1
|
Gharaee N, Wegrzyn-Woltosz J, Jiang J, Akhade VS, Bridgers J, Stubbins RJ, Hiwase D, Kutyna MM, Chan O, Komrokji R, Padron E, Deng Y, Cole G, Umlandt P, Fuller M, Kim A, Karsan A. Haploinsufficiency of miR-143 and miR-145 reveal targetable dependencies in resistant del(5q) myelodysplastic neoplasm. Leukemia 2025; 39:917-928. [PMID: 40000845 PMCID: PMC11976265 DOI: 10.1038/s41375-025-02537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Myelodysplastic neoplasms (MDS) are stem cell disorders characterized by ineffective hematopoiesis and risk of transformation to acute myeloid leukemia (AML). Chromosomal alterations are frequent in MDS, with interstitial deletion of chromosome 5q (del(5q)) being the most common. Lenalidomide is the current first-line treatment for del(5q) MDS and its efficacy relies on degradation of CK1α which is encoded by the CSNK1A1 gene located in the commonly deleted region (CDR) of chromosome 5q. However, lenalidomide-resistance is common, often secondary to loss-of-function mutations in TP53 or RUNX1. The CDR in del(5q) harbors several genes, including noncoding miRNAs, the loss of which contribute to disease phenotypes. miR-143 and miR-145 are located within the del(5q) CDR, but precise understanding of their role in human hematopoiesis and in the pathogenesis of del(5q) MDS is lacking. Here we provide evidence that deficiency of miR-143 and miR-145 plays a role in clonal expansion of del(5q) MDS. We show that insulin-like growth factor 1 receptor (IGF-1R) is a direct target of both miR-143 and miR-145. Our data demonstrate that IGF-1R inhibition reduces proliferation and viability of del(5q) cells in vitro and in vivo, and that lenalidomide-resistant del(5q) MDS cells depleted of either TP53 or RUNX1 are sensitive to IGF-1R inhibition. Resistant del(5q) MDS-L cells, as well as primary MDS marrow cells, are also sensitive to targeting of IGF-1R-related dependencies in del(5q) MDS, which include the Abl and MAPK signaling pathways. This work thus provides potential new therapeutic avenues for lenalidomide-resistant del(5q) MDS.
Collapse
Affiliation(s)
- Nadia Gharaee
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanna Wegrzyn-Woltosz
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jihong Jiang
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vijay Suresh Akhade
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Joshua Bridgers
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ryan J Stubbins
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Leukemia/BMT Program of BC, BC Cancer and Vancouver Coastal Health, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Devendra Hiwase
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Monika M Kutyna
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | | | | | - Yu Deng
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gary Cole
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Patricia Umlandt
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Megan Fuller
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ada Kim
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada.
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Okabe S, Arai Y, Gotoh A. Targeting the insulin-like growth factor-1 receptor to overcome imatinib resistance in chronic myeloid leukemia. Discov Oncol 2024; 15:835. [PMID: 39719486 DOI: 10.1007/s12672-024-01706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Patients with chronic myeloid leukemia (CML) frequently develop resistance to tyrosine kinase inhibitors such as imatinib. In this study, we explored the role of the insulin-like growth factor 1 (IGF-1) signaling pathway in CML and imatinib resistance. An analysis of IGF-1 gene expression using public databases revealed elevated levels of insulin-like growth factor-binding proteins in patients with chronic-phase CML. Further research revealed that IGF-1-related genes were upregulated in patients who were unresponsive to imatinib, suggesting that IGF-1 signaling plays a role in the resistance mechanism. Furthermore, we evaluated the efficacy of linsitinib, a selective insulin-like growth factor-1 receptor (IGF-1R) inhibitor, in inhibiting the growth of CML cell lines, including imatinib-resistant cell lines, and observed a notable decrease in cell viability and an increase in cytotoxicity. The combination of imatinib and linsitinib reduced cell viability and increased caspase-3/7 activity in imatinib-resistant cells. Moreover, silencing of IGF-1R by small interfering ribonucleic acid increased the sensitivity of CML cell lines to imatinib, indicating that IGF-1R could be a strategic target for overcoming resistance. These findings highlight the therapeutic potential of linsitinib and that IGF-1R inhibition may improve the treatment outcomes of patients with imatinib-resistant CML.
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| | - Yuya Arai
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| |
Collapse
|
3
|
Minciacchi VR, Bravo J, Karantanou C, Pereira RS, Zanetti C, Kumar R, Thomasberger N, Llavona P, Krack T, Bankov K, Meister M, Hartmann S, Maguer-Satta V, Lefort S, Putyrski M, Ernst A, Huntly BJP, Meduri E, Ruf W, Krause DS. Exploitation of the fibrinolytic system by B-cell acute lymphoblastic leukemia and its therapeutic targeting. Nat Commun 2024; 15:10059. [PMID: 39567540 PMCID: PMC11579293 DOI: 10.1038/s41467-024-54361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Fibrinolysis influences the mobilization of hematopoietic stem cells from their bone marrow microenvironment (BMM). Here we show that activation of plasmin, a key fibrinolytic agent, by annexin A2 (ANXA2) distinctly impacts progression of BCR-ABL1+ B-cell acute lymphoblastic leukemia (B-ALL) via modulation of the extracellular matrix (ECM) in the BMM. The dense ECM in a BMM with decreased plasmin activity entraps insulin-like growth factor (IGF) 1 and reduces mTORC2-dependent signaling and proliferation of B-ALL cells. Conversely, B-ALL conditions the BMM to induce hepatic generation of plasminogen, the plasmin precursor. Treatment with ε-aminocaproic acid (EACA), which inhibits plasmin activation, reduces tumor burden and prolongs survival, including in xenogeneic models via increased fibronectin in the BMM. Human data confirm that IGF1 and fibronectin staining in trephine biopsies are correlated. Our studies suggest that fibrinolysis-mediated ECM remodeling and subsequent growth factor release influence B-ALL progression and inhibition of this process by EACA may be beneficial as adjunct therapy.
