1
|
Otieno MO, Powrózek T, Garcia-Foncillas J, Martinez-Useros J. The crosstalk within tumor microenvironment and exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189308. [PMID: 40180303 DOI: 10.1016/j.bbcan.2025.189308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Pancreatic cancer is one of the most malignant tumors with a grim prognosis. Patients develop chemoresistance that drastically decreases their survival. The chemoresistance is mainly attributed to deficient vascularization of the tumor, intratumoral heterogeneity and pathophysiological barrier due to the highly desmoplastic tumor microenvironment. The interactions of cells that constitute the tumor microenvironment change its architecture into a cancer-permissive environment and stimulate cancer development, metastasis and treatment response. The cell-cell communication in the tumor microenvironment is often mediated by exosomes that harbour a diverse repertoire of molecular cargo, such as proteins, lipids, and nucleic acid, including messenger RNAs, non-coding RNAs and DNA. Therefore, exosomes can serve as potential targets as biomarkers and improve the clinical management of pancreatic cancer to overcome chemoresistance. This review critically elucidates the role of exosomes in cell-cell communication within the tumor microenvironment and how these interactions can orchestrate chemoresistance.
Collapse
Affiliation(s)
- Michael Ochieng' Otieno
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Tomasz Powrózek
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute Fundación Jimenez Diaz, Fundación Jimenez Díaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos Univer-Sity, 28922 Madrid, Spain.
| |
Collapse
|
2
|
Lee W, Song G, Bae H. In vitro and in silico study of the synergistic anticancer effect of alpinumisoflavone with gemcitabine on pancreatic ductal adenocarcinoma through suppression of ribonucleotide reductase subunit-M1. Eur J Pharm Sci 2025; 204:106969. [PMID: 39577749 DOI: 10.1016/j.ejps.2024.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
A highly aggressive neoplastic disease, pancreatic ductal adenocarcinoma (PDAC) is documented as the third chief cause of cancer-associated mortality in both sexes combined in the United States. For decades, gemcitabine-based chemotherapy has been embraced as a cornerstone drug for the treatment of PDAC. However, there have been several unsolved problems, including cytotoxicity, and chemoresistance. Gemcitabine efficacy was attributed to the attenuation of ribonucleotide reductase subunit-M1 (RRM1). Overexpression of RRM1 in PDAC is highly correlated with gemcitabine resistance and reduced gemcitabine sensitivity, resulting in a poor survival rate even after gemcitabine treatment. Moreover, the status of TP53, a tumor suppressor gene, assumes a decisive role in the response of PDAC to gemcitabine. Therefore, targeting RRM1 and P53 might be a therapeutic strategy for strengthening gemcitabine efficacy and cytotoxicity against PDAC. Alpinumisoflavone (AIF) is a prenylated isoflavone originated in Cudrania tricuspidate with versatile bioactive properties, including anticancer activity. However, there was no report whether AIF can exert anticancer effect and exhibit synergistic effect with gemcitabine against PDAC. Therefore, the anticancer properties of AIF were assessed with PANC-1 and MIA PaCa-2. In addition, synergism between AIF and gemcitabine were analyzed. Moreover, the contribution of P53 and RRM1 expression to gemcitabine resistance was assessed by comparing their protein levels in PDAC cells and normal pancreatic cells. The interactions of AIF with RRM1 protein were confirmed by molecular docking and dynamics simulation. Therefore, AIF enhances gemcitabine efficacy against PDAC through the regulation of P53 and RRM1.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| | - Hyocheol Bae
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
3
|
Patel D, Dickson AL, Zickuhr GM, Um IH, Read OJ, Czekster CM, Mullen P, Harrison DJ, Bré J. Defining the mode of action of cisplatin combined with NUC-1031, a phosphoramidate modification of gemcitabine. Transl Oncol 2024; 50:102114. [PMID: 39299019 PMCID: PMC11426158 DOI: 10.1016/j.tranon.2024.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
The combination of gemcitabine with platinum agents is a widely used chemotherapy regimen for a number of tumour types. Gemcitabine plus cisplatin remains the current therapeutic choice for biliary tract cancer. Gemcitabine is associated with multiple cellular drug resistance mechanisms and other limitations and has thereforelined in use. NUC-1031 (Acelarin) is a phosphorylated form of gemcitabine, protected by the addition of a phosphoramidate moiety, developed to circumvent the key limitations and generate high levels of the cytotoxic metabolite, dFdCTP. The rationale for combination of gemcitabine and cisplatin is determined by in vitro cytotoxicity. This, however, does not offer an explanation of how these drugs lead to cell death. In this study we investigate the mechanism of action for NUC-1031 combined with cisplatin as a rationale for treatment. NUC-1031 is metabolised to dFdCTP, detectable up to 72 h post-treatment and incorporated into DNA, to stall the cell cycle and cause DNA damage in biliary tract and ovarian cancer cell lines. In combination with cisplatin, DNA damage was increased and occurred earlier compared to monotherapy. The damage associated with NUC-1031 may be potentiated by a second mechanism, via binding the RRM1 subunit of ribonucleotide reductase and perturbing the nucleotide pools; however, this may be mitigated by increased RRM1 expression. The implication of this was investigated in case studies from a Phase I clinical trial to observe whether baseline RRM1 expression in tumour tissue at time of diagnosis correlates with patient survival.
