities, making it a promising candidate for cancer therapy. One of the key mechanisms underlying the anticancer effects of silibinin is its ability to modulate multiple signaling pathways involved in cancer development and progression. It can inhibit the activation of various oncogenic pathways, including PI3K/Akt, NF-κB, Wnt/β-catenin, and MAPK pathways, thereby suppressing cancer cell proliferation, inducing cell cycle arrest, and promoting apoptosis. Silibinin possesses great potential as an effective treatment agent for cancer. The multifaceted mechanisms of action, favorable safety profile, and potential synergistic effects of silibinin with conventional therapies make it an attractive candidate for further investigation and development as a cancer treatment. However, more extensive clinical studies are necessary to fully establish the efficacy, optimal dosage, and long-term effects of silibinin in cancer treatment.
Collapse
Affiliation(s)
- Pantha Prodip Ray
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Aixia Han
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, China
| | - Peiwu Geng
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, China
| | - Md. Abdul Aziz
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, China
| |
Collapse
|
9
|
Xiao B, Jiang Y, Yuan S, Cai L, Xu T, Jia L. Silibinin, a potential fasting mimetic, inhibits hepatocellular carcinoma by triggering extrinsic apoptosis. MedComm (Beijing) 2024; 5:e457. [PMID: 38222315 PMCID: PMC10784426 DOI: 10.1002/mco2.457] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024] Open
Abstract
Fasting, without inducing malnutrition, has been shown to have various beneficial effects, including the inhibition of tumor initiation and progression. However, prolonged fasting poses challenges for many cancer patients, particularly those in intermediate and terminal stages. Thus, there is an urgent need for the development of fasting mimetics which harness the protective effects of fasting but more suitable for patients. In this study, we first highlighted the pivotal role of silibinin in AMP-activated protein kinase (AMPK) pathway and may serve, as a potential fasting mimetic via screening hepatoprotective drugs. Further metabolic analysis showed that silibinin inhibited the adenosine triphosphate (ATP) levels, glucose uptake and diminished glycolysis process, which further confirmed that silibinin served as a fasting mimetic. In addition, fasting synergized with silibinin, or used independently, to suppress the growth of hepatocellular carcinoma (HCC) in vivo. Mechanistically, silibinin upregulated death receptor 5 (DR5) through AMPK activation, and thus promoting extrinsic apoptosis and inhibiting HCC growth both in vitro and in vivo. Inhibition of AMPK using small interfering RNA (siRNA) or compound C, an AMPK inhibitor, significantly attenuated the upregulation of DR5 and the apoptotic response induced by silibinin. These findings suggest that silibinin holds promise as a fasting mimetic and may serve as an adjuvant drug for HCC treatment.
Collapse
Affiliation(s)
- Biying Xiao
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanyu Jiang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shuying Yuan
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lili Cai
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tong Xu
- Departmnent of OncologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Lijun Jia
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
10
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
11
|
Cohen J, Huang S, Koczwara KE, Woods KT, Ho V, Woodman KG, Arbiser JL, Daman K, Lek M, Emerson CP, DeSimone AM. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. Cell Death Dis 2023; 14:749. [PMID: 37973788 PMCID: PMC10654915 DOI: 10.1038/s41419-023-06257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Kristen T Woods
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alec M DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Modalis Therapeutics, Waltham, MA, USA.
| |
Collapse
|
12
|
Choi S, Ham S, Lee YI, Kim J, Lee WJ, Lee JH. Silibinin Downregulates Types I and III Collagen Expression via Suppression of the mTOR Signaling Pathway. Int J Mol Sci 2023; 24:14386. [PMID: 37762688 PMCID: PMC10531945 DOI: 10.3390/ijms241814386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Keloid scars are fibro-proliferative conditions characterized by abnormal fibroblast proliferation and excessive extracellular matrix deposition. The mammalian target of the rapamycin (mTOR) pathway has emerged as a potential therapeutic target in keloid disease. Silibinin, a natural flavonoid isolated from the seeds and fruits of the milk thistle, is known to inhibit the mTOR signaling pathway in human cervical and hepatoma cancer cells. However, the mechanisms underlying this inhibitory effect are not fully understood. This in vitro study investigated the effects of silibinin on collagen expression in normal human dermal and keloid-derived fibroblasts. We evaluated the effects of silibinin on the expressions of collagen types I and III and assessed its effects on the suppression of the mTOR signaling pathway. Our findings confirmed elevated mTOR phosphorylation levels in keloid scars compared to normal tissue specimens. Silibinin treatment significantly reduced collagen I and III expressions in normal human dermal and keloid-derived fibroblasts. These effects were accompanied by the suppression of the mTOR signaling pathway. Our findings suggest the potential of silibinin as a promising therapeutic agent for preventing and treating keloid scars. Further studies are warranted to explore the clinical application of silibinin in scar management.
Collapse
Affiliation(s)
- Sooyeon Choi
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
| | - Seoyoon Ham
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
| | - Jihee Kim
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Won Jai Lee
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
- Department of Plastic Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology, Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.C.); (S.H.); (Y.I.L.)
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea; (J.K.); (W.J.L.)