Collapse
Affiliation(s)
- Valentina R Minciacchi
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Jimena Bravo
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Christina Karantanou
- Department of Vascular Dysfunction - Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Raquel S Pereira
- Institute for Experimental Pediatric Hematology and Oncology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Costanza Zanetti
- Division of mRNA Cancer Immunotherapy, Helmholtz Institute for Translational Oncology Mainz, Mainz, Germany
| | - Rahul Kumar
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | | | | | - Theresa Krack
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Katrin Bankov
- Department of Pediatrics (Hematology/Oncology), Charité-Universitätsmedizin, Berlin, Germany
| | | | - Sylvia Hartmann
- Department of Pathology, Goethe University, Frankfurt am Main, Germany
| | | | - Sylvain Lefort
- CRCL, Inserm U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Mateusz Putyrski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Andreas Ernst
- Pharmazentrum/ZAFES Frankfurt, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Daniela S Krause
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
5
|
Pokorny R, Stenehjem DD, Gilreath JA. Impact of metformin on tyrosine kinase inhibitor response in chronic myeloid leukemia. J Oncol Pharm Pract 2022; 28:916-923. [PMID: 35132891 PMCID: PMC9047107 DOI: 10.1177/10781552221077254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective Oral tyrosine kinase inhibitors (TKIs) are first line therapy for chronic myeloid leukemia (CML). A complete cytogenetic response (CCyR) correlates with increased overall survival, however only 66%–88% of patients achieve CCyR after one year of TKI treatment. Because TKI therapy alone cannot eliminate CML stem cells, strategies aimed at achieving faster and deeper responses are needed to improve long-term survival. Metformin is a widely prescribed glucose-lowering agent for patients with diabetes and in preclinical studies, has been shown to suppress cell viability, induce apoptosis, and downregulate the mTORC1 signaling pathway in imatinib resistant CML cell lines (K562R). This study aims to investigate the utility of metformin added to TKI therapy in patients with CML. Data Sources An observational study at an academic medical center (Salt Lake City, UT) was performed for adults with newly diagnosed, chronic-phase CML to evaluate attainment of CCyR from TKI therapy with or without concomitant metformin use. Descriptive analyses were used to describe baseline characteristics and attainment of response to TKI therapy. Data Summary Fifty-nine patients were evaluated. One hundred percent (5 of 5) in the metformin group and 73.6% (39 of 54) in the non-metformin group achieved CCyR. Approximately 20% of patients in both groups relapsed (defined by a loss of CCyR during study) after a median 34.5 months of follow-up. Conclusions Future research is warranted to validate these findings and determine the utility of metformin added to TKI therapy.
Collapse
Affiliation(s)
- Rebecca Pokorny
- Department of Pharmacy, 20270Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David D Stenehjem
- Department of Pharmacy Practice and Pharmaceutical Sciences, 14713University of Minnesota, College of Pharmacy, Duluth, MN, USA
| | - Jeffrey A Gilreath
- Department of Pharmacotherapy, College of Pharmacy and 20270Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Liao F, Chen Y, Wu Q, Wen J, Chen X, Wang W, Xu D, Liu M. Selective elimination of CML stem/progenitor cells by picropodophyllin in vitro and in vivo is associated with p53 activation. Biochem Biophys Res Commun 2021; 579:1-7. [PMID: 34571387 DOI: 10.1016/j.bbrc.2021.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematologic malignancy originating from BCR-ABL oncogene-transformed hematopoietic stem cells (HSCs) known as leukemia stem cells (LSCs). Therefore, targeting LSCs is of primary importance to eradicate CML. The present study demonstrates that picropodophyllin (PPP) effectively induces apoptosis and inhibits colony formation in CML stem/progenitor cells as well as quiescent CML progenitors resistant to imatinib therapy, while sparing normal hematopoietic cells in vitro. Administration of PPP in vivo markedly diminishes CML stem/progenitor cells in a transgenic mouse model of CML by inhibition of cell proliferation and enhancement of apoptosis in LSK cells, and significantly improves survival of CML mice. Furthermore, PPP treatment preferentially leads to transcriptional activation of p53 in CML but not normal CD34+ cells, upregulation of p53 protein in LSCs-enriched Sca-1+ cells from CML mice, and increased phosphorylation of p53 and upregulation of Bax protein in Ku812 cells. These results suggest that the inhibitory effects of PPP on CML stem/progenitor cells are associated with selective activation of p53 pathway and propose that PPP is a potent agent that selectively targets CML LSCs, and may be of value in the CML therapy.
Collapse
Affiliation(s)
- Fenfang Liao
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Yongheng Chen
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Qingqing Wu
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Jiaqi Wen
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Xiangjie Chen
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Weizhang Wang
- School of Life Sciences and Biopharmaceutical, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.
| | - Manyu Liu
- School of Food Sciences, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, People's Republic of China.
| |
Collapse
|
7
|
Hallal M, Braga-Lagache S, Jankovic J, Simillion C, Bruggmann R, Uldry AC, Allam R, Heller M, Bonadies N. Inference of kinase-signaling networks in human myeloid cell line models by Phosphoproteomics using kinase activity enrichment analysis (KAEA). BMC Cancer 2021; 21:789. [PMID: 34238254 PMCID: PMC8268341 DOI: 10.1186/s12885-021-08479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite the introduction of targeted therapies, most patients with myeloid malignancies will not be cured and progress. Genomics is useful to elucidate the mutational landscape but remains limited in the prediction of therapeutic outcome and identification of targets for resistance. Dysregulation of phosphorylation-based signaling pathways is a hallmark of cancer, and therefore, kinase-inhibitors are playing an increasingly important role as targeted treatments. Untargeted phosphoproteomics analysis pipelines have been published but show limitations in inferring kinase-activities and identifying potential biomarkers of response and resistance. METHODS We developed a phosphoproteomics workflow based on titanium dioxide phosphopeptide enrichment with subsequent analysis by liquid chromatography tandem mass spectrometry (LC-MS). We applied a novel Kinase-Activity Enrichment Analysis (KAEA) pipeline on differential phosphoproteomics profiles, which is based on the recently published SetRank enrichment algorithm with reduced false positive rates. Kinase activities were inferred by this algorithm using an extensive reference database comprising five experimentally validated kinase-substrate meta-databases complemented with the NetworKIN in-silico prediction tool. For the proof of concept, we used human myeloid cell lines (K562, NB4, THP1, OCI-AML3, MOLM13 and MV4-11) with known oncogenic drivers and exposed them to clinically established kinase-inhibitors. RESULTS Biologically meaningful over- and under-active kinases were identified by KAEA in the unperturbed human myeloid cell lines (K562, NB4, THP1, OCI-AML3 and MOLM13). To increase the inhibition signal of the driving oncogenic kinases, we exposed the K562 (BCR-ABL1) and MOLM13/MV4-11 (FLT3-ITD) cell lines to either Nilotinib or Midostaurin kinase inhibitors, respectively. We observed correct detection of expected direct (ABL, KIT, SRC) and indirect (MAPK) targets of Nilotinib in K562 as well as indirect (PRKC, MAPK, AKT, RPS6K) targets of Midostaurin in MOLM13/MV4-11, respectively. Moreover, our pipeline was able to characterize unexplored kinase-activities within the corresponding signaling networks. CONCLUSIONS We developed and validated a novel KAEA pipeline for the analysis of differential phosphoproteomics MS profiling data. We provide translational researchers with an improved instrument to characterize the biological behavior of kinases in response or resistance to targeted treatment. Further investigations are warranted to determine the utility of KAEA to characterize mechanisms of disease progression and treatment failure using primary patient samples.
