1
|
García-Flores N, Jiménez-Suárez J, Garnés-García C, Fernández-Aroca DM, Sabater S, Andrés I, Fernández-Aramburo A, Ruiz-Hidalgo MJ, Belandia B, Sanchez-Prieto R, Cimas FJ. P38 MAPK and Radiotherapy: Foes or Friends? Cancers (Basel) 2023; 15:861. [PMID: 36765819 PMCID: PMC9913882 DOI: 10.3390/cancers15030861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last 30 years, the study of the cellular response to ionizing radiation (IR) has increased exponentially. Among the various signaling pathways affected by IR, p38 MAPK has been shown to be activated both in vitro and in vivo, with involvement in key processes triggered by IR-mediated genotoxic insult, such as the cell cycle, apoptosis or senescence. However, we do not yet have a definitive clue about the role of p38 MAPK in terms of radioresistance/sensitivity and its potential use to improve current radiotherapy. In this review, we summarize the current knowledge on this family of MAPKs in response to IR as well as in different aspects related to radiotherapy, such as their role in the control of REDOX, fibrosis, and in the radiosensitizing effect of several compounds.
Collapse
Affiliation(s)
- Natalia García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Jaime Jiménez-Suárez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Cristina Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Sebastia Sabater
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Ignacio Andrés
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Antonio Fernández-Aramburo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Servicio de Oncología Médica, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
| | - Ricardo Sanchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Francisco J. Cimas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
2
|
Teixeira PC, Ducret A, Langen H, Nogoceke E, Santos RHB, Silva Nunes JP, Benvenuti L, Levy D, Bydlowski SP, Bocchi EA, Kuramoto Takara A, Fiorelli AI, Stolf NA, Pomeranzeff P, Chevillard C, Kalil J, Cunha-Neto E. Impairment of Multiple Mitochondrial Energy Metabolism Pathways in the Heart of Chagas Disease Cardiomyopathy Patients. Front Immunol 2021; 12:755782. [PMID: 34867990 PMCID: PMC8633876 DOI: 10.3389/fimmu.2021.755782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy occurring in 30% of the 6 million infected with the protozoan Trypanosoma cruzi in Latin America. Survival is significantly lower in CCC than ischemic (IC) and idiopathic dilated cardiomyopathy (DCM). Previous studies disclosed a selective decrease in mitochondrial ATP synthase alpha expression and creatine kinase activity in CCC myocardium as compared to IDC and IC, as well as decreased in vivo myocardial ATP production. Aiming to identify additional constraints in energy metabolism specific to CCC, we performed a proteomic study in myocardial tissue samples from CCC, IC and DCM obtained at transplantation, in comparison with control myocardial tissue samples from organ donors. Left ventricle free wall myocardial samples were subject to two-dimensional electrophoresis with fluorescent labeling (2D-DIGE) and protein identification by mass spectrometry. We found altered expression of proteins related to mitochondrial energy metabolism, cardiac remodeling, and oxidative stress in the 3 patient groups. Pathways analysis of proteins differentially expressed in CCC disclosed mitochondrial dysfunction, fatty acid metabolism and transmembrane potential of mitochondria. CCC patients’ myocardium displayed reduced expression of 22 mitochondrial proteins belonging to energy metabolism pathways, as compared to 17 in DCM and 3 in IC. Significantly, 6 beta-oxidation enzymes were reduced in CCC, while only 2 of them were down-regulated in DCM and 1 in IC. We also observed that the cytokine IFN-gamma, previously described with increased levels in CCC, reduces mitochondrial membrane potential in cardiomyocytes. Results suggest a major reduction of mitochondrial energy metabolism and mitochondrial dysfunction in CCC myocardium which may be in part linked to IFN-gamma. This may partially explain the worse prognosis of CCC as compared to DCM or IC.