Collapse
Affiliation(s)
- Dillum Patel
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| | - Alison L Dickson
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK; NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| | - Greice M Zickuhr
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Oliver J Read
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK; NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| | - Clarissa M Czekster
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Peter Mullen
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK; NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| | - Jennifer Bré
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK; NuCana plc, 3 Lochside Way, Edinburgh EH12 9DT, UK
| |
Collapse
|
4
|
Lin Q, Serratore A, Perri J, Roy Chaudhuri T, Qu J, Ma WW, Kandel ES, Straubinger RM. Expression of fibroblast growth factor receptor 1 correlates inversely with the efficacy of single-agent fibroblast growth factor receptor-specific inhibitors in pancreatic cancer. Br J Pharmacol 2024; 181:1383-1403. [PMID: 37994108 PMCID: PMC11909478 DOI: 10.1111/bph.16289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Elevated fibroblast growth factor receptor (FGFR) activity correlates with pancreatic adenocarcinoma (PDAC) progression and poor prognosis. However, its potential as a therapeutic target remains largely unexplored. EXPERIMENTAL APPROACH The mechanisms of action and therapeutic effects of selective pan-FGFR inhibitors (pan-FGFRi) were explored using in vitro and in vivo PDAC models ranging from gemcitabine-sensitive to highly gemcitabine-resistant (GemR). Gain-/loss-of-function investigations were employed to define the role of individual FGFRs in cell proliferation, migration, and treatment response and resistance. RESULTS The pan-FGFRi NVP-BGJ398 significantly inhibited cell proliferation, migration, and invasion, and downregulated key cell survival- and invasiveness markers in multiple PDAC cell lines. Gemcitabine is a standard-of-care for PDAC, but development of resistance to gemcitabine (GemR) compromises its efficacy. Acquired GemR was modelled experimentally by developing highly GemR cells using escalating gemcitabine exposure in vitro and in vivo. FGFRi treatment inhibited GemR cell proliferation, migration, GemR marker expression, and tumour progression. FGFR2 or FGFR3 loss-of-function by shRNA knockdown failed to decrease cell growth, whereas FGFR1 knockdown was lethal. FGFR1 overexpression promoted cell migration more than proliferation, and reduced FGFRi-mediated inhibition of proliferation and migration. Single-agent FGFRi suppressed the viability and growth of multiple patient-derived xenografts inversely with respect to FGFR1 expression, underscoring the influence of FGFR1-dependent tumour responses to FGFRi. Importantly, secondary data analysis showed that PDAC tumours expressed FGFR1 at lower levels than in normal pancreas tissue. CONCLUSIONS AND IMPLICATIONS Single-agent FGFR inhibitors mediate selective, molecularly-targeted suppression of PDAC proliferation, and their effects are greatest in PDAC tumours expressing low-to-moderate levels of FGFR1.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Andrea Serratore
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jonathan Perri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Tista Roy Chaudhuri
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
5
|
Lin Q, Serratore A, Niu J, Shen S, Roy Chaudhuri T, Ma WW, Qu J, Kandel ES, Straubinger RM. Fibroblast growth factor receptor 1 inhibition suppresses pancreatic cancer chemoresistance and chemotherapy-driven aggressiveness. Drug Resist Updat 2024; 73:101064. [PMID: 38387284 PMCID: PMC11864563 DOI: 10.1016/j.drup.2024.101064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Andrea Serratore
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Jin Niu
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Tista Roy Chaudhuri
- New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Wen Wee Ma
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
6
|
Lin X, Tan Y, Pan L, Tian Z, Lin L, Su M, Ou G, Chen Y. Prognostic value of RRM1 and its effect on chemoresistance in pancreatic cancer. Cancer Chemother Pharmacol 2024; 93:237-251. [PMID: 38040978 DOI: 10.1007/s00280-023-04616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Pancreatic cancer (PC) remains a lethal disease, and gemcitabine resistance is prevalent. However, the biomarkers suggestive of gemcitabine resistance remain unclear. METHODS Bioinformatic tools identified ribonucleotide reductase catalytic subunit M1 (RRM1) in gemcitabine-related datasets. A cox regression model revealed the predictive value of RRM1 with clinical features. An external clinical cohort confirmed the prognostic value of RRM1. RRM1 expression was validated in gemcitabine-resistant cells in vitro and in orthotopic PC model. CCK8, flow cytometry, transwell migration, and invasion assays were used to explore the effect of RRM1 on gemcitabine-resistant cells. The CIBERSORT algorithm investigated the impact of RRM1 on immune infiltration. RESULTS The constructed nomogram based on RRM1 effectively predicted prognosis and was further validated. Moreover, patients with higher RRM1 had shorter overall survival. RRM1 expression was significantly higher in PC tissue and gemcitabine-resistant cells in vitro and in vivo. RRM1 knockdown reversed gemcitabine resistance, inhibited migration and invasion. The infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and plasma cells correlated markedly with RRM1 expression, and communication between tumor and immune cells probably depends on NF-κB/mTOR signaling. CONCLUSION RRM1 may be a potential marker for prognosis and a target marker for gemcitabine resistance in PC.