Collapse
Affiliation(s)
- Mahmoud Hallal
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sophie Braga-Lagache
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jovana Jankovic
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ramanjaneyulu Allam
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Scopim-Ribeiro R, Machado-Neto JA, Eide CA, Coelho-Silva JL, Fenerich BA, Fernandes JC, Scheucher PS, Savage Stevens SL, de Melo Campos P, Olalla Saad ST, de Carvalho Palma L, de Figueiredo-Pontes LL, Simões BP, Rego EM, Tognon CE, Druker BJ, Traina F. NT157, an IGF1R-IRS1/2 inhibitor, exhibits antineoplastic effects in pre-clinical models of chronic myeloid leukemia. Invest New Drugs 2021; 39:736-746. [PMID: 33403501 DOI: 10.1007/s10637-020-01028-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022]
Abstract
Chronic myeloid leukemia (CML) is successfully treated with BCR-ABL1 tyrosine kinase inhibitors, but a significant percentage of patients develop resistance. Insulin receptor substrate 1 (IRS1) has been shown to constitutively associate with BCR-ABL1, and IRS1-specific silencing leads to antineoplastic effects in CML cell lines. Here, we characterized the efficacy of NT157, a pharmacological inhibitor of IGF1R-IRS1/2, in CML cells and observed significantly reduced cell viability and proliferation, accompanied by induction of apoptosis. In human K562 cells and in murine Ba/F3 cells, engineered to express either wild-type BCR-ABL1 or the imatinib-resistant BCR-ABL1T315I mutant, NT157 inhibited BCR-ABL1, IGF1R, IRS1/2, PI3K/AKT/mTOR, and STAT3/5 signaling, increased CDKN1A, FOS and JUN tumor suppressor gene expression, and reduced MYC and BCL2 oncogenes. NT157 significantly reduced colony formation of human primary CML cells with minimal effect on normal hematopoietic cells. Exposure of primary CML cells harboring BCR-ABL1T315I to NT157 resulted in increased apoptosis, reduced cell proliferation and decreased phospho-CRKL levels. In conclusion, NT157 has antineoplastic effects on BCR-ABL1 leukemogenesis, independent of T315I mutational status.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic
- Humans
- Imatinib Mesylate/pharmacology
- Insulin Receptor Substrate Proteins/antagonists & inhibitors
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mice
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrogallol/analogs & derivatives
- Pyrogallol/pharmacology
- Pyrogallol/therapeutic use
- Receptor, IGF Type 1/antagonists & inhibitors
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Renata Scopim-Ribeiro
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - João Agostinho Machado-Neto
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Juan Luiz Coelho-Silva
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Bruna Alves Fenerich
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Jaqueline Cristina Fernandes
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Priscila Santos Scheucher
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | | | - Paula de Melo Campos
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro UNICAMP, Campinas, São Paulo, Brazil
| | - Sara T Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro UNICAMP, Campinas, São Paulo, Brazil
| | - Leonardo de Carvalho Palma
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Lorena Lobo de Figueiredo-Pontes
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Belinda Pinto Simões
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Magalhães Rego
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
- Hematology Division, LIM31, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Fabiola Traina
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020; 13:64. [PMID: 32493414 PMCID: PMC7268628 DOI: 10.1186/s13045-020-00904-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases. Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance. Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the strategies for future development of the IGF axis-targeted agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Yagi K, Shimada A, Sendo T. Pharmacological inhibition of JAK3 enhances the antitumor activity of imatinib in human chronic myeloid leukemia. Eur J Pharmacol 2018; 825:28-33. [DOI: 10.1016/j.ejphar.2018.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 12/25/2022]
|
11
|
Tabbò F, Pizzi M, Kyriakides PW, Ruggeri B, Inghirami G. Oncogenic kinase fusions: an evolving arena with innovative clinical opportunities. Oncotarget 2018; 7:25064-86. [PMID: 26943776 PMCID: PMC5041889 DOI: 10.18632/oncotarget.7853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/24/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer biology relies on intrinsic and extrinsic deregulated pathways, involving a plethora of intra-cellular and extra-cellular components. Tyrosine kinases are frequently deregulated genes, whose aberrant expression is often caused by major cytogenetic events (e.g. chromosomal translocations). The resulting tyrosine kinase fusions (TKFs) prompt the activation of oncogenic pathways, determining the biological and clinical features of the associated tumors. First reported half a century ago, oncogenic TKFs are now found in a large series of hematologic and solid tumors. The molecular basis of TKFs has been thoroughly investigated and tailored therapies against recurrent TKFs have recently been developed. This review illustrates the biology of oncogenic TKFs and their role in solid as well as hematological malignancies. We also address the therapeutic implications of TKFs and the many open issues concerning their clinical impact.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marco Pizzi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Peter W Kyriakides
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bruce Ruggeri
- Pre-Clinical Discovery Biology, Incyte Corporation, Wilmington, DE, USA
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Fu S, Tang H, Liao Y, Xu Q, Liu C, Deng Y, Wang J, Wang J, Fu X. Expression and clinical significance of insulin-like growth factor 1 in lung cancer tissues and perioperative circulation from patients with non-small-cell lung cancer. ACTA ACUST UNITED AC 2016; 23:12-9. [PMID: 26966399 DOI: 10.3747/co.23.2669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We explored the role of insulin-like growth factor 1 (igf-1) in the development of lung cancer. METHODS We used immunohistochemistry to measure the expression of igf-1 and igf-1 receptor (igf-1r) in specimens of tissue and perioperative circulation from 80 patients with primary non-small-cell lung cancer (nsclc) and from 45 patients with benign pulmonary lesions (bpls). Correlations of those measurements with clinicopathologic characteristics and clinical follow-up were analyzed. Circulating igf-1 was measured before and after surgery in all patients. RESULTS Compared with bpl specimens, nsclc specimens showed overexpression of igf-1and igf-1r (p < 0.001). The expression levels of igf-1 and igf-1r were significantly associated with advanced-stage disease (p = 0.034 and 0.029 respectively) and lymph node metastasis (p = 0.012 and 0.017 respectively), and expression of igf-1 correlated with tumour differentiation and tumour diameter (p = 0.011 and 0.021 respectively). Specimens positive for igf-1 or igf-1r were significantly correlated with shorter patient survival (p = 0.0012 and 0.0016 respectively). After surgery, circulating igf-1 was significantly elevated in patients with bpl (p = 0.0346) and significantly lower in patients with nsclc (p = 0.0030), especially in those with advanced-stage disease, a larger tumour size, regional lymphoid node metastasis, or lesser differentiation (p = 0.0092, 0.0051, 0.0131, and p < 0.001 respectively). CONCLUSIONS In nsclc, igf-1 and igf-1r are upregulated, and expression of those factors is correlated with tumour progression and prognosis in nsclc patients. Radical resection of nsclc can directly influence the serum concentration of igf-1. Autocrine/paracrine igf-1 might be playing an important role in the development of lung cancer.