Collapse
Affiliation(s)
- Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Axel Ducret
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Hanno Langen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Everson Nogoceke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | | | - João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Luiz Benvenuti
- Anatomical Pathology Division, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Levy
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- Heart Failure Team, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andréia Kuramoto Takara
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alfredo Inácio Fiorelli
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Noedir Antonio Stolf
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pablo Pomeranzeff
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Christophe Chevillard
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| |
Collapse
|
3
|
Kim E, Han SY, Hwang K, Kim D, Kim EM, Hossain MA, Kim JH, Cho JY. Antioxidant and Cytoprotective Effects of (-)-Epigallocatechin-3-(3″- O-methyl) Gallate. Int J Mol Sci 2019; 20:ijms20163993. [PMID: 31426336 PMCID: PMC6719974 DOI: 10.3390/ijms20163993] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/23/2023] Open
Abstract
Reactive oxygen species (ROS) are generated from diverse cellular processes or external sources such as chemicals, pollutants, or ultraviolet (UV) irradiation. Accumulation of radicals causes cell damage that can result in degenerative diseases. Antioxidants remove radicals by eliminating unpaired electrons from other molecules. In skin health, antioxidants are essential to protect cells from the environment and prevent skin aging. (-)-Epigallocatechin-3-(3″-O-methyl) gallate (3″Me-EGCG) has been found in limited oolong teas or green teas with distinctive methylated form, but its precise activities have not been fully elucidated. In this study, we examined the antioxidant roles of 3″Me-EGCG in keratinocytes (HaCaT cells). 3″Me-EGCG showed scavenging effects in cell and cell-free systems. Under H2O2 exposure, 3″Me-EGCG recovered cell viability and increased the expression of heme oxygenase 1 (HO-1). Under ultraviolet B (UVB) and sodium nitroprusside (SNP) exposure, 3″Me-EGCG protected keratinocytes and regulated the survival protein AKT1. By regulating the AKT1/NF-κB pathway, 3″Me-EGCG augmented cell survival and proliferation in HaCaT cells. These results indicate that 3″Me-EGCG exhibits antioxidant properties, resulting in cytoprotection against various external stimuli. In conclusion, our findings suggest that 3″Me-EGCG can be used as an ingredient of cosmetic products or health supplements.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Yun Han
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Daewoong Pharmaceutical Co., Yongin 17028, Korea
| | - Kyeonghwan Hwang
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | - Donghyun Kim
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | - Eun-Mi Kim
- Basic Research & Innovation vision, R&D Center, AmorePacific Corporation, Yongin 17074, Korea
| | | | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
4
|
Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice. PLoS One 2017; 12:e0174042. [PMID: 28301572 PMCID: PMC5354422 DOI: 10.1371/journal.pone.0174042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
Ultraviolet (UV) induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Collagen, which is one of the main building blocks of human skin, is regulated by collagen synthesis and collagen breakdown. Autophagy was found to block the epidermal hyperproliferative response to UVB and may play a crucial role in preventing skin photoaging. In the present study, we investigated whether far-infrared (FIR) therapy can inhibit skin photoaging via UVB irradiation in NIH 3T3 mouse embryonic fibroblasts and SKH-1 hairless mice. We found that FIR treatment significantly increased procollagen type I through the induction of the TGF-β/Smad axis. Furthermore, UVB significantly enhanced the expression of matrix metalloproteinase-1 (MMP-1) and MMP-9. FIR inhibited UVB-induced MMP-1 and MMP-9. Treatment with FIR reversed UVB-decreased type I collagen. In addition, FIR induced autophagy by inhibiting the Akt/mTOR signaling pathway. In UVB-induced skin photoaging in a hairless mouse model, FIR treatment resulted in decreased skin thickness in UVB irradiated mice and inhibited the degradation of collagen fibers. Moreover, FIR can increase procollagen type I via the inhibition of MMP-9 and induction of TGF-β in skin tissues. Therefore, our study provides evidence for the beneficial effects of FIR exposure in a model of skin photoaging.