Collapse
Affiliation(s)
- Xingyi Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Ying Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lele Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhenfeng Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Lijun Lin
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Mingxin Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Guangsheng Ou
- Department of Gastrointestinal Surgery, The Third-Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510600, People's Republic of China.
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
7
|
Ariey-Bonnet J, Berges R, Montero MP, Mouysset B, Piris P, Muller K, Pinna G, Failes TW, Arndt GM, Morando P, Baeza-Kallee N, Colin C, Chinot O, Braguer D, Morelli X, André N, Carré M, Tabouret E, Figarella-Branger D, Le Grand M, Pasquier E. Combination drug screen targeting glioblastoma core vulnerabilities reveals pharmacological synergisms. EBioMedicine 2023; 95:104752. [PMID: 37572644 PMCID: PMC10433015 DOI: 10.1016/j.ebiom.2023.104752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Pharmacological synergisms are an attractive anticancer strategy. However, with more than 5000 approved-drugs and compounds in clinical development, identifying synergistic treatments represents a major challenge. METHODS High-throughput screening was combined with target deconvolution and functional genomics to reveal targetable vulnerabilities in glioblastoma. The role of the top gene hit was investigated by RNA interference, transcriptomics and immunohistochemistry in glioblastoma patient samples. Drug combination screen using a custom-made library of 88 compounds in association with six inhibitors of the identified glioblastoma vulnerabilities was performed to unveil pharmacological synergisms. Glioblastoma 3D spheroid, organotypic ex vivo and syngeneic orthotopic mouse models were used to validate synergistic treatments. FINDINGS Nine targetable vulnerabilities were identified in glioblastoma and the top gene hit RRM1 was validated as an independent prognostic factor. The associations of CHK1/MEK and AURKA/BET inhibitors were identified as the most potent amongst 528 tested pairwise drug combinations and their efficacy was validated in 3D spheroid models. The high synergism of AURKA/BET dual inhibition was confirmed in ex vivo and in vivo glioblastoma models, without detectable toxicity. INTERPRETATION Our work provides strong pre-clinical evidence of the efficacy of AURKA/BET inhibitor combination in glioblastoma and opens new therapeutic avenues for this unmet medical need. Besides, we established the proof-of-concept of a stepwise approach aiming at exploiting drug poly-pharmacology to unveil druggable cancer vulnerabilities and to fast-track the identification of synergistic combinations against refractory cancers. FUNDING This study was funded by institutional grants and charities.
Collapse
Affiliation(s)
- Jérémy Ariey-Bonnet
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Raphael Berges
- Aix Marseille Université, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Marseille, France
| | - Marie-Pierre Montero
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Baptiste Mouysset
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Patricia Piris
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Kevin Muller
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Guillaume Pinna
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette F-91198, France
| | - Tim W Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Philippe Morando
- Aix Marseille Université, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Marseille, France
| | - Nathalie Baeza-Kallee
- Aix Marseille Université, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Marseille, France
| | - Carole Colin
- Aix Marseille Université, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Marseille, France
| | - Olivier Chinot
- Aix-Marseille University, Assistance Publique-Hopitaux de Marseille, Centre Hospitalo-Universitaire Timone, Service de Neuro-Oncologie, Marseille, France
| | - Diane Braguer
- Aix Marseille Université, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Marseille, France
| | - Xavier Morelli
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Nicolas André
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France; Pediatric Oncology and Hematology Department, Hôpital pour Enfant de La Timone, AP-HM, Marseille, France; Metronomics Global Health Initiative, Marseille 13385, France
| | - Manon Carré
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Emeline Tabouret
- Aix Marseille Université, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Marseille, France; Aix-Marseille University, Assistance Publique-Hopitaux de Marseille, Centre Hospitalo-Universitaire Timone, Service de Neuro-Oncologie, Marseille, France
| | | | - Marion Le Grand
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France.
| | - Eddy Pasquier
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France; Metronomics Global Health Initiative, Marseille 13385, France.