Collapse
Affiliation(s)
- S Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R.C
| | - H Tang
- Intensive Care Unit, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R.C
| | - Y Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R.C
| | - Q Xu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R.C
| | - C Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R.C
| | - Y Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R.C
| | - J Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R.C
| | - J Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R.C
| | - X Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R.C
| |
Collapse
|
13
|
Van Landeghem L, Santoro MA, Mah AT, Krebs AE, Dehmer JJ, McNaughton KK, Helmrath MA, Magness ST, Lund PK. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations. FASEB J 2015; 29:2828-42. [PMID: 25837582 DOI: 10.1096/fj.14-264010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/06/2015] [Indexed: 01/24/2023]
Abstract
Insulin-like growth factor 1 (IGF1) has potent trophic effects on normal or injured intestinal epithelium, but specific effects on intestinal stem cells (ISCs) are undefined. We used Sox9-enhanced green fluorescent protein (EGFP) reporter mice that permit analyses of both actively cycling ISCs (Sox9-EGFP(Low)) and reserve/facultative ISCs (Sox9-EGFP(High)) to study IGF1 action on ISCs in normal intestine or during crypt regeneration after high-dose radiation-induced injury. We hypothesized that IGF1 differentially regulates proliferation and gene expression in actively cycling and reserve/facultative ISCs. IGF1 was delivered for 5 days using subcutaneously implanted mini-pumps in uninjured mice or after 14 Gy abdominal radiation. ISC numbers, proliferation, and transcriptome were assessed. IGF1 increased epithelial growth in nonirradiated mice and enhanced crypt regeneration after radiation. In uninjured and regenerating intestines, IGF1 increased total numbers of Sox9-EGFP(Low) ISCs and percentage of these cells in M-phase. IGF1 increased percentages of Sox9-EGFP(High) ISCs in S-phase but did not expand this population. Microarray revealed that IGF1 activated distinct gene expression signatures in the 2 Sox9-EGFP ISC populations. In vitro IGF1 enhanced enteroid formation by Sox9-EGFP(High) facultative ISCs but not Sox9-EGFP(Low) actively cycling ISCs. Our data provide new evidence that IGF1 activates 2 ISC populations via distinct regulatory pathways to promote growth of normal intestinal epithelium and crypt regeneration after irradiation.
Collapse
Affiliation(s)
- Laurianne Van Landeghem
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - M Agostina Santoro
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Amanda T Mah
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Adrienne E Krebs
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Jeffrey J Dehmer
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Kirk K McNaughton
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Michael A Helmrath
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Scott T Magness
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - P Kay Lund
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Xie J, Chen X, Zheng J, Li C, Stacy S, Holzenberger M, Hu X, Zhang CC. IGF-IR determines the fates of BCR/ABL leukemia. J Hematol Oncol 2015; 8:3. [PMID: 25648584 PMCID: PMC4320836 DOI: 10.1186/s13045-015-0106-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/05/2015] [Indexed: 11/13/2022] Open
Abstract
Background The tyrosine kinase receptor insulin-like growth factor 1 receptor (IGF-IR) contributes to the initiation and progression of many types of malignancies. We previously showed that IGF-2, which binds IGF-IR, is an extrinsic factor that supports the ex vivo expansion of hematopoietic stem cells (HSCs). We also demonstrated that IGF-IR is not required for HSC activity in vivo. Methods and results Here we investigated the role of IGF-IR in chronic myeloid leukemia (CML) using the retroviral BCR/ABL transplantation mouse model. Existing antibodies against IGF-IR are not suitable for flow cytometry; therefore, we generated a fusion of the human IgG Fc fragment with mutant IGF-2 that can bind to IGF-IR. We used this fusion protein to evaluate mouse primary hematopoietic populations. Through transplantation assays with IGF-IR+ and IGF-IR− cells, we demonstrated that IGF-IR is expressed on all mouse HSCs. The expression of IGF-IR is much higher on CML cells than on acute lymphoblastic leukemia (ALL) cells. The depletion of IGF-IR expression in BCR/ABL+ cells led to the development of ALL (mostly T cell ALL) but not CML. Lack of IGF-IR resulted in decreased self-renewal of the BCR/ABL+ CML cells in the serial replating assay. Conclusion IGF-IR regulates the cell fate determination of BCR/ABL+ leukemia cells and supports the self-renewal of CML cells.
Collapse
Affiliation(s)
- Jingjing Xie
- Taishan Scholar Immunology Program, Binzhou Medical University, 264003, Yantai, Shandong, China.
| | - Xiaoli Chen
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA.
| | - Junke Zheng
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA.
| | - Chunling Li
- Taishan Scholar Immunology Program, Binzhou Medical University, 264003, Yantai, Shandong, China.
| | - Satomi Stacy
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA.
| | - Martin Holzenberger
- INSERM and Sorbonne Universities, UPMC, Research Center UMR938, 75012, Paris, France.
| | - Xuemei Hu
- Taishan Scholar Immunology Program, Binzhou Medical University, 264003, Yantai, Shandong, China.
| | - Cheng Cheng Zhang
- Taishan Scholar Immunology Program, Binzhou Medical University, 264003, Yantai, Shandong, China. .,Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA.
| |
Collapse
|
15
|
Bharathikumar VM, Barreto K, Decoteau JF, Geyer CR. Allosteric lariat peptide inhibitors of Abl kinase. Chembiochem 2013; 14:2119-25. [PMID: 24030821 DOI: 10.1002/cbic.201300253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 11/06/2022]
Abstract
Going against tradition: although most kinase inhibitors are ATP competitive, lariat peptides inhibit Abl kinase activity in an ATP-uncompetitive manner. Further, lariat peptides discriminated Src family kinases, and recognize the allosteric region that lies adjacent to the ATP binding pocket in the Abl kinase catalytic cleft.
Collapse
Affiliation(s)
- V M Bharathikumar
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5 (Canada)
| | | | | | | |
Collapse
|
16
|
Association of preoperative serum IGF- I concentration with clinicopathological parameters in patients with non-small cell lung cancer. ACTA ACUST UNITED AC 2013; 33:224-227. [DOI: 10.1007/s11596-013-1101-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Indexed: 10/26/2022]
|
17
|
Das S, Das U, Michel D, Gorecki DKJ, Dimmock JR. Novel 3,5-bis(arylidene)-4-piperidone dimers: potent cytotoxins against colon cancer cells. Eur J Med Chem 2013; 64:321-8. [PMID: 23644215 DOI: 10.1016/j.ejmech.2013.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
Abstract
Two novel series of dimeric 3,5-bis(arylidene)-4-piperidones 7 and 8 were prepared as cytotoxic agents. A specific objective of this study was the discovery of novel compounds displaying potent anti-proliferative activities against colon cancers. Most of the compounds demonstrate potent cytotoxicity against HCT116 and HT29 colon cancer cell lines in which the IC50 values range from low micromolar to nanomolar values. In general, the majority of the compounds showed greater cytotoxicity and some degree of selectivity toward HCT116 cells compared to HT29 cells. Compound 9 in which the amidic carbonyl groups were excised was substantially less potent than 8a in both cell lines suggested that the amide groups are important components of the molecules for exhibiting cytotoxicity. Virtually all the compounds were more potent than a reference drug 5-fluorouracil which is used in treating colon cancers as well as a related enone curcumin. QSAR studies were undertaken and some guidelines for amplification of the project have been formulated. Flow cytometry analysis of a representative potent compound 7f revealed that it induces apoptosis in HCT116 cells.