| |
Collapse
|
13
|
Srivastava N, Usmani SS, Subbarayan R, Saini R, Pandey PK. Hypoxia: syndicating triple negative breast cancer against various therapeutic regimens. Front Oncol 2023; 13:1199105. [PMID: 37492478 PMCID: PMC10363988 DOI: 10.3389/fonc.2023.1199105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the deadliest subtypes of breast cancer (BC) for its high aggressiveness, heterogeneity, and hypoxic nature. Based on biological and clinical observations the TNBC related mortality is very high worldwide. Emerging studies have clearly demonstrated that hypoxia regulates the critical metabolic, developmental, and survival pathways in TNBC, which include glycolysis and angiogenesis. Alterations to these pathways accelerate the cancer stem cells (CSCs) enrichment and immune escape, which further lead to tumor invasion, migration, and metastasis. Beside this, hypoxia also manipulates the epigenetic plasticity and DNA damage response (DDR) to syndicate TNBC survival and its progression. Hypoxia fundamentally creates the low oxygen condition responsible for the alteration in Hypoxia-Inducible Factor-1alpha (HIF-1α) signaling within the tumor microenvironment, allowing tumors to survive and making them resistant to various therapies. Therefore, there is an urgent need for society to establish target-based therapies that overcome the resistance and limitations of the current treatment plan for TNBC. In this review article, we have thoroughly discussed the plausible significance of HIF-1α as a target in various therapeutic regimens such as chemotherapy, radiotherapy, immunotherapy, anti-angiogenic therapy, adjuvant therapy photodynamic therapy, adoptive cell therapy, combination therapies, antibody drug conjugates and cancer vaccines. Further, we also reviewed here the intrinsic mechanism and existing issues in targeting HIF-1α while improvising the current therapeutic strategies. This review highlights and discusses the future perspectives and the major alternatives to overcome TNBC resistance by targeting hypoxia-induced signaling.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rajasekaran Subbarayan
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Educations, Chennai, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Pranav Kumar Pandey
- Dr. R.P. Centre for Opthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Koushki M, Farrokhi Yekta R, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
15
|
Li A, Yang Q, Li R, Dai X, Cai K, Lei Y, Jia K, Jiang Y, Zan L. Chromosome-level genome assembly for takin (Budorcas taxicolor) provides insights into its taxonomic status and genetic diversity. Mol Ecol 2023; 32:1323-1334. [PMID: 35467052 DOI: 10.1111/mec.16483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022]
Abstract
The takin (Budorcas taxicolor) is one of the largest bovid herbivores in the subfamily Caprinae. The takin is at high risk of extinction, but its taxonomic status and genetic diversity remain unclear. In this study, we constructed the first reference genome of Bu. taxicolor using PacBio long High-Fidelity reads and Hi-C technology. The assembled genome is ~2.95 Gb with a contig N50 of 68.05 Mb, which were anchored onto 25+XY chromosomes. We found that the takin was more closely related to muskox than to other Caprinae species. Compared to the common ancestral karyotype of bovidae (2n = 60), we found the takin (2n = 52) experienced four chromosome fusions and one large translocation. Furthermore, we resequenced nine golden takins from the main distribution area, the Qinling Mountains, and identified 3.3 million single nucleotide polymorphisms. The genetic diversity of takin was very low (θπ = 0.00028 and heterozygosity =0.00038), among the lowest detected in domestic and wild mammals. Takin genomes showed a high inbreeding coefficient (FROH =0.217), suggesting severe inbreeding depression. The demographic history showed that the effective population size of takins declined significantly from ~100,000 years ago. Our results provide valuable information for protection of takins and insights into their evolution.
Collapse
Affiliation(s)
- Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qimeng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Center for Ruminant Genetic and Evolution, Northwest A&F University, Yangling, Shaanxi, China
| | - Ran Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Center for Ruminant Genetic and Evolution, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuelei Dai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Center for Ruminant Genetic and Evolution, Northwest A&F University, Yangling, Shaanxi, China
| | - Keli Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yinghu Lei
- Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Shaanxi Academy of Forestry Sciences, Zhouzhi, Shaanxi, China
| | - Kangsheng Jia
- Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Shaanxi Academy of Forestry Sciences, Zhouzhi, Shaanxi, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Center for Ruminant Genetic and Evolution, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Research Center for the Qinling Giant Panda (Shaanxi Rare Wildlife Rescue Base), Shaanxi Academy of Forestry Sciences, Zhouzhi, Shaanxi, China
| |
Collapse
|
16
|
Cohen J, Huang S, Koczwara K, Ho V, Woodman K, Lek A, Arbiser J, Lek M, DeSimone A. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. RESEARCH SQUARE 2023:rs.3.rs-2452222. [PMID: 36778471 PMCID: PMC9915774 DOI: 10.21203/rs.3.rs-2452222/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
|
17
|
Wang Y, Yuan AJ, Wu YJ, Wu LM, Zhang L. Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
18
|
Zhu X, Hao W, Liu Z, Song Y, Hao C, Wu S, Lu X, Yang J, Jin C. Aluminum induces neuroinflammation via P2X7 receptor activating NLRP3 inflammasome pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114373. [PMID: 36508838 DOI: 10.1016/j.ecoenv.2022.114373] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Aluminum is everywhere in nature and is a recognized neurotoxicant closely associated with various neurodegenerative diseases. Neuroinflammation occurs in the early stage of neurodegenerative diseases, but the underlying mechanism by which aluminum induces neuroinflammation remains unclear. MATERIAL AND METHODS A 3-month subchronic aluminum exposure mouse model was established by drinking water containing aluminum chloride (AlCl3). Microglia BV2 cells and hippocampal neuron HT22 cells were treated with AlCl3 in vitro. BBG and YC-1 were used as intervention agents. RESULTS Aluminum could activate microglia and increase the level of extracellular ATP, stimulate P2X7 receptor, HIF-1α, activate NLRP3 inflammasome and CASP-1, release more cytokine IL-1β, and induce an inflammatory response in nerve cells. There was a mutual regulatory relationship between P2X7 and HIF-1α at mRNA and protein levels. The co-culture system of BV2-HT22 cells observed that conditioned medium from microglia treated with aluminum could aggravate neuronal morphological damage, inflammatory response and death. While BBG and YC-1 intervention could rescue these injuries to some extent. CONCLUSION The P2X7-NLRP3 pathway was involved in aluminum-induced neuroinflammation and injury. P2X7 and HIF-1α might mutually regulate and promote the progression of neuroinflammation, both BBG and YC-1 could relieve it.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Ziyue Liu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yushuai Song
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Chenyu Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
19
|
Shete MB, Deshpande AS, Shende P. Silybin-based herbal nanocarriers: an advancement in anticancer therapy. MATERIALS TECHNOLOGY 2022; 37:2832-2852. [DOI: 10.1080/10667857.2022.2081286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/18/2022] [Indexed: 01/05/2025]
Affiliation(s)
- Meghanath B. Shete
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS, Shirpur, India
| | - Ashwini S. Deshpande
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS, Shirpur, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
20
|
Hybrid Ultrasound-Activated Nanoparticles Based on Graphene Quantum Dots for Cancer Treatment. Int J Pharm 2022; 629:122373. [DOI: 10.1016/j.ijpharm.2022.122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
21
|
Cui Y, Li C, Sang F, Cao W, Qin Z, Zhang P. Natural products targeting glycolytic signaling pathways-an updated review on anti-cancer therapy. Front Pharmacol 2022; 13:1035882. [PMID: 36339566 PMCID: PMC9631946 DOI: 10.3389/fphar.2022.1035882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Glycolysis is a complex metabolic process that occurs to convert glucose into pyruvate to produce energy for living cells. Normal cells oxidized pyruvate into adenosine triphosphate and carbon dioxide in the presence of oxygen in mitochondria while cancer cells preferentially metabolize pyruvate to lactate even in the presence of oxygen in order to maintain a slightly acidic micro-environment of PH 6.5 and 6.9, which is beneficial for cancer cell growth and metastasis. Therefore targeting glycolytic signaling pathways provided new strategy for anti-cancer therapy. Natural products are important sources for the treatment of diseases with a variety of pharmacologic activities. Accumulated studies suggested that natural products exhibited remarkable anti-cancer properties both in vitro and in vivo. Plenty of studies suggested natural products like flavonoids, terpenoids and quinones played anti-cancer properties via inhibiting glucose metabolism targets in glycolytic pathways. This study provided an updated overview of natural products controlling glycolytic pathways, which also provide insight into druggable mediators discovery targeting cancer glucose metabolism.