| |
Collapse
|
8
|
Shetu SA, James N, Rivera G, Bandyopadhyay D. Molecular Research in Pancreatic Cancer: Small Molecule Inhibitors, Their Mechanistic Pathways and Beyond. Curr Issues Mol Biol 2023; 45:1914-1949. [PMID: 36975494 PMCID: PMC10047141 DOI: 10.3390/cimb45030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Pancreatic enzymes assist metabolic digestion, and hormones like insulin and glucagon play a critical role in maintaining our blood sugar levels. A malignant pancreas is incapable of doing its regular functions, which results in a health catastrophe. To date, there is no effective biomarker to detect early-stage pancreatic cancer, which makes pancreatic cancer the cancer with the highest mortality rate of all cancer types. Primarily, mutations of the KRAS, CDKN2A, TP53, and SMAD4 genes are responsible for pancreatic cancer, of which mutations of the KRAS gene are present in more than 80% of pancreatic cancer cases. Accordingly, there is a desperate need to develop effective inhibitors of the proteins that are responsible for the proliferation, propagation, regulation, invasion, angiogenesis, and metastasis of pancreatic cancer. This article discusses the effectiveness and mode of action at the molecular level of a wide range of small molecule inhibitors that include pharmaceutically privileged molecules, compounds under clinical trials, and commercial drugs. Both natural and synthetic small molecule inhibitors have been counted. Anti-pancreatic cancer activity and related benefits of using single and combined therapy have been discussed separately. This article sheds light on the scenario, constraints, and future aspects of various small molecule inhibitors for treating pancreatic cancer-the most dreadful cancer so far.
Collapse
Affiliation(s)
- Shaila A. Shetu
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Nneoma James
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
9
|
Prognostic and Immunological Potential of Ribonucleotide Reductase Subunits in Liver Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3878796. [PMID: 36713030 PMCID: PMC9883104 DOI: 10.1155/2023/3878796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 01/21/2023]
Abstract
Background Ribonucleotide reductase (RR) consists of two subunits, the large subunit RRM1 and the small subunit (RRM2 or RRM2B), which is essential for DNA replication. Dysregulations of RR were implicated in multiple types of cancer. However, the abnormal expressions and biologic functions of RR subunits in liver cancer remain to be elucidated. Methods TCGA, HCCDB, CCLE, HPA, cBioPortal, and GeneMANIA were utilized to perform bioinformatics analysis of RR subunits in the liver cancer. GO, KEGG, and GSEA were used for enrichment analysis. Results The expressions of RRM1, RRM2, and RRM2B were remarkably upregulated among liver cancer tissue both in mRNA and protein levels. High expression of RRM1 and RRM2 was notably associated with high tumor grade, high stage, short overall survival, and disease-specific survival. Enrichment analyses indicated that RRM1 and RRM2 were related to DNA replication, cell cycle, regulation of nuclear division, DNA repair, and DNA recombination. Correlation analysis indicated that RRM1 and RRM2 were significantly associated with several subsets of immune cell, including Th2 cells, cytotoxic cells, and neutrophils. RRM2B expression was positively associated with immune score and stromal score. Chemosensitivity analysis revealed that sensitivity of nelarabine was positively associated with high expressions of RRM1 and RRM2. The sensitivity of rapamycin was positively associated with high expressions of RRM2B. Conclusion Our findings demonstrated high expression profiles of RR subunits in liver cancer, which may provide novel insights for predicting the poor prognosis and increased chemosensitivity of liver cancer in clinic.
Collapse
|
10
|
Lin Q, Shen S, Qian Z, Rasam SS, Serratore A, Jusko WJ, Kandel ES, Qu J, Straubinger RM. Comparative Proteomic Analysis Identifies Key Metabolic Regulators of Gemcitabine Resistance in Pancreatic Cancer. Mol Cell Proteomics 2022; 21:100409. [PMID: 36084875 PMCID: PMC9582795 DOI: 10.1016/j.mcpro.2022.100409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/21/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is highly refractory to treatment. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and development of Gem resistance (GemR) compromises its efficacy. Highly GemR clones of Gem-sensitive MIAPaCa-2 cells were developed to investigate the molecular mechanisms of GemR and implemented global quantitative differential proteomics analysis with a comprehensive, reproducible ion-current-based MS1 workflow to quantify ∼6000 proteins in all samples. In GemR clone MIA-GR8, cellular metabolism, proliferation, migration, and 'drug response' mechanisms were the predominant biological processes altered, consistent with cell phenotypic alterations in cell cycle and motility. S100 calcium binding protein A4 was the most downregulated protein, as were proteins associated with glycolytic and oxidative energy production. Both responses would reduce tumor proliferation. Upregulation of mesenchymal markers was prominent, and cellular invasiveness increased. Key enzymes in Gem metabolism pathways were altered such that intracellular utilization of Gem would decrease. Ribonucleoside-diphosphate reductase large subunit was the most elevated Gem metabolizing protein, supporting its critical role in GemR. Lower Ribonucleoside-diphosphate reductase large subunit expression is associated with better clinical outcomes in PDAC, and its downregulation paralleled reduced MIAPaCa-2 proliferation and migration and increased Gem sensitivity. Temporal protein-level Gem responses of MIAPaCa-2 versus GemR cell lines (intrinsically GemR PANC-1 and acquired GemR MIA-GR8) implicate adaptive changes in cellular response systems for cell proliferation and drug transport and metabolism, which reduce cytotoxic Gem metabolites, in DNA repair, and additional responses, as key contributors to the complexity of GemR in PDAC. These findings additionally suggest targetable therapeutic vulnerabilities for GemR PDAC patients.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Zhicheng Qian
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Sailee S Rasam
- Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Andrea Serratore
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Eugene S Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jun Qu
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, USA.