Collapse
Affiliation(s)
- Swagatika Das
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | | | | | | | | |
Collapse
|
18
|
Rastogi MV, Stork L, Druker B, Blasdel C, Nguyen T, Boston BA. Imatinib mesylate causes growth deceleration in pediatric patients with chronic myelogenous leukemia. Pediatr Blood Cancer 2012; 59:840-5. [PMID: 22378641 DOI: 10.1002/pbc.24121] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/07/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Imatinib mesylate, a tyrosine kinase inhibitor, is used in the treatment of chronic myelogeneous leukemia (CML). Given its ease of administration and manageable side effects in adults, imatinib mesylate was introduced as therapy for pediatric CML. Recently published case reports describe growth deceleration in children treated with imatinib. This study details the growth phenotype of seven pediatric patients maintained in remission on imatnib mesylate over an extended period of time. PROCEDURE This study is a retrospective chart review of pediatric patients with CML at Oregon Health & Science University treated with imatinib. Height, weight, and body mass index (BMI) measurements were collected before and during treatment. Median standard deviation scores (SDS) were analyzed by Wilcoxon Rank-Sum test and Wilcoxon signed rank cohort analysis. RESULTS Individual patient analysis demonstrated five of seven subjects with a statistically significant decrease in height SDS pre versus during treatment. The whole group analysis showed a trend to significance for difference in median height SDS pre and during treatment (P = 0.078). Bone age was delayed in all four patients in whom bone ages were obtained. IGF-1, IGFBP-3, and thyroid levels during treatment were normal. Four patients experienced an improvement in height SDS during puberty. However, three patients approaching near final adult height failed to achieve genetic height potential determined by mid-parental target height. CONCLUSION Growth in children with CML appears to be adversely impacted by imatinib therapy. BMI and IGF-1/IGFBP-3 are maintained during treatment, suggesting a direct effect of imatinib on the growth plate.
Collapse
Affiliation(s)
- Maynika V Rastogi
- Division of Pediatric Endocrinology, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
19
|
Chen S, Xu Y, Wang S, Shen M, Chen F, Chen M, Wang A, Cheng T, Su Y, Wang J. Subcutaneous administration of rhIGF-I post irradiation exposure enhances hematopoietic recovery and survival in BALB/c mice. JOURNAL OF RADIATION RESEARCH 2012; 53:581-7. [PMID: 22843623 PMCID: PMC3393355 DOI: 10.1093/jrr/rrs029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is unclear how to effectively mitigate against irradiation injury. In this study, we studied the capacity of recombinant human insulin-like growth factor-I (rhIGF-I) on hematologic recovery in irradiated BALB/c mice and its possible mechanism. BALB/c mice were injected with rhIGF-I subcutaneously at a dose of 100 μg/kg twice daily for 7 days after total body irradiation. Compared with a saline control group, treatment with rhIGF-I significantly improved the survival of mice after lethal irradiation (7.5 Gy). It was found that treatment with rhIGF-I not only could increase the frequency of Sca-1(+) cells in bone marrow harvested at Day 14 after irradiation, but also it could decrease the apoptosis of mononuclear cells induced by irradiation as measured by flow cytometry, suggesting that rhIGF-I may mediate its effects primarily through promoting hematopoietic stem cell/progenitor survival and protecting mononuclear cells from apoptosis after irradiation exposure. Moreover, we have found that rhIGF-I might facilitate thrombopoiesis in an indirect way. Our data demonstrated that rhIGF-I could promote overall hematopoietic recovery after ionizing radiation and reduce the mortality when administered immediately post lethal irradiation exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Junping Wang
- Corresponding author. State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Research Center of Nanomedicine of Chongqing, Third Military Medical University, Chongqing, China, 400038. Tel/Fax: +86-23-68752283;
| |
Collapse
|
20
|
Das S, Das U, Sakagami H, Umemura N, Iwamoto S, Matsuta T, Kawase M, Molnár J, Serly J, Gorecki DK, Dimmock JR. Dimeric 3,5-bis(benzylidene)-4-piperidones: A novel cluster of tumour-selective cytotoxins possessing multidrug-resistant properties. Eur J Med Chem 2012; 51:193-9. [DOI: 10.1016/j.ejmech.2012.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 11/27/2022]
|
21
|
Huang HL, Chen YC, Huang YC, Yang KC, Pan HY, Shih SP, Chen YJ. Lapatinib induces autophagy, apoptosis and megakaryocytic differentiation in chronic myelogenous leukemia K562 cells. PLoS One 2011; 6:e29014. [PMID: 22216158 PMCID: PMC3245247 DOI: 10.1371/journal.pone.0029014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 11/17/2011] [Indexed: 01/29/2023] Open
Abstract
Lapatinib is an oral, small-molecule, dual tyrosine kinase inhibitor of epidermal growth factor receptors (EGFR, or ErbB/Her) in solid tumors. Little is known about the effect of lapatinib on leukemia. Using human chronic myelogenous leukemia (CML) K562 cells as an experimental model, we found that lapatinib simultaneously induced morphological changes resembling apoptosis, autophagy, and megakaryocytic differentiation. Lapatinib-induced apoptosis was accompanied by a decrease in mitochondrial transmembrane potential and was attenuated by the pancaspase inhibitor z-VAD-fmk, indicating a mitochondria-mediated and caspase-dependent pathway. Lapatinib-induced autophagic cell death was verified by LC3-II conversion, and upregulation of Beclin-1. Further, autophagy inhibitor 3-methyladenine as well as autophagy-related proteins Beclin-1 (ATG6), ATG7, and ATG5 shRNA knockdown rescued the cells from lapatinib-induced growth inhibition. A moderate number of lapatinib-treated K562 cells exhibited features of megakaryocytic differentiation. In summary, lapatinib inhibited viability and induced multiple cellular events including apoptosis, autophagic cell death, and megakaryocytic differentiation in human CML K562 cells. This distinct activity of lapatinib against CML cells suggests potential for lapatinib as a therapeutic agent for treatment of CML. Further validation of lapatinib activity in vivo is warranted.