Collapse
Affiliation(s)
- Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chuang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| | - Zhuo Qin
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| |
Collapse
|
22
|
Zhou J, Wang L, Peng C, Peng F. Co-Targeting Tumor Angiogenesis and Immunosuppressive Tumor Microenvironment: A Perspective in Ethnopharmacology. Front Pharmacol 2022; 13:886198. [PMID: 35784750 PMCID: PMC9242535 DOI: 10.3389/fphar.2022.886198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor angiogenesis is one of the most important processes of cancer deterioration via nurturing an immunosuppressive tumor environment (TME). Targeting tumor angiogenesis has been widely accepted as a cancer intervention approach, which is also synergistically associated with immune therapy. However, drug resistance is the biggest challenge of anti-angiogenesis therapy, which affects the outcomes of anti-angiogeneic agents, and even combined with immunotherapy. Here, emerging targets and representative candidate molecules from ethnopharmacology (including traditional Chinese medicine, TCM) have been focused, and they have been proved to regulate tumor angiogenesis. Further investigations on derivatives and delivery systems of these molecules will provide a comprehensive landscape in preclinical studies. More importantly, the molecule library of ethnopharmacology meets the viability for targeting angiogenesis and TME simultaneously, which is attributed to the pleiotropy of pro-angiogenic factors (such as VEGF) toward cancer cells, endothelial cells, and immune cells. We primarily shed light on the potentiality of ethnopharmacology against tumor angiogenesis, particularly TCM. More research studies concerning the crosstalk between angiogenesis and TME remodeling from the perspective of botanical medicine are awaited.
Collapse
Affiliation(s)
- Jianbo Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Cheng Peng,
| |
Collapse
|
23
|
Bai Y, Chen J, Hu W, Wang L, Wu Y, Yu S. Silibinin Therapy Improves Cholangiocarcinoma Outcomes by Regulating ERK/Mitochondrial Pathway. Front Pharmacol 2022; 13:847905. [PMID: 35401195 PMCID: PMC8983842 DOI: 10.3389/fphar.2022.847905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Silibinin is widely utilized drug in various cancer treatments, though its application in cholangiocarcinoma has not yet been explored. For the first time, we evaluated the anticancer potential and underlying molecular mechanism of silibinin in treatment of cholangiocarcinoma treatment. Methods: HuCCT-1 and CCLP-1 cells were chosen to be an in vitro study model and were exposed to various concentrations of silibinin for indicated times. Cell viability was evaluated by the cell counting kit-8 (CCK-8) assay and half maximal inhibitory (IC50) concentrations were calculated. Cell proliferation capacity was determined through the use of colony formation and 5-Ethynyl-2′- deoxyuridine (EdU) assays. Cell apoptosis and cycle arrest were assessed by Live/Dead staining assay and flow cytometry (FCM). The protein levels of extracellular regulated protein kinases (ERK)/mitochondrial apoptotic pathway were evaluated through western blotting (WB). Mitochondrial membrane potential changes were determined via 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1). A cholangiocarcinoma cell line xenograft model was used to assess the anti-tumor activity of silibinin in vivo. Results: Inhibition of the ERK protein by silibinin led to a significant decrease in mitochondrial membrane potential, which, in turn, caused Cytochrome C to be released from the mitochondria. The activation of downstream apoptotic pathways led to apoptosis of cholangiocarcinoma cells. In general, silibinin inhibited the growth of cholangiocarcinoma cell line xenograft tumors. Conclusions: Silibinin is able to inhibit cholangiocarcinoma through the ERK/mitochondrial apoptotic pathway, which makes silibinin a potential anti-tumor drug candidate for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Yang Bai
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiaqi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Weijian Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lei Wang
- Department of Urology Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| | - Shi’an Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| |
Collapse
|
24
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Deng X, Zou Y, Liu R, Peng Y, Ouyang C, Peng J, Lei X, Xie Z, Li C, Tang G. Discovery of a Potential Multi-Target Anti-Tumor Agent via Structural Modification on Flavonoid. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2021251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, P.R. China
| | - Yang Zou
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, P.R. China
| | - Renbo Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, P.R. China
| | - Yijiao Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, P.R. China
| | - Chenglin Ouyang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, P.R. China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, P.R. China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, P.R. China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, P.R. China
| | - Chong Li
- University of South China Affiliated Nanhua Hospital, Hengyang, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, P.R. China
| |
Collapse
|
26
|
Kim TW, Lee HG. Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells. Int J Mol Sci 2021; 22:ijms222413455. [PMID: 34948250 PMCID: PMC8706813 DOI: 10.3390/ijms222413455] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Hypoxia is a major obstacle to gastric cancer (GC) therapy and leads to chemoresistance as GC cells are frequently exposed to the hypoxia environment. Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines. However, detailed mechanisms involved in the treatment of GC using APG are not fully understood. In this study, we investigated the biological activity of and molecular mechanisms involved in APG-mediated treatment of GC under hypoxia. APG promoted autophagic cell death by increasing ATG5, LC3-II, and phosphorylation of AMPK and ULK1 and down-regulating p-mTOR and p62 in GC. Furthermore, our results show that APG induces autophagic cell death via the activation of the PERK signaling, indicating an endoplasmic reticulum (ER) stress response. The inhibition of ER stress suppressed APG-induced autophagy and conferred prolonged cell survival, indicating autophagic cell death. We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia. Taken together, our findings indicate that APG activates autophagic cell death by inhibiting HIF-1α and Ezh2 under hypoxia conditions in GC cells.
Collapse
Affiliation(s)
- Tae Woo Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul 130-701, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (T.W.K.); (H.G.L.); Tel.: +82-2-961-0329 (T.W.K.); +82-42-860-4182 (H.G.L.); Fax: +82-2-961-1165 (T.W.K.); +82-42-860-4593 (H.G.L.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (T.W.K.); (H.G.L.); Tel.: +82-2-961-0329 (T.W.K.); +82-42-860-4182 (H.G.L.); Fax: +82-2-961-1165 (T.W.K.); +82-42-860-4593 (H.G.L.)