| | - Robert M Straubinger
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Center of Excellence in Bioinformatics & Life Science, University at Buffalo, State University of New York, Buffalo, New York, USA; Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.
| |
Collapse
|
11
|
Rahnama N, Jahangir M, Alesaeid S, Kahrizi MS, Adili A, Mohammed RN, Aslaminabad R, Akbari M, Özgönül AM. Association between microRNAs and chemoresistance in pancreatic cancer: Current knowledge, new insights, and forthcoming perspectives. Pathol Res Pract 2022; 236:153982. [PMID: 35779293 DOI: 10.1016/j.prp.2022.153982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic duct adenocarcinoma, commonly known as pancreatic cancer (PC), is a cancer-related cause of death due to delayed diagnosis, metastasis, and drug resistance. Patients with PC suffer from incorrect responses to chemotherapy due to inherent and acquired chemical resistance. Numerous studies have shown the mechanism of the effect of chemoresistance on PC, such as genetic and epigenetic changes or the elucidation of signaling pathways. In this regard, microRNAs (miRNAs) have been identified as essential modulators of gene expression in various cellular functions, including chemoresistance. Thus, identifying the underlying link between microRNAs and PC chemoresistance helps determine the exact pathogenesis of PC. This study aims to classify miRNAs and signaling pathways related to PC chemoresistance, suggesting new therapeutic approaches to overcome PC chemoresistance.
Collapse
Affiliation(s)
- Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Samira Alesaeid
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq; College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Ramin Aslaminabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
12
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
13
|
Pancreatic cancer cells spectral library by DIA-MS and the phenotype analysis of gemcitabine sensitivity. Sci Data 2022; 9:283. [PMID: 35680938 PMCID: PMC9184632 DOI: 10.1038/s41597-022-01407-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/18/2022] [Indexed: 12/05/2022] Open
Abstract
Data-independent acquisition (DIA)-mass spectrometry (MS)-based proteome strategies are increasingly used for detecting and validating protein biomarkers and therapeutic targets. Here, based on an in-depth proteome analysis of seven pancreatic cancer cell lines, we built a pancreas-specific mass spectrum library containing 10633 protein groups and 184551 peptides. The proteome difference among the seven pancreatic cancer cells was significant, especially for the divergent expression of proteins related to epithelial-mesenchymal transition (EMT). The spectra library was applied to explore the proteome difference of PANC-1 and BxPC-3 cells upon gemcitabine (GEM) treatment, and potential GEM targets were identified. The cytotoxicity test and GEM target analysis found that HPAC, CFPAC-1, and BxPC-3 were sensitive to GEM treatment, whereas PANC-1 and AsPC-1 were resistant. Finally, we found EMT was significant for CFPAC-1, AsPC-1, and PANC-1 cells, whereas BxPC-3 and HPAC cells showed more typical epithelial features. This library provides a valuable resource for in-depth proteomic analysis on pancreatic cancer cell lines, meeting the urgent demands for cell line-dependent protein differences and targeted drug analysis. Measurement(s) | protein expression profiling | Technology Type(s) | Mass Spectrometry |
Collapse
|
14
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
15
|
Merz V, Mangiameli D, Zecchetto C, Quinzii A, Pietrobono S, Messina C, Casalino S, Gaule M, Pesoni C, Vitale P, Trentin C, Frisinghelli M, Caffo O, Melisi D. Predictive Biomarkers for a Personalized Approach in Resectable Pancreatic Cancer. Front Surg 2022; 9:866173. [PMID: 35599791 PMCID: PMC9114435 DOI: 10.3389/fsurg.2022.866173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
The mainstay treatment for patients with immediate resectable pancreatic cancer remains upfront surgery, which represents the only potentially curative strategy. Nevertheless, the majority of patients surgically resected for pancreatic cancer experiences disease relapse, even when a combination adjuvant therapy is offered. Therefore, aiming at improving disease free survival and overall survival of these patients, there is an increasing interest in evaluating the activity and efficacy of neoadjuvant and perioperative treatments. In this view, it is of utmost importance to find biomarkers able to select patients who may benefit from a preoperative therapy rather than upfront surgical resection. Defined genomic alterations and a dynamic inflammatory microenvironment are the major culprits for disease recurrence and resistance to chemotherapeutic treatments in pancreatic cancer patients. Signal transduction pathways or tumor immune microenvironment could predict early recurrence and response to chemotherapy. In the last decade, distinct molecular subtypes of pancreatic cancer have been described, laying the bases to a tailored therapeutic approach, started firstly in the treatment of advanced disease. Patients with homologous repair deficiency, in particular with mutant germline BRCA genes, represent the first subgroup demonstrating to benefit from specific therapies. A fraction of patients with pancreatic cancer could take advantage of genome sequencing with the aim of identifying possible targetable mutations. These genomic driven strategies could be even more relevant in a potentially curative setting. In this review, we outline putative predictive markers that could help in the next future in tailoring the best therapeutic strategy for pancreatic cancer patients with a potentially curable disease.