Collapse
Affiliation(s)
- Huey-Lan Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Chieh Chen
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Chuen Huang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Kai-Chien Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsin yi Pan
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Shou-Ping Shih
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Yu-Jen Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Pharmacology, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Nasrazadani A, Van Den Berg CL. c-Jun N-terminal Kinase 2 Regulates Multiple Receptor Tyrosine Kinase Pathways in Mouse Mammary Tumor Growth and Metastasis. Genes Cancer 2011; 2:31-45. [PMID: 21779479 DOI: 10.1177/1947601911400901] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/10/2011] [Accepted: 01/22/2011] [Indexed: 12/17/2022] Open
Abstract
c-Jun N-terminal kinase 2 (JNK2) isoforms are transcribed from the jnk2 gene and are highly homologous with jnk1 and jnk3 transcriptional products. JNK proteins mediate cell proliferation, stress response, and migration when activated by a variety of stimuli, including receptor tyrosine kinases (RTKs), but their ability to influence tumor metastasis is ill defined. To evaluate JNK2 in this manner, we used the highly metastatic 4T1.2 mammary tumor cells. Short hairpin RNA expression directed toward JNK2 (shJNK2) decreases tumor cell invasion. In vivo, shJNK2 expression slows tumor growth and inhibits lung metastasis. Subsequent analysis of tumors showed that shJNK2 tumors express lower GRB2-associated binding protein 2 (GAB2). In vitro, knockdown of JNK2 or GAB2 inhibits Akt activation by hepatocyte growth factor (HGF), insulin, and heregulin-1, while phosphorylation of ERK is constitutive and Src dependent. Knockdown of GAB2 phenocopies knockdown of JNK2 in vivo by reducing tumor growth and metastasis, supporting that JNK2 mediates tumor progression by regulating GAB2. The influence of jnk2 in the host or microenvironment was also evaluated using syngeneic jnk2-/- and jnk2+/+ mice. Jnk2-/- mice experience longer survival and less bone and lung metastasis compared to jnk2+/+ mice after intracardiac injection of 4T1.2 cells. GAB2 has previously been shown to mediate osteoclast differentiation, and osteoclasts are critical mediators of tumor-related osteolysis. Thus, studies focusing on the role of JNK2 on osteoclast differentiation were undertaken. ShJNK2 expression impairs osteoclast differentiation, independently of GAB2. Further, shJNK2 4T1.2 cells express less RANKL, a stimulant of osteoclast differentiation. Together, our data support that JNK2 conveys Src/phosphotidylinositol 3-kinase (PI3K) signals important for tumor growth and metastasis by enhancing GAB2 expression. In osteoclast progenitor cells, JNK2 promotes differentiation, which may contribute to the progression of bone metastasis. These studies identify JNK2 as a tumor and host target to inhibit breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Azadeh Nasrazadani
- Division of Pharmacology/Toxicology, Center for Molecular and Cellular Toxicology, and Drug Dynamics Institute, College of Pharmacy, and Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
23
|
Cantù C, Ierardi R, Alborelli I, Fugazza C, Cassinelli L, Piconese S, Bosè F, Ottolenghi S, Ferrari G, Ronchi A. Sox6 enhances erythroid differentiation in human erythroid progenitors. Blood 2011; 117:3669-79. [PMID: 21263153 DOI: 10.1182/blood-2010-04-282350] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sox6 belongs to the Sry (sex-determining region Y)-related high-mobility-group-box family of transcription factors, which control cell-fate specification of many cell types. Here, we explored the role of Sox6 in human erythropoiesis by its overexpression both in the erythroleukemic K562 cell line and in primary erythroid cultures from human cord blood CD34+ cells. Sox6 induced significant erythroid differentiation in both models. K562 cells underwent hemoglobinization and, despite their leukemic origin, died within 9 days after transduction; primary erythroid cultures accelerated their kinetics of erythroid maturation and increased the number of cells that reached the final enucleation step. Searching for direct Sox6 targets, we found SOCS3 (suppressor of cytokine signaling-3), a known mediator of cytokine response. Sox6 was bound in vitro and in vivo to an evolutionarily conserved regulatory SOCS3 element, which induced transcriptional activation. SOCS3 overexpression in K562 cells and in primary erythroid cells recapitulated the growth inhibition induced by Sox6, which demonstrates that SOCS3 is a relevant Sox6 effector.
Collapse
Affiliation(s)
- Claudio Cantù
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ferbeyre G, Moriggl R. The role of Stat5 transcription factors as tumor suppressors or oncogenes. Biochim Biophys Acta Rev Cancer 2010; 1815:104-14. [PMID: 20969928 DOI: 10.1016/j.bbcan.2010.10.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 02/06/2023]
Abstract
Stat5 is constitutively activated in many human cancers affecting the expression of cell proliferation and cell survival controlling genes. These oncogenic functions of Stat5 have been elegantly reproduced in mouse models. Aberrant Stat5 activity induces also mitochondrial dysfunction and reactive oxygen species leading to DNA damage. Although DNA damage can stimulate tumorigenesis, it can also prevent it. Stat5 can inhibit tumor progression like in the liver and it is a tumor suppressor in fibroblasts. Stat5 proteins are able to regulate cell differentiation and senescence activating the tumor suppressors SOCS1, p53 and PML. Understanding the context dependent regulation of tumorigenesis through Stat5 function will be central to understand proliferation, survival, differentiation or senescence of cancer cells.
Collapse
Affiliation(s)
- G Ferbeyre
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | |
Collapse
|
25
|
Klusmann JH, Godinho FJ, Heitmann K, Maroz A, Koch ML, Reinhardt D, Orkin SH, Li Z. Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes Dev 2010; 24:1659-72. [PMID: 20679399 DOI: 10.1101/gad.1903410] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Oncogene-mediated transformation of hematopoietic cells has been studied extensively, but little is known about the molecular basis for restriction of oncogenes to certain target cells and differential cellular context-specific requirements for oncogenic transformation between infant and adult leukemias. Understanding cell type-specific interplay of signaling pathways and oncogenes is essential for developing targeted cancer therapies. Here, we address the vexing issue of how developmental restriction is achieved in Down syndrome acute megakaryoblastic leukemia (DS-AMKL), characterized by the triad of fetal origin, mutated GATA1 (GATA1s), and trisomy 21. We demonstrate overactivity of insulin-like growth factor (IGF) signaling in authentic human DS-AMKL and in a DS-AMKL mouse model generated through retroviral insertional mutagenesis. Fetal but not adult megakaryocytic progenitors are dependent on this pathway. GATA1 restricts IGF-mediated activation of the E2F transcription network to coordinate proliferation and differentiation. Failure of a direct GATA1-E2F interaction in mutated GATA1s converges with overactive IGF signaling to promote cellular transformation of DS fetal progenitors, revealing a complex, fetal stage-specific regulatory network. Our study underscores context-dependent requirements during oncogenesis, and explains resistance to transformation of ostensibly similar adult progenitors.
Collapse
Affiliation(s)
- Jan-Henning Klusmann
- Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pene-Dumitrescu T, Smithgall TE. Expression of a Src family kinase in chronic myelogenous leukemia cells induces resistance to imatinib in a kinase-dependent manner. J Biol Chem 2010; 285:21446-57. [PMID: 20452982 DOI: 10.1074/jbc.m109.090043] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bcr-Abl kinase inhibitor imatinib is remarkably effective in chronic myelogenous leukemia (CML), although drug resistance is an emerging problem. Myeloid Src family kinases such as Hck and Lyn are often overexpressed in imatinib-resistant CML cells that lack Bcr-Abl mutations. Here we tested whether Hck overexpression is sufficient to induce imatinib resistance using both wild-type Hck and a mutant (Hck-T338A) that is uniquely sensitive to the pyrazolo-pyrimidine inhibitor, NaPP1. Expression of either kinase in K562 CML cells caused resistance to imatinib-induced apoptosis and inhibition of soft-agar colony formation. Treatment with NaPP1 restored sensitivity to imatinib in cells expressing T338A but not wild-type Hck, demonstrating that resistance requires Hck kinase activity. NaPP1 also reduced Hck-mediated phosphorylation of Bcr-Abl at sites that may affect imatinib sensitivity exclusively in cells expressing Hck-T338A. These data show that elevated Src family kinase activity is sufficient to induce imatinib resistance through a mechanism that may involve phosphorylation of Bcr-Abl.