| |
Collapse
|
27
|
Chou CH, Wang HK, Lin YC, Tsai DH, Lu MT, Ho CT, Hseu YC, Yang HL, Way TD. Bisdemethoxycurcumin Promotes Apoptosis and Inhibits the Epithelial-Mesenchymal Transition through the Inhibition of the G-Protein-Coupled Receptor 161/Mammalian Target of Rapamycin Signaling Pathway in Triple Negative Breast Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14557-14567. [PMID: 34813306 DOI: 10.1021/acs.jafc.1c05585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triple negative breast cancer (TNBC) is one of the leading causes of cancer death in the world and lacks an effective targeted therapy. G-protein-coupled receptor 161 (GPR161) has been demonstrated to perform the functional regulations on TNBC progression and might be a potential new target for TNBC therapy. This study showed the effects of bisdemethoxycurcumin (BDMC) on GPR161 regulation, indicating that BDMC effectively inhibited GPR161 expression and downregulated GPR161-driven signaling. BDMC showed the potent inhibitory effects on TNBC proliferation through suppressing GPR161-mediated mammalian target of rapamycin (mTOR)/70 kDa ribosomal protein S6 kinase (p70S6K) activation. Besides, in this study, we discover the mechanism of GPR161-driven TNBC metastasis, linking to GPR161-mediated twist-related protein 1 (Twist1)/matrix metallopeptidase 9 (MMP9) contributing to the epithelial-mesenchymal transition (EMT). BDMC effectively repressed GPR161-mediated TNBC metastasis via inhibiting Twist1/MMP9-induced EMT. The three-dimensional invasion assay also showed that BDMC significantly inhibited TNBC invasion. The combination treatment of BDMC and rapamycin enhanced the inhibition of TNBC proliferation and metastasis through increasing the blockage of mTOR activation. Furthermore, this study also observed that BDMC activated the caspase 3/9 signaling pathway to induce TNBC apoptosis. Therefore, BDMC could be applicable to anticancer therapy, especially targeting on the GPR161-driven cancer type.
Collapse
Affiliation(s)
- Chun-Hung Chou
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Hao-Kuang Wang
- Department of Neurosurgery, E-Da Hospital/I-Shou University, Kaohsiung 84001, Taiwan
- School of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
| | - Ying-Chao Lin
- Division of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taichung 427, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Dai-Hua Tsai
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Meng-Tien Lu
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Tzong-Der Way
- Ph.D. Program for Biotechnology Industry, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Health and Nutrition Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
28
|
Park SH, Kim S, Lee HS, Shin I. Real-Time Spatial and Temporal Analysis of the Translocation of the Apoptosis-Inducing Factor in Cells. ACS Chem Biol 2021; 16:2462-2471. [PMID: 34694772 DOI: 10.1021/acschembio.1c00565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translocation of the apoptosis-inducing factor (AIF) from the mitochondria to the nucleus is crucial for AIF-mediated apoptosis. However, the lack of methods for real-time spatial and temporal analysis of translocation of functional AIF is a large hurdle to gain a detailed understanding of this process. In this study, a genetic code expansion technique was developed to overcome this hurdle. Specifically, this technique was utilized to construct ANAP-AIF containing a small fluorescent amino acid (ANAP) at a specific site in cells. Additionally, we developed efficient fluorescence resonance energy-transfer systems consisting of ANAP-AIF and either yellow fluorescent protein (YFP)-fused cyclophilin A (CypA) or Hsp70, respective positive and negative regulators for AIF translocation to the nucleus. We found that apoptosis inducers, including apoptozole, 2-phenylethynesulfonamide (PES), myricetin, Bam7, reactivating p53 and inducing tumor apoptosis (RITA), brefeldin A, and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) promote translocation of mitochondrial AIF to the cytosol after 4 h incubation, reaching a maximum after 6-7 h. However, these substances did not enhance AIF translocation to the nucleus through the interaction of AIF with Hsp70 in the cytosol. On the other hand, treatment with apoptosis inducers, such as paclitaxel, silibinin, doxorubicin, actinomycin D, and camptothecin caused AIF translocation to the nucleus after 4 h incubation through AIF binding to CypA, reaching saturation after 6-7 h. It was also found that Hsp70 and CypA regulate AIF translocation in a mutually exclusive manner because they do not interact with AIF simultaneously in cells undergoing apoptosis. The results demonstrate clearly that ANAP-incorporated proteins are powerful to obtain a more in-depth understanding of protein translocation.
Collapse
Affiliation(s)
- Sang-Hyun Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
29
|
Zughaibi TA, Suhail M, Tarique M, Tabrez S. Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. Int J Mol Sci 2021; 22:12455. [PMID: 34830339 PMCID: PMC8621356 DOI: 10.3390/ijms222212455] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is, globally, one of the main causes of death. Even though various therapies are available, they are still painful because of their adverse side effects. Available treatments frequently fail due to unpromising responses, resistance to classical anticancer drugs, radiation therapy, chemotherapy, and low accessibility to tumor tissues. Developing novel strategies to minimize adverse side effects, improve chemotherapy sensitivity, and control cancer progression is needed. Many studies have suggested small dietary molecules as complementary treatments for cancer patients. Different components of herbal/edible plants, known as flavonoids, have recently garnered attention due to their broad biological properties (e.g., antioxidant, antiviral, antimicrobial, anti-inflammatory, anti-mutagenic, anticancer, hepatoprotective, and cardioprotective). These flavonoids have shown anticancer activity by affecting different signaling cascades. This article summarizes the key progress made in this area and discusses the role of flavonoids by specifically inhibiting the PI3K/Akt/mTOR pathway in various cancers.
Collapse
Affiliation(s)
- Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65201, USA;
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
31
|
Potential Mechanisms of Plant-Derived Natural Products in the Treatment of Cervical Cancer. Biomolecules 2021; 11:biom11101539. [PMID: 34680171 PMCID: PMC8533981 DOI: 10.3390/biom11101539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the second most common gynecological malignancy globally; it seriously endangers women’s health because of its high morbidity and mortality. Conventional treatments are prone to drug resistance, recurrence and metastasis. Therefore, there is an urgent need to develop new drugs with high efficacy and low side effects to prevent and treat cervical cancer. In recent years, plant-derived natural products have been evaluated as potential anticancer drugs that preferentially kill tumor cells without severe adverse effects. A growing number of studies have shown that natural products can achieve practical anti-cervical-cancer effects through multiple mechanisms, including inhibition of tumor-cell proliferation, induction of apoptosis, suppression of angiogenesis and telomerase activity, enhancement of immunity and reversal of multidrug resistance. This paper reviews the therapeutic effects and mechanisms of plant-derived natural products on cervical cancer and provides references for developing anti-cervical-cancer drugs with high efficacy and low side effects.