Collapse
Affiliation(s)
- Valeria Merz
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
| | - Camilla Zecchetto
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alberto Quinzii
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
| | | | - Simona Casalino
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marina Gaule
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Camilla Pesoni
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Chiara Trentin
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | | | - Orazio Caffo
- Medical Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Verona, Italy
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
16
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
17
|
Zhang Z, Ji S, Hu Q, Zhuo Q, Liu W, Xu W, Liu W, Liu M, Ye Z, Fan G, Xu X, Yu X, Qin Y. Improved tumor control with antiangiogenic therapy after treatment with gemcitabine and nab-paclitaxel in pancreatic cancer. Clin Transl Med 2021; 11:e398. [PMID: 34459132 PMCID: PMC8387784 DOI: 10.1002/ctm2.398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Hamad A, Brown ZJ, Ejaz AM, Dillhoff M, Cloyd JM. Neoadjuvant therapy for pancreatic ductal adenocarcinoma: Opportunities for personalized cancer care. World J Gastroenterol 2021; 27:4383-4394. [PMID: 34366611 PMCID: PMC8316910 DOI: 10.3748/wjg.v27.i27.4383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/12/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy that is best treated in a multidisciplinary fashion using surgery, chemotherapy, and radiation. Adjuvant chemotherapy has shown to have a significant survival benefit in patients with resected PDAC. However, up to 50% of patients fail to receive adjuvant chemotherapy due to postoperative complications, poor patient performance status or early disease progression. In order to ensure the delivery of chemotherapy, an alternative strategy is to administer systemic treatment prior to surgery. Precision oncology refers to the application of diverse strategies to target therapies specific to characteristics of a patient’s cancer. While traditionally emphasized in selecting targeted therapies based on molecular, genetic, and radiographic biomarkers for patients with metastatic disease, the neoadjuvant setting is a prime opportunity to utilize personalized approaches. In this article, we describe the current evidence for the use of neoadjuvant therapy (NT) and highlight unique opportunities for personalized care in patients with PDAC undergoing NT.
Collapse
Affiliation(s)
- Ahmad Hamad
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43215, United States
| | - Zachary J Brown
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43215, United States
| | - Aslam M Ejaz
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43215, United States
| | - Mary Dillhoff
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43215, United States
| | - Jordan M Cloyd
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43215, United States
| |
Collapse
|
19
|
Zhang B, Zhou F, Hong J, Ng DM, Yang T, Zhou X, Jin J, Zhou F, Chen P, Xu Y. The role of FOLFIRINOX in metastatic pancreatic cancer: a meta-analysis. World J Surg Oncol 2021; 19:182. [PMID: 34154596 PMCID: PMC8218408 DOI: 10.1186/s12957-021-02291-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background The prognosis of pancreatic cancer (PC) is extremely poor, and most patients with metastatic PC still receive palliative care. Here, we report the efficacy and safety of FOLFIRINOX (oxaliplatin, irinotecan, leucovorin, 5-fluorouracil) in the treatment of metastatic PC. Methods We searched PubMed, Web of Science, EBSCO, and Cochrane library databases for articles that described efficacy and safety of FOLFIRINOX in patients with metastatic PC, from January 1996 to July 2020. The primary outcomes targeted included overall survival (OS) and progression-free survival (PFS). Results We found that FOLFIRINOX could directly improve OS rate of patients with metastatic PC (HR 0.76, 95% Cl 0.67–0.86, p<0.001) but had no benefit on PFS. Results from subgroup analyses showed that FOLFIRINOX had superior benefits than monochemotherapy (HR 0.59, 95% Cl 0.52–0.67, p<0.001), followed by FOLFIRINOX versus combination chemotherapy (HR 0.76, 95% Cl 0.61–0.95, p<0.001). The result of FOLFIRINOX versus nab-paclitaxel + gemcitabine had no benefit (HR 0.91, 95% Cl 0.82–1.02, p>0.05). The main adverse events (AEs) targeted hematological toxicity and the gastrointestinal system, and included febrile neutropenia, a reduction in white blood cells and appetite, as well as diarrhea. Conclusion These findings indicated that FOLFIRINOX has potential benefits for the prognosis of patients with metastatic PC. Furthermore, there is no difference between the regimen of FOLFIRINOX and nab-paclitaxel + gemcitabine in this study. The application of FOLFIRINOX should be according to the actual situation of the patients and the experience of the doctors. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02291-6.