Collapse
|
5
|
Chen S, Liu Y, Rong X, Li Y, Zhou J, Lu L. Neuroprotective Role of the PI3 Kinase/Akt Signaling Pathway in Zebrafish. Front Endocrinol (Lausanne) 2017; 8:21. [PMID: 28228749 PMCID: PMC5296330 DOI: 10.3389/fendo.2017.00021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/23/2017] [Indexed: 12/27/2022] Open
Abstract
Neuronal survival and growth in the embryo is controlled partly by trophic factors. For most trophic factors (such as Insulin-like growth factor-1), the ability to regulate cell survival has been attributed to the phosphoinositide 3-kinase (PI3K)/Akt kinase cascade. This study presents data illustrating the role of PI3K/Akt in attainment of normal brain size during zebrafish embryogenesis. Blocking PI3K with inhibitor LY294002 caused a significant reduction in brain size (in addition to global growth retardation) during zebrafish embryogenesis. This PI3 Kinase inhibition-induced brain size decrease was recovered by the overexpression of myristoylated Akt (myr-Akt), a constitutive form of Akt. Further analysis reveals that expressing exogenous myr-Akt significantly augmented brain size. Whole mount in situ hybridization analysis of several marker genes showed that myr-Akt overexpression did not alter brain patterning. Furthermore, the expression of myr-Akt was found to protect neuronal cells from apoptosis induced by heat shock and UV light, suggesting that inhibition of neuronal cell death may be part of the underlying cause of the increased brain size. These data provide a foundation for addressing the role of PI3K/Akt in brain growth during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Shuang Chen
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- *Correspondence: Ling Lu,
| |
Collapse
|
6
|
Abstract
Previous studies in rat hepatocytes have shown that the MEK/ERK, PI3K/Akt and p38 pathways are all involved in the activation of DNA synthesis by EGF and that sustained activation of MEK/ERK is required. Here, we show that although HGF stimulated DNA synthesis and activated signaling in the same manner as EGF, the contribution of the signaling pathways to the induction of DNA synthesis differed. While HGF-induced DNA synthesis was dependent on MEK/ERK, with no significant contribution from PI3K/Akt, p38 suppressed HGF-induced DNA synthesis. The p38 inhibitor SB203580 increased HGF-induced DNA synthesis and enhanced the phosphorylation of ERK. In contrast, SB203580 decreased EGF-induced ERK phosphorylation. This suggests that p38 has distinct effects on DNA synthesis induced by EGF and HGF. Due to differential regulation of signaling through the MEK/ERK pathway, p38 acts as an enhancer of EGF-induced DNA synthesis and as a suppressor of HGF-induced DNA synthesis.
Collapse
Affiliation(s)
- Monica Aasrum
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo and Oslo University Hospital , Oslo , Norway
| | - Ingvild J Brusevold
- b Department of Oral Biology and Department of Paediatric Dentistry and Behavioural Science , Faculty of Dentistry, University of Oslo , Oslo , Norway , and
| | - Thoralf Christoffersen
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo and Oslo University Hospital , Oslo , Norway
| | - G Hege Thoresen
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo and Oslo University Hospital , Oslo , Norway
- c Department of Pharmaceutical Biosciences , School of Pharmacy, University of Oslo , Oslo , Norway
| |
Collapse
|
7
|
Kim M, Kim YY, Jee HJ, Bae SS, Jeong NY, Um JH, Yun J. Akt3 knockdown induces mitochondrial dysfunction in human cancer cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:447-53. [PMID: 26972278 DOI: 10.1093/abbs/gmw014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/12/2016] [Indexed: 11/15/2022] Open
Abstract
Akt/PKB plays a pivotal role in cell proliferation and survival. However, the isotype-specific roles of Akt in mitochondrial function have not been fully addressed. In this study, we explored the role of Akt in mitochondrial function after stable knockdown of the Akt isoforms in EJ human bladder cancer cells. We found that the mitochondrial mass was significantly increased in the Akt1- and Akt3-knockdown cells, and this increase was accompanied by an increase in TFAM and NRF1. Akt2 knockdown did not cause a similar effect. Interestingly, Akt3 knockdown also led to severe structural defects in the mitochondria, an increase in doxorubicin-induced senescence, and impairment of cell proliferation in galactose medium. Consistent with these observations, the mitochondrial oxygen consumption rate was significantly reduced in the Akt3-knockdown cells. An Akt3 deficiency-induced decrease in mitochondrial respiration was also observed in A549 lung cancer cells. Collectively, these results suggest that the Akt isoforms play distinct roles in mitochondrial function and that Akt3 is critical for proper mitochondrial respiration in human cancer cells.