Collapse
Affiliation(s)
- Teodora Pene-Dumitrescu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvainia 15219, USA
| | | |
Collapse
|
27
|
Kelleher FC, McDermott R. The emerging pathogenic and therapeutic importance of the anaplastic lymphoma kinase gene. Eur J Cancer 2010; 46:2357-68. [PMID: 20451371 DOI: 10.1016/j.ejca.2010.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 03/29/2010] [Accepted: 04/06/2010] [Indexed: 02/04/2023]
Abstract
The anaplastic lymphoma kinase gene (ALK) is a gene on chromosome 2p23 that has expression restricted to the brain, testis and small intestine but is not expressed in normal lymphoid tissue. It has similarity to the insulin receptor subfamily of kinases and is emerging as having increased pathologic and potential therapeutic importance in malignant disease. This gene was originally established as being implicated in the pathogenesis of rare diseases including inflammatory myofibroblastic tumour (IMT) and ALK-positive anaplastic large cell lymphoma, which is a subtype of non-Hodgkin's lymphoma. Recently the number of diseases in which ALK is implicated in their pathogenesis has increased. In 2007, an inversion of chromosome 2 involving ALK and a fusion partner gene in a subset of non-small cell lung cancer was discovered. In 2008, publications emerged implicating ALK in familial and sporadic cases of neuroblastoma, a childhood cancer of the sympatho-adrenal system. Chromosomal abnormalities involving ALK are translocations, amplifications or mutations. Chromosomal translocations are the longest recognised ALK genetic abnormality. When translocations occur a fusion gene is created between ALK and a gene partner. This has been described in ALK-positive anaplastic large cell lymphoma in which ALK is fused to NPM (nucleolar protein gene) and in non-small cell lung cancer where ALK is fused to EML4 (Echinoderm microtubule-associated protein 4). The most frequently described partner genes in inflammatory myofibroblastic tumour are tropomyosin 3/4 (TMP3/4), however in IMTs a diversity of ALK fusion partners have been found, with the ability to homodimerise a common characteristic. Point mutations and amplification of the ALK gene occur in the childhood cancer neuroblastoma. Therapeutic targeting of ALK fusion genes using tyrosine kinase inhibition, vaccination using an ALK specific antigen and treatment using viral vectors for RNAi are emerging potential therapeutic possibilities.
Collapse
Affiliation(s)
- Fergal C Kelleher
- Department of Medical Oncology, Adelaide and Meath Hospital, Dublin, Ireland.
| | | |
Collapse
|
28
|
Das S, Das U, Selvakumar P, Sharma RK, Balzarini J, De Clercq E, Molnár J, Serly J, Baráth Z, Schatte G, Bandy B, Gorecki DKJ, Dimmock JR. 3,5-Bis(benzylidene)-4-oxo-1-phosphonopiperidines and related diethyl esters: Potent cytotoxins with multi-drug-resistance reverting properties. ChemMedChem 2010; 4:1831-40. [PMID: 19802855 DOI: 10.1002/cmdc.200900288] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A series of 3,5-bis(benzylidene)-4-piperidones 3 were converted into the corresponding 3,5-bis(benzylidene)-1-phosphono-4-piperidones 5 via diethyl esters 4. The analogues in series 4 and 5 displayed marked growth inhibitory properties toward human Molt 4/C8 and CEM T-lymphocytes as well as murine leukemia L1210 cells. In general, the N-phosphono compounds 5, which are more hydrophilic than the analogues in series 3 and 4, were the most potent cluster of cytotoxins, and, in particular, 3,5-bis-(2-nitrobenzylidene)-1-phosphono-4-piperidone 5 g had an average IC(50) value of 34 nM toward the two T-lymphocyte cell lines. Four of the compounds displayed potent cytotoxicity toward a panel of nearly 60 human tumor cell lines, and nanomolar IC(50) values were observed in a number of cases. The mode of action of 5 g includes the induction of apoptosis and inhibition of cellular respiration. Most of the members of series 4 as well as several analogues in series 5 are potent multi-drug resistance (MDR) reverting compounds. Various correlations were noted between certain molecular features of series 4 and 5 and cytotoxic properties, affording some guidelines in expanding this study.
Collapse
|
29
|
Das U, Sakagami H, Chu Q, Wang Q, Kawase M, Selvakumar P, Sharma RK, Dimmock JR. 3,5-Bis(benzylidene)-1-[4-2-(morpholin-4-yl)ethoxyphenylcarbonyl]-4-piperidone hydrochloride: a lead tumor-specific cytotoxin which induces apoptosis and autophagy. Bioorg Med Chem Lett 2009; 20:912-7. [PMID: 20064715 DOI: 10.1016/j.bmcl.2009.12.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
A number of N-4-(2-aminoethoxy)phenylcarbonyl derivatives of various 3,5-bis(benzylidene)-4-piperidones 2-5 demonstrated noteworthy cytotoxic potencies towards human HL-60 leukemic cells as well as human HSC-2 and HSC-4 squamous cell carcinomas. In general, toxicity towards HGF, HPC, and HPLF normal cells was substantially lower. The highest selective toxicity was noted when the terminal base is morpholine. Lead optimization was based on finding compounds which had (i) high cytotoxic potencies, (ii) a greater toxicity to neoplasms than normal cells, and (iii) drug-likeness based on the rule of five. From the biodata generated, 5a evolved as a promising lead compound for further development. The mode of action of 5a included the induction of apoptosis in HL-60 cells in which internucleosomal DNA fragmentation and activation of caspase-3 was noted. In addition, 5a caused autophagy in HSC-2 cells.
Collapse
Affiliation(s)
- Umashankar Das
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Epigenetic modifications are heritable chromatin alterations that contribute to the temporal and spatial interpretation of the genome. The epigenetic information is conveyed through a multitude of chemical modifications, including DNA methylation, reversible modifications of histones, and ATP-dependent nucleosomal remodeling. Deregulation of the epigenetic machinery contributes to the development of several pathologies, including cancer. Chromatin modifications are multiple and interdependent and they are dynamically modulated in the course of various biological processes. Combinations of chromatin modifications give rise to a complex code that is superimposed on the genetic code embedded into the DNA sequence to regulate cell function. This review addresses the role of epigenetic modifications in cancer, focusing primarily on histone methylation marks and the enzymes catalyzing their removal.