Collapse
|
32
|
Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, Rashidian A, Hamblin MR, Chamanara M, Naghsh N, Mirzaei H. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother 2021; 142:112024. [PMID: 34399200 PMCID: PMC8458260 DOI: 10.1016/j.biopha.2021.112024] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Silymarin contains a group of closely-related flavonolignan compounds including silibinin, and is extracted from Silybum marianum species, also called milk thistle. Silymarin has been shown to protect the liver in both experimental models and clinical studies. The chemopreventive activity of silymarin has shown some efficacy against cancer both in vitro and in vivo. Silymarin can modulate apoptosis in vitro and survival in vivo, by interfering with the expression of cell cycle regulators and apoptosis-associated proteins. In addition to its anti-metastatic activity, silymarin has also been reported to exhibit anti-inflammatory activity. The chemoprotective effects of silymarin and silibinin (its major constituent) suggest they could be applied to reduce the side effects and increase the anti-cancer effects of chemotherapy and radiotherapy in various cancer types, especially in gastrointestinal cancers. This review examines the recent studies and summarizes the mechanistic pathways and down-stream targets of silymarin in the therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran; Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Navid Naghsh
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
33
|
Du P, Luo K, Li G, Zhu J, Xiao Q, Li Y, Zhang X. PRMT4 promotes hepatocellular carcinoma progression by activating AKT/mTOR signaling and indicates poor prognosis. Int J Med Sci 2021; 18:3588-3598. [PMID: 34522186 PMCID: PMC8436100 DOI: 10.7150/ijms.62467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Protein arginine methyltransferase 4 (PRMT4) has been reported to play a role in several common cancers; however, the function and mechanism of PRMT4 in hepatocellular carcinoma (HCC) are not fully understood. This study aimed to investigate the role and mechanism of PRMT4 in the progression of HCC. Methods: PRMT4 expression and clinicopathological characteristics were investigated using an HCC tissue microarray (TMA) consisting of 140 patient samples analyzed by immunohistochemistry. CCK-8, crystal violet and Transwell assays were used to determine cell proliferation, colony formation, migration, and invasion of HCC cell lines in which PRMT4 was overexpressed or downregulated. The underlying mechanism of PRMT4 function was explored by Western blot assays. Results: PRMT4 was highly expressed in HCC tumor tissues compared to adjacent nontumor tissues. PRMT4 expression was significantly associated with alpha-fetoprotein levels, tumor size, satellite nodules, and microvascular invasion. Patients with higher PRMT4 expression had a shorter survival time and higher recurrence rate. Functional studies demonstrated that PRMT4 overexpression promoted HCC cell proliferation, migration, and invasion in vitro, while knocking down PRMT4 inhibited these malignant behaviors. Additional results revealed that PRMT4 promoted the progression of HCC cells via activation of the AKT/mTOR signaling pathway. Furthermore, inhibition of the AKT/mTOR signaling by MK2206 or rapamycin significantly attenuated PRMT4-mediated malignant phenotypes. Conclusions: This study suggests that PRMT4 may promote the progression of HCC cells by activating the AKT/mTOR signaling pathway, which may be a valuable biomarker and potential target for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xingjian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
34
|
Baby J, Devan AR, Kumar AR, Gorantla JN, Nair B, Aishwarya TS, Nath LR. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. J Food Biochem 2021; 45:e13761. [PMID: 34028054 DOI: 10.1111/jfbc.13761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/05/2023]
Abstract
Chemopreventive approaches with food-derived phytochemicals are progressively rising as a significant aspect of tumor management and control. Herein, we have showcased the major phytoconstituents belonging to the group of flavanoid, as anti-cancer agents used for the treatment and prevention of hepatocellular carcinoma (HCC). Sorafenib is the sole drug used for the treatment of advanced HCC, but its clinical application is limited because of its severe adverse effects and drug resistance. Diet-based chemoprevention seems to be the way forward for this disease of malignant nature. As HCC is derived from a chronic inflammatory milieu, the regular incorporation of bioactive phytochemicals in the diet will confer protection and prevent progression to hepatocarcinogenesis. Many preclinical studies proved that the health benefits of flavonoids confer cytotoxic potential against various types of cancers including hepatocellular carcinoma. As flavonoids with excellent safety profile are abundantly present in common vegetables and fruits, they can be better utilized for chemoprevention and chemosensitization in such chronic condition. This review highlights the plausible role of the eight most promising flavonoids (Curcumin, Kaempferol, Resveratrol, Quercetin, Silibinin, Baicalein, Galangin and Luteolin) as key orchestrators of chemoprevention in hepatocellular carcinoma with preclinical and clinical evidence. An attempt to address the challenges in its clinical translation is also included. This review also provides an insight into the close association of HCC and metabolic disorders which may further decipher the chemopreventive effect of dietary bioactive from a proof of concept to extensive clinical translation. PRACTICAL APPLICATIONS: According to GLOBOCAN 2020 database, it is estimated that 905,677 new cases of liver cancer and approximately 830,180 deaths related to that. The cancer incidence and mortality are almost similar as it is diagnosed at an advanced stage in patients where systemic drug therapy is the sole approach. Due to the emergence of multidrug resistance and drug-related toxicities, most of the patient can not adhere to the therapy regimen. Flavonoids are known to be a potential anticancer agent with an excellent safety profile. These are found to be effective preclinically against hepatocellular carcinoma through modulation of numerous pathways in hepatocarcinogenesis. But, the bioavailability issue, lack of well designed-validated clinical evidence, the possibility of food-drug interaction etc limit its clinical utility. The research inputs mainly to overcome pharmacokinetic issues along with suitable validation of efficacy and toxicity will be a critical point for establishing flavonoids as an effective, safe, affordable therapeutics.
Collapse
Affiliation(s)
- Jasmine Baby
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | | | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Thanatharayil Sathian Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
35
|
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene 2021; 798:145796. [PMID: 34175393 DOI: 10.1016/j.gene.2021.145796] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia induicible factor-1 alpha (HIF-1α) is a key transcription factor in cancer progression and target therapy in cancer. HIF-1α acts differently depending on presence or absence of Oxygen. In an oxygen-immersed environment, HIF-1α completely deactivated and destroyed by the ubiquitin proteasome pathway (UPP). In contrast, in the oxygen-free environment, it escapes destruction and enters to the nucleus of cells then upregulates many genes involved in cancer progression. Overexpressed HIF-1α and downstream genes support cancer progression through various mechanisms including angiogenesis, proliferation and survival of cells, metabolism reprogramming, invasion and metastasis, cancer stem cell maintenance, induction of genetic instability, and treatment resistance. HIF-1α can be provoked by signaling pathways unrelated to hypoxia during cancer progression. Therefore, cancer development and progression can be modulated by targeting HIF-1α and its downstream signaling molecules. In this regard, HIF-1α inhibitors which are categorized into the agents that regulate HIF-1α in gene, mRNA and protein levels used as an efficient way in cancer treatment. Also, HIF-1α expression can be negatively affected by the agents suppressing the activation of mTOR, PI3k/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Mohsen Rashid
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rostami Zadeh
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Ramezani
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Proanthocyanidins as a Potential Novel Way for the Treatment of Hemangioma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5695378. [PMID: 33490272 PMCID: PMC7801061 DOI: 10.1155/2021/5695378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 12/13/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Hemangioma, the most common benign vascular tumor, not only affects the appearance and psychology but also has a life-threatening potential. It is considered that clonal vascular endothelial cell proliferation and excessive angiogenesis are responsible for hemangioma pathogenesis, in which abnormal cytokines/pathways are closely implicated, primarily including high expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) as well as their downstream pathways, especially phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt). These further stimulate the migration and proliferation of vascular endothelial cells and promote the formation of new vessels, ultimately leading to the occurrence and development of hemangioma. Proanthocyanidins are naturally active substance from plants and fruits. They possess multiple functions like antiproliferation, antiangiogenesis, and antitumor. It has been demonstrated that proanthocyanidins effectively work in various diseases via inhibiting the expression of various factors, e.g., HIF-1α, VEGF, PI3K, and Akt. Considering the pathogenesis of hemangioma and the effect of proanthocyanidins, we hold a hypothesis that proanthocyanidins would be applied in hemangioma via downregulating cytokine/pathway expression, suppressing vascular cell proliferation and arrest abnormal angiogenesis. Taken together, proanthocyanidins may be a potential novel way for the treatment of hemangioma.