Collapse
Affiliation(s)
- Minjee Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 607-714, Republic of Korea Institute of Convergence Bio-Health, Dong-A University, Busan 607-714, Republic of Korea
| | - Young Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 607-714, Republic of Korea Institute of Convergence Bio-Health, Dong-A University, Busan 607-714, Republic of Korea
| | - Hye Jin Jee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 607-714, Republic of Korea Institute of Convergence Bio-Health, Dong-A University, Busan 607-714, Republic of Korea
| | - Sun Sik Bae
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan-si 602-739, Republic of Korea
| | - Na Young Jeong
- Institute of Convergence Bio-Health, Dong-A University, Busan 607-714, Republic of Korea Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea
| | - Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 607-714, Republic of Korea Institute of Convergence Bio-Health, Dong-A University, Busan 607-714, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 607-714, Republic of Korea Institute of Convergence Bio-Health, Dong-A University, Busan 607-714, Republic of Korea
| |
Collapse
|
8
|
A Switch in Akt Isoforms Is Required for Notch-Induced Snail1 Expression and Protection from Cell Death. Mol Cell Biol 2015; 36:923-40. [PMID: 26711268 DOI: 10.1128/mcb.01074-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 12/23/2015] [Indexed: 01/18/2023] Open
Abstract
Notch activation in aortic endothelial cells (ECs) takes place at embryonic stages during cardiac valve formation and induces endothelial-to-mesenchymal transition (EndMT). Using aortic ECs, we show here that active Notch expression promotes EndMT, resulting in downregulation of vascular endothelial cadherin (VE-cadherin) and upregulation of mesenchymal genes such as those for fibronectin and Snail1/2. In these cells, transforming growth factor β1 exacerbates Notch effects by increasing Snail1 and fibronectin activation. When Notch-downstream pathways were analyzed, we detected an increase in glycogen synthase kinase 3β (GSK-3β) phosphorylation and inactivation that facilitates Snail1 nuclear retention and protein stabilization. However, the total activity of Akt was downregulated. The discrepancy between Akt activity and GSK-3β phosphorylation is explained by a Notch-induced switch in the Akt isoforms, whereby Akt1, the predominant isoform expressed in ECs, is decreased and Akt2 transcription is upregulated. Mechanistically, Akt2 induction requires the stimulation of the β-catenin/TCF4 transcriptional complex, which activates the Akt2 promoter. Active, phosphorylated Akt2 translocates to the nucleus in Notch-expressing cells, resulting in GSK-3β inactivation in this compartment. Akt2, but not Akt1, colocalizes in the nucleus with lamin B in the nuclear envelope. In addition to promoting GSK-3β inactivation, Notch downregulates Forkhead box O1 (FoxO1), another Akt2 nuclear substrate. Moreover, Notch protects ECs from oxidative stress-induced apoptosis through an Akt2- and Snail1-dependent mechanism.
Collapse
|
9
|
Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:539172. [PMID: 26185518 PMCID: PMC4491581 DOI: 10.1155/2015/539172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 12/28/2022]
Abstract
Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.
Collapse
|
10
|
Balagula Y, Kang S, Patel MJ. Synergism between mTOR pathway and ultraviolet radiation in the pathogenesis of squamous cell carcinoma and its implication for solid-organ transplant recipients. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2014; 31:15-25. [PMID: 24517835 DOI: 10.1111/phpp.12115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 12/22/2022]
Abstract
Nonmelanoma skin cancers (NMSCs) are the most common malignancies in the United States in immunocompetent patients. Among the solid-organ transplant recipients, NMSCs represent a significant disease burden, and they tend to be multiple and more aggressive. While the precise mechanisms responsible for the higher risk of developing cutaneous squamous cell carcinomas (SCCs) have not been completely elucidated, ultraviolet (UV) light has been established to be critical in initiation and promotion of tumor development. More recently, significant emphasis has been placed on the role of the mammalian target of rapamycin (mTOR) pathway in SCC pathogenesis. Furthermore, some studies have demonstrated the ability of mTOR inhibitors to decrease the incidence of new SCCs in the immunosuppressed transplanted patient population. In this review, we will highlight and examine the most recent available data on the role of UV radiation and its interaction with mTOR pathway signaling in SCC pathogenesis.
Collapse
Affiliation(s)
- Yevgeniy Balagula
- Department of Dermatology, Johns Hopkins Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
11
|
Shen YH, Zhang L, Ren P, Nguyen MT, Zou S, Wu D, Wang XL, Coselli JS, LeMaire SA. AKT2 confers protection against aortic aneurysms and dissections. Circ Res 2012; 112:618-32. [PMID: 23250987 DOI: 10.1161/circresaha.112.300735] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE Aortic aneurysm and dissection (AAD) are major diseases of the adult aorta caused by progressive medial degeneration of the aortic wall. Although the overproduction of destructive factors promotes tissue damage and disease progression, the role of protective pathways is unknown. OBJECTIVE In this study, we examined the role of AKT2 in protecting the aorta from developing AAD. METHODS AND RESULTS AKT2 and phospho-AKT levels were significantly downregulated in human thoracic AAD tissues, especially within the degenerative medial layer. Akt2-deficient mice showed abnormal elastic fibers and reduced medial thickness in the aortic wall. When challenged with angiotensin II, these mice developed aortic aneurysm, dissection, and rupture with features similar to those in humans, in both thoracic and abdominal segments. Aortas from Akt2-deficient mice displayed profound tissue destruction, apoptotic cell death, and inflammatory cell infiltration that were not observed in aortas from wild-type mice. In addition, angiotensin II-infused Akt2-deficient mice showed significantly elevated expression of matrix metalloproteinase-9 (MMP-9) and reduced expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). In cultured human aortic vascular smooth muscle cells, AKT2 inhibited the expression of MMP-9 and stimulated the expression of TIMP-1 by preventing the binding of transcription factor forkhead box protein O1 to the MMP-9 and TIMP-1 promoters. CONCLUSIONS Impaired AKT2 signaling may contribute to increased susceptibility to the development of AAD. Our findings provide evidence of a mechanism that underlies the protective effects of AKT2 on the aortic wall and that may serve as a therapeutic target in the prevention of AAD.