Collapse
Affiliation(s)
- Sotirios C Kampranis
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
31
|
Selvakumar P, Lakshmikuttyamma A, Das U, Pati HN, Dimmock JR, Sharma RK. NC2213: a novel methionine aminopeptidase 2 inhibitor in human colon cancer HT29 cells. Mol Cancer 2009; 8:65. [PMID: 19703310 PMCID: PMC2740849 DOI: 10.1186/1476-4598-8-65] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/24/2009] [Indexed: 11/10/2022] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) is a bifunctional protein that plays a critical role in the regulation of post-translational processing and protein synthesis. MetAP2 is overexpressed in human colon cancer. In this report we screened various MetAP2 inhibitors and treated HT29 cells with various concentrations of compounds. We evaluated the expression of MetAP2 and pp60c-src expressions in HT29 cells. In addition we also carried out the cell proliferation and cell cycle analysis in the MetAP2 inhibitor-treated HT29 cells. The cell cycle analysis of HT29 treated with 1.0 microM of NC2213 showed an arrest in the G2 phase followed by an induction in the percentage of cells undergoing apoptosis in the sub-G1 phase. Western blot analysis revealed that the MetAP2 expression was dose-dependently decreased when the HT29 cells were treated with the 3,5-bis(benzylidene)-4-piperidone derivative (NC2213). In addition, phosphorylation of Src, a myristoylated oncoprotein was significantly decreased by 1.0 microM of NC2213 as revealed by Western blot analysis. Furthermore, NC2213 also inhibits the expression of pp60c-src in HT29 cells. Interestingly, this compound also inhibits the phosphorylation at Tyr416 of pp60c-src while increasing the phosphorylation at Tyr527 of pp60c-src. NC2213 inhibits the growth of HT29 cells by inducing apoptosis and might be useful for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Ponniah Selvakumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N4H4, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Shi P, Chandra J, Sun X, Gergely M, Cortes JE, Garcia-Manero G, Arlinghaus RB, Lai R, Amin HM. Inhibition of IGF-IR tyrosine kinase induces apoptosis and cell cycle arrest in imatinib-resistant chronic myeloid leukaemia cells. J Cell Mol Med 2009; 14:1777-92. [PMID: 19508387 PMCID: PMC3444523 DOI: 10.1111/j.1582-4934.2009.00795.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although signalling through the type I insulin-like growth factor receptor (IGF-IR) maintains the survival of haematopoietic cells, a specific role of IGF-IR in haematological neoplasms remains largely unknown. Chronic myeloid leukaemia (CML) is the most common subtype of chronic myeloproliferative diseases. Typically, CML evolves as a chronic phase (CP) disease that progresses into accelerated (AP) and blast phase (BP) stages. In this study, we show that IGF-IR is universally expressed in four CML cell lines. IGF-IR was expressed in only 30% and 25% of CP and AP patients, respectively, but its frequency of expression increased to 73% of BP patients. Increased expression levels of IGF-IR with CML progression was supported by quantitative real-time PCR that demonstrated significantly higher levels of IGF-IR mRNA in BP patients. Inhibition of IGF-IR decreased the viability and proliferation of CML cell lines and abrogated their growth in soft agar. Importantly, inhibition of IGF-IR decreased the viability of cells resistant to imatinib mesylate including BaF3 cells transfected with p210 BCR-ABL mutants, CML cell lines and primary neoplastic cells from patients. The negative effects of inhibition of IGF-IR were attributable to apoptosis and cell cycle arrest due to alterations of downstream target proteins. Our findings suggest that IGF-IR could represent a potential molecular target particularly for advanced stage or imatinib-resistant cases.
Collapse
Affiliation(s)
- Ping Shi
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
IGF-IR tyrosine kinase interacts with NPM-ALK oncogene to induce survival of T-cell ALK+ anaplastic large-cell lymphoma cells. Blood 2009; 114:360-70. [PMID: 19423729 DOI: 10.1182/blood-2007-11-125658] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase plays important roles in the pathogenesis of several malignancies. Although it promotes the growth of stimulated hematopoietic cells, a direct role of IGF-IR in malignant lymphoma has not been identified. Anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma (ALK(+) ALCL) is a unique type of T-cell lymphoma. Approximately 85% of ALK(+) ALCL cases harbor the translocation t(2;5)(p23;q35), which generates the chimeric oncogene NPM-ALK. In the present study, we explored a possible role of IGF-IR in ALK(+) ALCL. Our results demonstrate that IGF-IR and IGF-I are widely expressed in ALK(+) ALCL cell lines and primary tumors. Importantly, we identified novel reciprocal functional interactions between IGF-IR and NPM-ALK. Antagonism of IGF-IR decreased the viability, induced apoptosis and cell-cycle arrest, and decreased proliferation and colony formation of ALK(+) ALCL cell lines. These effects could be explained by alterations of cell survival regulatory proteins downstream of IGF-IR signaling. Our findings improve current understanding of the biology of IGF-IR and NPM-ALK and have significant therapeutic implications as they identify IGF-IR signaling as a potential therapeutic target in ALK(+) ALCL and possibly other types of malignant lymphoma.
Collapse
|
34
|
Sabbatini P, Rowand JL, Groy A, Korenchuk S, Liu Q, Atkins C, Dumble M, Yang J, Anderson K, Wilson BJ, Emmitte KA, Rabindran SK, Kumar R. Antitumor activity of GSK1904529A, a small-molecule inhibitor of the insulin-like growth factor-I receptor tyrosine kinase. Clin Cancer Res 2009; 15:3058-67. [PMID: 19383820 DOI: 10.1158/1078-0432.ccr-08-2530] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Dysregulation of the insulin-like growth factor-I receptor (IGF-IR) signaling pathway has been implicated in the development of many types of tumors, including prostate, colon, breast, pancreatic, ovarian, and sarcomas. Agents that inhibit IGF-IR activity may be useful in treatment of patients with various cancers. EXPERIMENTAL DESIGN Kinase assays were used to identify a selective small-molecule inhibitor of IGF-IR activity. The effects of this compound on IGF-IR signaling, cell proliferation, and the cell cycle were determined using a panel of cell lines. Antitumor activity was evaluated in human tumor xenografts growing in athymic mice. Inhibition of IGF-IR and the closely related insulin receptor (IR) was measured in vivo, and the effect on glucose metabolism was evaluated. RESULTS GSK1904529A selectively inhibits IGF-IR and IR with IC(50)s of 27 and 25 nmol/L, respectively. GSK1904529A blocks receptor autophosphorylation and downstream signaling, leading to cell cycle arrest. It inhibits the proliferation of cell lines derived from solid and hematologic malignancies, with multiple myeloma and Ewing's sarcoma cell lines being most sensitive. Oral administration of GSK1904529A decreases the growth of human tumor xenografts in mice, consistent with a reduction of IGF-IR phosphorylation in tumors. Despite the potent inhibitory activity of GSK1904529A on IR in vitro and in vivo, minimal effects on blood glucose levels are observed in animals at doses that show significant antitumor activity. CONCLUSION GSK1904529A is a promising candidate for therapeutic use in IGF-IR-dependent tumors.
Collapse
|
35
|
The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression. Mol Cell Biol 2008; 28:5886-98. [PMID: 18644865 DOI: 10.1128/mcb.01265-07] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The phosphoinositide-3 kinase (PI3K)/Akt signal pathway plays a key role in the tumorigenesis of many cancers and in the subsequent development of drug resistance. Using the K562 chronic myelogenous leukemia (CML) cell line and the doxorubicin-resistant derivative lines KD30 and KD225 as models, we observed that enhanced PI3K/Akt activity and the acquisition of chemoresistance correlated unexpectedly with the increased expression and nuclear accumulation of FOXO3a. Moreover, we found that the induction of FOXO3a activity in naïve K562 cells was sufficient to enhance PI3K/Akt activity and to confer resistance to the cytotoxic effects of doxorubicin. Conversely, the knockdown of endogenous FOXO3a expression reduced PI3K/Akt activity and sensitized these cells to doxorubicin. Further chromatin immunoprecipitation and promoter mutation analyses demonstrated that FOXO3a regulates the expression of the PI3K catalytic subunit p110alpha through the activation of a promoter region proximal to a novel untranslated exon upstream from the reported transcription start site of the p110alpha gene PIK3CA. As was the case for FOXO3a, the expression or knockdown of p110alpha was sufficient to amplify or reduce PI3K/Akt activity, respectively. Thus, our results suggest that the chronic activation of FOXO3a by doxorubicin in CML cells can enhance survival through a feedback mechanism that involves enhanced p110alpha expression and hyperactivation of the PI3K/Akt pathway.
Collapse
|