Collapse
Affiliation(s)
- Beilei Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fengyan Zhou
- Emergency Medical Center, Ningbo Yinzhou No 2 Hospital, Ningbo, Zhejiang, China
| | - Jiaze Hong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Derry Minyao Ng
- Medical College of Ningbo University, Ningbo, Zhejiang, China
| | - Tong Yang
- Department of Tumor HIFU Therapy, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Xinyu Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jieyin Jin
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Feifei Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ping Chen
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yunbao Xu
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Northwest Street 41, Haishu District, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
20
|
Kato T, Ono H, Fujii M, Akahoshi K, Ogura T, Ogawa K, Ban D, Kudo A, Tanaka S, Tanabe M. Cytoplasmic RRM1 activation as an acute response to gemcitabine treatment is involved in drug resistance of pancreatic cancer cells. PLoS One 2021; 16:e0252917. [PMID: 34111175 PMCID: PMC8191885 DOI: 10.1371/journal.pone.0252917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND RRM1 is functionally associated with DNA replication and DNA damage repair. However, the biological activity of RRM1 in pancreatic cancer remains undetermined. METHODS To determine relationships between RRM1 expression and the prognosis of pancreatic cancer, and to explore RRM1 function in cancer biology, we investigated RRM1 expression levels in 121 pancreatic cancer patients by immunohistochemical staining and performed in vitro experiments to analyze the functional consequences of RRM1 expression. RESULTS Patients with high RRM1 expression had significantly poorer clinical outcomes (overall survival; p = 0.006, disease-free survival; p = 0.0491). In particular, high RRM1 expression was also associated with poorer overall survival on adjuvant chemotherapy (p = 0.008). We found that RRM1 expression was increased 24 hours after exposure to gemcitabine and could be suppressed by histone acetyltransferase inhibition. RRM1 activation in response to gemcitabine exposure was induced mainly in the cytoplasm and cytoplasmic RRM1 activation was related to cancer cell viability. In contrast, cancer cells lacking cytoplasmic RRM1 activation were confirmed to show severe DNA damage. RRM1 inhibition with specific siRNA or hydroxyurea enhanced the cytotoxic effects of gemcitabine for pancreatic cancer cells. CONCLUSIONS Cytoplasmic RRM1 activation is involved in biological processes related to drug resistance in response to gemcitabine exposure and could be a potential target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Tomotaka Kato
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Ono
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikiya Fujii
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Ogura
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosuke Ogawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
21
|
Lin Q, Qian Z, Jusko WJ, Mager DE, Ma WW, Straubinger RM. Synergistic Pharmacodynamic Effects of Gemcitabine and Fibroblast Growth Factor Receptor Inhibitors on Pancreatic Cancer Cell Cycle Kinetics and Proliferation. J Pharmacol Exp Ther 2021; 377:370-384. [PMID: 33753538 PMCID: PMC9885358 DOI: 10.1124/jpet.120.000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Median survival of pancreatic ductal adenocarcinoma cancer (PDAC) is 6 months, with 9% 5-year survival. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and combination therapies integrating novel targeted agents could improve outcomes. Fibroblast growth factor (FGF) receptors (FGFRs) play important roles in PDAC growth and invasion. Therefore, FGFR inhibitors (FGFRi) merit further investigation. Efficacy of Gem combined with NVP-BGJ398, a pan-FGFRi, was investigated in multiple PDAC cell lines exposed to the drugs alone and combined. Cell cycle distribution and cell numbers were quantified over time. Two pharmacodynamic models were developed to investigate Gem/BGJ398 interactions quantitatively: a drug-mediated cell proliferation/death model, and a drug-perturbed cell cycle progression model. The models captured temporal changes in cell numbers, cell cycle progression, and cell death during drug exposure. Simultaneous fitting of all data provided reasonable parameter estimates. Therapeutic efficacy was then evaluated in a PDAC mouse model. Compared with Gem alone, combined Gem + FGFRi significantly downregulated ribonucleotide-diphosphate reductase large subunit 1 (RRM1), a gemcitabine resistance (GemR) biomarker, suggesting the FGFRi inhibited GemR emergence. The cell proliferation/death pharmacodynamic model estimated the drug interaction coefficient ψ death = 0.798, suggesting synergistic effects. The mechanism-based cell cycle progression model estimated drug interaction coefficient ψ cycle = 0.647, also suggesting synergy. Thus, FGFR inhibition appears to synergize with Gem in PDAC cells and tumors by sensitizing cells to Gem-mediated inhibition of proliferation and cell cycle progression. SIGNIFICANCE STATEMENT: An integrated approach of quantitative modeling and experimentation was employed to investigate the nature of fibroblast growth factor receptor inhibitor (FGFRi)/gemcitabine (Gem) interaction, and to identify mechanisms by which FGFRi exposure reverses Gem resistance in pancreatic cancer cells. The results show that FGFRi interacts synergistically with Gem to sensitize pancreatic cancer cells and tumors to Gem-mediated inhibition of proliferation and cell cycle progression. Thus, addition of FGFRi to standard-of-care Gem treatment could be a clinically deployable approach to enhance therapeutic benefit to pancreatic cancer patients.