Collapse
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang L, Sun S, Zhou J, Liu J, Lv JH, Yu XQ, Li C, Gong L, Yan Q, Deng M, Xiao L, Ma H, Liu JP, Peng YL, Wang D, Liao GP, Zou LJ, Liu WB, Xiao YM, Li DWC. Knockdown of Akt1 promotes Akt2 upregulation and resistance to oxidative-stress-induced apoptosis through control of multiple signaling pathways. Antioxid Redox Signal 2011; 15:1-17. [PMID: 21303257 PMCID: PMC3110099 DOI: 10.1089/ars.2010.3560] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Akt signaling pathway plays a key role in promoting the survival of various types of cells from stress-induced apoptosis, and different members of the Akt family display distinct physiological roles. Previous studies have shown that in response to UV irradiation, Akt2 is sensitized to counteract the induced apoptosis. However, in response to oxidative stress such as hydrogen peroxide, it remains to be elucidated what member of the Akt family would be activated to initiate the signaling cascades leading to resistance of the induced apoptosis. In the present study, we present the first evidence that knockdown of Akt1 enhances cell survival under exposure to 50 μM H(2)O(2). This survival is derived from selective upregulation and activation of Akt2 but not Akt3, which initiates 3 major signaling cascades. First, murine double minute 2 (MDM2) is hyperphosphorylated, which promotes p53 degradation and attenuates its Ser-15 phosphorylation, significantly attenuating Bcl-2 homologous antagonist killer (Bak) upregulation. Second, Akt2 activation inactivates glycogen synthase kinase 3 beta (GSK-3β) to promote stability of myeloid leukemia cell differentiation protein 1 (MCL-1). Finally, Akt2 activation promotes phosphorylation of FOXO3A toward cytosolic export and thus downregulates Bim expression. Overexpression of Bim enhances H(2)O(2)-induced apoptosis. Together, our results demonstrate that among the Akt family members, Akt2 is an essential kinase in counteracting oxidative-stress-induced apoptosis through multiple signaling pathways.
Collapse
Affiliation(s)
- Lan Zhang
- University of Nebraska Medical Center, Omaha, 68198-5870, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cheng I, Lin YC, Hwang E, Huang HT, Chang WH, Liu YL, Chao CY. Collagen VI protects against neuronal apoptosis elicited by ultraviolet irradiation via an Akt/Phosphatidylinositol 3-kinase signaling pathway. Neuroscience 2011; 183:178-88. [DOI: 10.1016/j.neuroscience.2011.03.057] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 11/15/2022]
|
14
|
Abstract
The p38 MAPK (mitogen-activated protein kinase) signalling pathway allows cells to interpret a wide range of external signals and respond appropriately by generating a plethora of different biological effects. The diversity and specificity in cellular outcomes is achieved with an apparently simple linear architecture of the pathway, consisting of a core of three protein kinases acting sequentially. In the present review, we dissect the molecular mechanisms underlying p38 MAPK functions, with special emphasis on the activation and regulation of the core kinases, the interplay with other signalling pathways and the nature of p38 MAPK substrates as a source of functional diversity. Finally, we discuss how genetic mouse models are facilitating the identification of physiological functions for p38 MAPKs, which may impinge on their eventual use as therapeutic targets.