Collapse
|
37
|
Elyasi S. Silybum marianum, antioxidant activity, and cancer patients. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Kaipa JM, Starkuviene V, Erfle H, Eils R, Gladilin E. Transcriptome profiling reveals Silibinin dose-dependent response network in non-small lung cancer cells. PeerJ 2020; 8:e10373. [PMID: 33362957 PMCID: PMC7749657 DOI: 10.7717/peerj.10373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Silibinin (SIL), a natural flavonolignan from the milk thistle (Silybum marianum), is known to exhibit remarkable hepatoprotective, antineoplastic and EMT inhibiting effects in different cancer cells by targeting multiple molecular targets and pathways. However, the predominant majority of previous studies investigated effects of this phytocompound in a one particular cell line. Here, we carry out a systematic analysis of dose-dependent viability response to SIL in five non-small cell lung cancer (NSCLC) lines that gradually differ with respect to their intrinsic EMT stage. By correlating gene expression profiles of NSCLC cell lines with the pattern of their SIL IC50 response, a group of cell cycle, survival and stress responsive genes, including some prominent targets of STAT3 (BIRC5, FOXM1, BRCA1), was identified. The relevancy of these computationally selected genes to SIL viability response of NSCLC cells was confirmed by the transient knockdown test. In contrast to other EMT-inhibiting compounds, no correlation between the SIL IC50 and the intrinsic EMT stage of NSCLC cells was observed. Our experimental results show that SIL viability response of differently constituted NSCLC cells is linked to a subnetwork of tightly interconnected genes whose transcriptomic pattern can be used as a benchmark for assessment of individual SIL sensitivity instead of the conventional EMT signature. Insights gained in this study pave the way for optimization of customized adjuvant therapy of malignancies using Silibinin.
Collapse
Affiliation(s)
- Jagan Mohan Kaipa
- Helmholtz Center for Infection Research, Braunschweig, Germany.,BioQuant, University Heidelberg, Heidelberg, Germany.,Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, University Heidelberg, Heidelberg, Germany.,Institute of Biosciences, Vilnius University Life Science Center, Vilnius, Lithuania
| | - Holger Erfle
- BioQuant, University Heidelberg, Heidelberg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Evgeny Gladilin
- BioQuant, University Heidelberg, Heidelberg, Germany.,Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany.,Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
39
|
Wang D, Zhao W, Liu J, Wang Y, Yuan C, Zhang F, Jin G, Qin Q. Effects of HIF-1α on Spermatogenesis of Varicocele Rats by Regulating VEGF/PI3K/Akt Signaling Pathway. Reprod Sci 2020; 28:1161-1174. [PMID: 33237516 DOI: 10.1007/s43032-020-00395-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) participates in the regulation of spermatogenic function in rats with varicocele (VC), and the PI3K/Akt pathway plays an important role in it. In the present research, we applied the CRISPR/Cas9 gene editing technique to silence the HIF-1α gene of VC rat testis, to explore the effect of HIF-1α on apoptosis of spermatogenic cells in VC rats through the PI3K/Akt pathway. Sprague Dawley rats were randomly assigned to four groups, including the normal rat group (group N), VC model group (group V), VC + HIF-1α-lentivirus group (group H), and VC + luciferase-lentivirus group (group L). Apoptosis of spermatogenic cells in rat testis was tested by TUNEL Kit. The morphologic changes of seminiferous tubules were viewed by a light microscope. Expressions of VEGF, Akt, p-Akt, p70S6K, and p-p70S6K were detected by means of Western blot, immunofluorescence, or immunohistochemistry methods. One-way ANOVA was applied to analyze the diverseness between groups. Compared with group N, the distribution of germ cells was disordered, apoptosis of spermatogenic cells increased significantly, and the expression of VEGF, p-Akt, and p-p70S6K was also increased in group V. Compared with group V, the damage of seminiferous epithelium in group H was improved, and the arrangement of the seminiferous epithelium was almost orderly. Apoptosis of spermatogenic cells decreased significantly, and the expression of VEGF, p-Akt, and p-p70S6K protein was decreased (P < 0.05). There was no significant difference between group N and group H (P > 0.05).In conclusion, HIF-1α is regulated by hypoxia in rats with varicocele to regulate its downstream gene VEGF which regulates spermatogenesis, and the PI3K/Akt signaling pathway plays a regulatory role in this process.
Collapse
Affiliation(s)
- Danfeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Wei Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan, 030001, Shanxi, China
| | - Jianrong Liu
- Department of Reproductive Medical, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, 29 Shuangtasi Street, Taiyuan, 030012, Shanxi, China
| | - Yimin Wang
- Department of Central Laboratory, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, 29 Shuangtasi Street, Taiyuan, 030012, Shanxi, China
| | - Caixia Yuan
- Department of Reproductive Medical, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, 29 Shuangtasi Street, Taiyuan, 030012, Shanxi, China
| | - Fang Zhang
- Department of Central Laboratory, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, 29 Shuangtasi Street, Taiyuan, 030012, Shanxi, China
| | - Guorong Jin
- Department of Central Laboratory, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, 29 Shuangtasi Street, Taiyuan, 030012, Shanxi, China
| | - Qin Qin
- Department of Reproductive Medical, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, 29 Shuangtasi Street, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
40
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 524] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
41
|
Yang CY, Tsao CH, Hsieh CC, Lin CK, Lin CS, Li YH, Chang WC, Cheng JC, Lin GJ, Sytwu HK, Wang YL, Chen YW. Downregulation of Jumonji-C domain-containing protein 5 inhibits proliferation by silibinin in the oral cancer PDTX model. PLoS One 2020; 15:e0236101. [PMID: 32678829 PMCID: PMC7367477 DOI: 10.1371/journal.pone.0236101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of histone demethylase Jumonji-C domain-containing protein 5 (JMJD5) has been identified as a great effect on tumorigenesis. Silibinin is a commonly used anti-hepatotoxic drug and exhibits anticancer effect in various cancers. However, the antitumor mechanism between silibinin and JMJD5 in oral squamous cell carcinoma (OSCC) remains unclear. In this study, the clinical significance of JMJD5 on OSCC patients was assessed through tissue microarray. Furthermore, mice bearing patient-derived tumor xenografts (PDTXs) and tongue cancer cell lines were treated with silibinin and evaluated for tumor growth and JMJD5 expression. High expression of JMJD5 in oral cancer was significantly associated with tumor size (P = 0.0241), cervical node metastasis (P = 0.0001) and clinical stage (P = 0.0002), was associated with worse survival rate compared with that of the total cohort (P = 0.0002). Collectively the data indicate that JMJD5 expression may be suitable for detection of unfavorable prognosis in OSCC patients, based in part on its apparent role as a marker of metastasis. In addition, silibinin inhibits cancer growth in vitro and in PDTX models. Furthermore, metastasis-associated protein 1 (MTA1) could regulate the expression for JMJD5 and had a positive correlation with JMJD5. Moreover, silibinin could downregulate JMJD5 and MTA1 in oral cancer. Present study thus identifies that JMJD5 might be an essential prognostic indicator and therapeutic target against OSCC progression. In addition, silibinin is a potential candidate among novel chemotherapeutic agents or adjuvants for modulating JMJD5 in OSCC, through a mechanism likely involving MTA1/JMJD5 axis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Humans
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Prognosis
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Silybin/pharmacology
- Survival Rate
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Cheng-Yu Yang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Chang-Huei Tsao
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Cheng-Chih Hsieh
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, Taipei, Taiwan, R.O.C
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Yu-Hsuan Li
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Wei-Chin Chang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Jen-Chen Cheng
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, R.O.C
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan, R.O.C
| | - Yin-Lai Wang
- Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
42
|
Deng X, Pi Y, Li Z, Xiong R, Liu J, Zhao J, Xie Z, Lei X, Tang G. FB-15 inhibits MGC-803 cells growth by regulating energy metabolism. Chem Biol Interact 2020; 327:109186. [PMID: 32590071 DOI: 10.1016/j.cbi.2020.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
In this study, we scrutinized the anticancer effects of FB-15 on human gastric carcinoma MGC-803 cells in vitro and vivo, and its preliminary effect on tubulin and HIF-1α. We confirmed that FB-15 not only inhibited the proliferation of a large number of cells in a concentration and time-dependent manner but also inhibited proliferation of a single cell to form clones. FB-15 manifested little cytotoxicity for normal stomach cells GES-1. The flow cytometry analysis displayed that FB-15 induced apoptosis MGC-803 cells and mainly arrested cells in the S phase in a concentration-dependent manner. The results of the wound healing assay indicated that FB-15 suppressed cell migration. Furthermore, the western blotting showed that FB-15 down-regulated the expression of β3-tubulin and HIF-1α, consistent with Immunohistochemical assay. The binding modes of FB-15 with tubulin were clarified by molecular docking. FB-15 significantly suppressed the growth of MGC-803 gastric cancer tumors. The inhibitory effect of FB-15 on tumor growth was superior to 5-Fu. Taken together, these results provided evidence for FB-15 to be used as an effective anticancer drug candidate for gastric cancer.
Collapse
Affiliation(s)
- Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Yiyuan Pi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China; Xiangnan University, Chenzhou City, Hunan Province, PR China
| | - Zhongli Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
43
|
Iqbal MA, Chattopadhyay S, Siddiqui FA, Ur Rehman A, Siddiqui S, Prakasam G, Khan A, Sultana S, Bamezai RN. Silibinin induces metabolic crisis in triple-negative breast cancer cells by modulating EGFR-MYC-TXNIP axis: potential therapeutic implications. FEBS J 2020; 288:471-485. [PMID: 32356386 DOI: 10.1111/febs.15353] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with limited treatment modalities and poor prognosis. Metabolic reprogramming in cancer is considered a hallmark of therapeutic relevance. Here, we report disruption of metabolic reprogramming in TNBC cells by silibinin via modulation of EGFR-MYC-TXNIP signaling. Metabolic assays combined with LC-MS-based metabolomics revealed inhibition of glycolysis and other key biosynthetic pathways by silibinin, to induce metabolic catastrophe in TNBC cells. Silibinin-induced metabolic suppression resulted in decreased cell biomass, proliferation, and stem cell properties. Mechanistically, we identify EGFR-MYC-TXNIP as an important regulator of TNBC metabolism and mediator of inhibitory effects of silibinin. Highlighting the clinical relevance of our observations, the analysis of METABRIC dataset revealed deregulation of EGFR-MYC-TXNIP axis in TNBC and association of EGFRhigh -MYChigh -TXNIPlow signature with aggressive glycolytic metabolism and poor disease-specific and metastasis-free survival. Importantly, combination treatment of silibinin or 2-deoxyglucose (glycolysis inhibitor) with paclitaxel synergistically inhibited proliferation of TNBC cells. Together, our results highlight the importance of EGFR-MYC-TXNIP axis in regulating TNBC metabolism, demonstrate the anti-TNBC activity of silibinin, and argue in favor of targeting metabolic vulnerabilities of TNBC, at least in combination with mainstay chemotherapeutic drugs, to effectively treat TNBC patients.
Collapse
Affiliation(s)
- Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Shilpi Chattopadhyay
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), New Delhi, India
| | - Farid Ahmad Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Turku Centre for Biotechnology, University of Turku and Abo Akademi, Biocity, Finland
| | - Asad Ur Rehman
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sarwat Sultana
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), New Delhi, India
| | | |
Collapse
|
44
|
Bizzarri M, Giuliani A, Cucina A, Minini M. Redifferentiation therapeutic strategies in cancer. Drug Discov Today 2020; 25:731-738. [PMID: 32027971 DOI: 10.1016/j.drudis.2020.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
The widely recognized problems of pharmacological strategies based on killing cancer cells demand a rethink of therapeutic approaches. Tumor reversion strategies that aim to shift cancer cells to a healthy differentiated state are a promising alternative. Although many studies have firmly demonstrated the possibility of reverting cancer to a normal differentiated state, we are still unable (with the exception of retinoic acid in a form of leukemia) to revert cancer cells to a stable differentiated healthy state. Here, we review the main biological bases of redifferentiation strategies and provide a description of the most promising research avenues.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; Systems Biology Group Lab, Sapienza University, Rome, Italy.