Collapse
|
15
|
Lin SY, Hsueh CM, Yu SL, Su CC, Shum WY, Yeh KC, Chang GC, Chen JJW. HLJ1 is a novel caspase-3 substrate and its expression enhances UV-induced apoptosis in non-small cell lung carcinoma. Nucleic Acids Res 2010; 38:6148-58. [PMID: 20494979 PMCID: PMC2952861 DOI: 10.1093/nar/gkq412] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Carcinogenesis is determined based on both cell proliferation and death rates. Recent studies demonstrate that heat shock proteins (HSPs) regulate apoptosis. HLJ1, a member of the DnaJ-like Hsp40 family, is a newly identified tumor suppressor protein closely related to relapse and survival in non-small cell lung cancer (NSCLC) patients. However, its role in apoptosis is currently unknown. In this study, NSCLC cell lines displaying varying HLJ1 expression levels were subjected to ultraviolet (UV) irradiation, followed by flow cytometry. Interestingly, the percentages of apoptotic cells in the seven cell lines examined were positively correlated with HLJ1 expression. Enforcing expression of HLJ1 in low-HLJ1 expressing highly invasive cells promoted UV-induced apoptosis through enhancing JNK and caspase-3 activation in NSCLC. Additionally, UV irradiation led to reduced levels of HLJ1 predominantly in apoptotic cells. The pan-caspase inhibitor, zVAD-fmk and caspase-3-specific inhibitor, DEVD-fmk, prevented UV-induced degradation of HLJ1 by the late stage of apoptosis. Further experiments revealed a non-typical caspase-3 cleavage site (MEID) at amino acid 125-128 of HLJ1. Our results collectively suggest that HLJ1 is a novel substrate of caspase-3 during the UV-induced apoptotic process.
Collapse
Affiliation(s)
- Sheng-Yi Lin
- Department of Life Science, Institutes of Biomedical Sciences and Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Foley NH, Bray IM, Tivnan A, Bryan K, Murphy DM, Buckley PG, Ryan J, O'Meara A, O'Sullivan M, Stallings RL. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer 2010; 9:83. [PMID: 20409325 PMCID: PMC2864218 DOI: 10.1186/1476-4598-9-83] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/21/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. RESULTS We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. CONCLUSIONS MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer.
Collapse
Affiliation(s)
- Niamh H Foley
- Department of Cancer Genetics, Royal College of Surgeons in Ireland, York House, York Street, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J 2009; 29:281-91. [PMID: 20033063 DOI: 10.1038/emboj.2009.376] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/23/2009] [Indexed: 12/29/2022] Open
Abstract
Dynamic interactions of cells with their environment regulate multiple aspects of tissue morphogenesis and function. Integrins are the major class of cell surface receptors that recognize and bind extracellular matrix proteins, resulting in the engagement and organization of the cytoskeleton as well as activation of signalling pathways to regulate cell behaviour and morphogenetic processes. The ternary complex of integrin-linked kinase (ILK), PINCH, and parvin (IPP complex), which was identified more than a decade ago, interacts with the cytoplasmic tail of beta integrins and couples them to the actin cytoskeleton. In addition, ILK has been shown to act as a serine/threonine kinase and to directly activate several signalling pathways downstream of integrins. However, the kinase activity of ILK and the precise functions of the IPP complex have remained elusive and controversial. This review focuses on the recent advances made towards understanding the specialized roles this complex and its individual components have acquired during evolution.
Collapse
|
18
|
Jee HJ, Kim HJ, Kim AJ, Bae YS, Bae SS, Yun J. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS. Biochem Biophys Res Commun 2009; 383:358-62. [DOI: 10.1016/j.bbrc.2009.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 04/04/2009] [Indexed: 01/14/2023]
|
19
|
Abstract
Breast cancers can be classified into those which express the estrogen (ER) and progesterone (PR) receptors, those with HER-2 amplification, and those without expression of ER, PR, or amplified HER-2 (referred to as triple-negative or basal-like breast cancer). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activates apoptosis upon binding to its receptors in many tumor types and the ligand and agonist antibodies are currently being studied in patients in clinical phases I and II trials. Cell line studies suggest that many breast cancer cell lines are very resistant to TRAIL-induced apoptosis. However, recent data suggest that a subset of triple-negative/basal-like breast cancer cells is sensitive to TRAIL as a single agent. In addition, many studies have demonstrated that resistance to TRAIL-mediated apoptosis in breast cancer cells can be overcome by combinations of TRAIL with chemotherapy, radiation, and various targeted agents. This chapter will discuss the current understanding of the mechanisms, which control TRAIL-mediated apoptosis in breast cancer cells. The preclinical data supporting the use of TRAIL ligands and agonistic antibodies alone and in combination in breast cancer will also be discussed.
Collapse
Affiliation(s)
- Monzur Rahman
- Department of Pediatric Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|