| | | | - Alessandra Cucina
- Department of Surgery 'Pietro Valdoni', Sapienza University of Rome, 00161 Rome, Italy; Azienda Policlinico Umberto I, 00161 Rome, Italy
| | - Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; Department of Surgery 'Pietro Valdoni', Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
45
|
Wu RM, Jiang B, Li H, Dang WZ, Bao WL, Li HD, Ye G, Shen X. A network pharmacology approach to discover action mechanisms of Yangxinshi Tablet for improving energy metabolism in chronic ischemic heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112227. [PMID: 31509780 DOI: 10.1016/j.jep.2019.112227] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Most cardiovascular diseases ultimately result in heart failure, an intractable problem in modern medicine. Yangxinshi tablet (YXS) is a Chinese medicine formula that is used clinically to treat coronary heart disease. However, the active compounds, potential targets, and pharmacological and molecular mechanism of its anti-heart failure activity remain unclear. Therefore, further investigation is required. AIM OF STUDY Active ingredients and potential targets of YXS for treating heart failure have been reported previously. However, the molecular functions or biological processes of YXS in energy metabolism have not been discovered. To date, no experimental study to validate the potential anti-heart failure mechanism of YXS. The aim of this study was to study the therapeutic effect of YXS on rats with chronic ischemic heart failure by evaluating rat cardiac function and exercise tolerance, and to explore its potential mechanism by network pharmacology, western blotting, quantitative RT-PCR and histological analysis. MATERIALS AND METHODS In this investigation, chronic ischemic heart failure rats were randomly assigned to five groups: control group (sham operation), model group (0.5% CMC-Na), trimetazidine group (positive control) and two YXS groups (low- and high-dose groups). Experimental rats were treated by gavage with 10 mg/kg/d (clinical equivalent dose) trimetazidine (TMZ), 500 mg/kg/d (clinical equivalent dose) YXS and 1000 mg/kg/d YXS, respectively, for 5 weeks. The cardiac functions of rats were detected by High-Resolution In Vivo Imaging System. We elucidated novel understanding of the active compounds of YXS in rat plasma and predicted the energy metabolism related targets and processes for heart failure. Then, we validated experimentally the targets and mechanism of YXS on these pathological processes in vivo. RESULTS It was found that YXS was able to effectively improve cardiac LVIDs, LVEDV, LVESV and EF, decrease myocardial oxygen consumption and reduce myocardial infarct size in rats with chronic ischemic heart failure was similar to that of TMZ. We identified 63 major candidate targets for YXS that are closely to heart failure progression. Enrichment analysis revealed key targets for YXS associated to oxygen delivery, glucose utilization, and mitochondrial biogenesis. Meanwhile, we validated that YXS could promote the expression of downstream HIF-1α, PGC1α and GLUT4 by increasing phosphorylation of PI3K, Akt, mTOR, rpS6 and AMPK. The results show that YXS could activate related PI3K/Akt/mTOR/rpS6/HIF-1α and AMPK/PGC1α/GLUT4 signaling pathways in chronic ischemic heart failure rats. Further experiments demonstrated that YXS increased mitochondrial biogenesis in chronic ischemic heart failure rats and improved exercise tolerance CONCLUSION: YXS treated chronic ischemic heart failure through activating its targets which play pivotal roles in oxygen delivery, glucose utilization and mitochondrial biogenesis to improve energy metabolism through a multi-component, multi-level, multi-target, multi-pathway and multi-mechanism approaches.
Collapse
Affiliation(s)
- Ruo-Ming Wu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd, Shanghai, China
| | - Bing Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wen-Zhen Dang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei-Lian Bao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hai-Dong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
Takke A, Shende P. Nanotherapeutic silibinin: An insight of phytomedicine in healthcare reformation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102057. [PMID: 31340181 DOI: 10.1016/j.nano.2019.102057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Most of the herbal origin drugs possess water insoluble active constituents which lower the bioavailability and increase systemic clearance after administration of repeated or higher dose of drug. Silymarin is extracted from the seeds and fruits of milk thistle plant Silybum marianum which consists of main biologically active component as silibinin. However, the clinical applications of silibinin show some limitations due to low aqueous solubility, poor penetration into the epithelial cells of intestine, high metabolism and rapid systemic elimination. But nanotechnology-based drug delivery system explores great potential for phytochemicals to enhance the aqueous solubility and bioavailability of BCS class II and IV drugs, improve stability and modify the pharmacological activity. This review focuses on the therapeutic properties of silibinin and discusses the benefits, challenges and applications of silibinin nanoformulations. Such nanotherapeutic system as a regular medicine will be an attractive approach to reduce the adverse events and toxicities of current therapies.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai, India.
| |
Collapse
|
47
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
Carvalho TM, Cardoso HJ, Figueira MI, Vaz CV, Socorro S. The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. Eur J Med Chem 2019; 171:343-363. [PMID: 30928707 DOI: 10.1016/j.ejmech.2019.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The last decade has witnessed the peculiarities of metabolic reprogramming in tumour onset and progression, and their relevance in cancer therapy. Also, it has been indicated that the metastatic process may depend on the metabolic rewiring and adaptation of cancer cells to the pressure of tumour microenvironment and limiting nutrient availability. The present review gatherers the existent knowledge on the influence of tumour microenvironment and metabolic routes driving metastasis. A focus will be given to glycolysis, fatty acid metabolism, glutaminolysis, and amino acid handling. In addition, the role of metabolic waste driving metastasization will be explored. Finally, we discuss the status of cancer treatment approaches targeting metabolism. This knowledge revision will highlight the critical metabolic targets in metastasis and the chemicals already used in preclinical studies and clinical trials, providing clues that would be further exploited in medicinal chemistry research.
Collapse
Affiliation(s)
- Tiago Ma Carvalho
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
49
|
Zhu M, Jiang L, Yuan Y, Chen L, Liu X, Liang J, Zhu Q, Ding D, Song E. Intravitreal Ets1 siRNA alleviates choroidal neovascularization in a mouse model of age-related macular degeneration. Cell Tissue Res 2019; 376:341-351. [PMID: 30834976 DOI: 10.1007/s00441-019-03001-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
Choroidal neovascularization (CNV) is the basic feature of neovascular age-related macular degeneration (AMD), the leading cause of blindness in elders. Macrophages and microglia promote CNV via producing pro-angiogenic factors and inflammatory cytokines. Transcription factor E26 transformation specific-1 (Ets1) plays a pro-angiogenic role via its pro-inflammatory function. In this study, Ets1 increased and localized in the macrophages and microglia of a mouse laser-induced CNV region. Ets1 siRNA intravitreal injection ameliorated the leakage and area of CNV, as well as inhibiting the dysfunction of retinal pigment epithelium (RPE) cells and the activation of macrophages/microglia. Taken together, we provide a new insight into the molecular mechanism of CNV progression, in which Ets1 can be a new therapeutic target.
Collapse
Affiliation(s)
- Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China
| | - You Yuan
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Chen
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Juan Liang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiujian Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongmei Ding
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China.
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
50
|
Deng X, Li Z, Xiong R, Liu J, Liu R, Peng J, Chen Y, Lei X, Cao X, Zheng X, Xie Z, Tang G. FS-7 inhibits MGC-803 cells growth in vitro and in vivo via down-regulating glycolysis. Biomed Pharmacother 2019; 109:1659-1669. [DOI: 10.1016/j.biopha.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
|