Collapse
Affiliation(s)
- Qingxiang Lin
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Zhicheng Qian
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Wen Wee Ma
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.M.S.; Z.Q., W.J.J., D.E.M.); Departments of Cell Stress Biology (Q.L., R.M.S.) and Pharmacology and Therapeutics (R.M.S.), Roswell Park Comprehensive Cancer Center, Buffalo, New York; and Department of Medicine, Mayo Clinic, Rochester, Minnesota (W.W.M.)
| |
Collapse
|
22
|
Jiang Z, Hou Z, Liu W, Yu Z, Liang Z, Chen S. circ-Keratin 6c Promotes Malignant Progression and Immune Evasion of Colorectal Cancer through microRNA-485-3p/Programmed Cell Death Receptor Ligand 1 Axis. J Pharmacol Exp Ther 2021; 377:358-367. [PMID: 33771844 DOI: 10.1124/jpet.121.000518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, circular RNA was reported to be a significant participant in the development of tumorigenesis, including colorectal cancer. Therefore, we aimed to clarify the precise role of circ-keratin 6C (circ-KRT6C) in colorectal cancer progression. The relative expression levels of circ-KRT6C, microRNA-485-3p (miR-485-3p), and programmed cell death receptor ligand 1 (PDL1) were analyzed by real-time quantitative polymerase chain reaction and Western blot assays. The proliferation was assessed by cell count kit 8 and colony-forming assays. The apoptotic cells were determined by flow cytometry assay. The migration and invasion were analyzed by transwell assay. Colorectal cancer cells were cocultured with peripheral blood mononuclear cells or cytokine-induced killer cells to assess immune response. The interaction relationships among circ-KRT6C, miR-485-3p, and PDL1 were examined by dual-luciferase reporter assay. The effects of circ-KRT6C inhibition in vivo were analyzed by an animal experiment. circ-KRT6C was overexpressed in colorectal cancer tissues and cells, and its level was associated with overall survival time of patients with colorectal cancer. The suppression of circ-KRT6C suppressed growth, migration, invasion, and immune escape while stimulating apoptosis in colorectal cancer cells, which was abolished by shortage of miR-485-3p. In addition, overexpression of miR-485-3p repressed malignant progression and immune evasion of colorectal cancer by targeting PDL1, implying that PDL1 was a functional target of miR-485-3p. A xenograft experiment also suggested that circ-KRT6C inhibition could repress tumor growth in vivo. circ-KRT6C could increase PDL1 expression by functioning as an miR-485-3p sponge, which promoted malignant progression and immune evasion of colorectal cancer cells. SIGNIFICANCE STATEMENT: circ-keratin 6c could increase programmed cell death receptor ligand 1 expression by functioning as a microRNA-16-5p sponge, which promoted malignant progression and immune evasion of colorectal cancer.
Collapse
Affiliation(s)
- Zhipeng Jiang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Zehui Hou
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Wei Liu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Zhuomin Yu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Zhiqiang Liang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| | - Shuang Chen
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Guangzhou, Guangdong, P.R.China
| |
Collapse
|
23
|
Khetan K, Sahoo RK, Baloda V, Shalimar, Vishnubhatla S, Saraya A, Dash NR, Sharma A, DattaGupta S, Das P. Expression patterns and prognostic significances of RRM1 and ERCC1 in pancreatic carcinoma and cholangiocarcinoma. INDIAN J PATHOL MICR 2021; 64:S160-S165. [PMID: 34135160 DOI: 10.4103/ijpm.ijpm_537_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Aggressive pancreatobiliary tumors often require oxaliplatin-based therapies, instead of standard gemcitabine-based therapy and biomarker studies at diagnosis to decide the appropriate therapeutic regimen. The ribonucleotide Reductase catalytic subunit M1 (RRM1) and excision repair cross-complementing gene-1 (ERCC1) are related to DNA synthesis and repair and essential in this regard. However, apart from the therapeutic benefit, their prognostic implication is controversial. METHODS In this retrospective study, paraffin-embedded tissue from 51 cases of pancreatic cancer and 29 cases of cholangiocarcinoma were evaluated for RRM1 and ERCC1 expression by immunohistochemical technique along with 18 control pancreatic and biliary tissues. The semiquantitatively H score was calculated based on stain distribution and stain intensities. RESULTS Both RRM1 and ERCC1 expression were high in tumor epithelium than in controls (RRM1: the difference was statistically significant in cholangiocarcinoma (P = 0.008); ERCC1: the difference was statistically significant both in pancreatic and cholangiocarcinoma (P < 0.05)]. However, no correlation was noted between RRM1 and ERCC1-low and high tumors with histological markers of prognosis and overall survival in these patients. CONCLUSIONS The present study adds further evidence against the controversy that if RRM1 and ERCC1 expression in pancreatic and biliary carcinomas have any prognostic significance apart from their proven therapeutic benefits in these tumors.
Collapse
Affiliation(s)
- Khushbu Khetan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit K Sahoo
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Baloda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Nihar Ranjan Dash
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Sharma
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Kutschat AP, Hamdan FH, Wang X, Wixom AQ, Najafova Z, Gibhardt CS, Kopp W, Gaedcke J, Ströbel P, Ellenrieder V, Bogeski I, Hessmann E, Johnsen SA. STIM1 Mediates Calcium-Dependent Epigenetic Reprogramming in Pancreatic Cancer. Cancer Res 2021; 81:2943-2955. [PMID: 33436389 DOI: 10.1158/0008-5472.can-20-2874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) displays a dismal prognosis due to late diagnosis and high chemoresistance incidence. For advanced disease stages or patients with comorbidities, treatment options are limited to gemcitabine alone or in combination with other drugs. While gemcitabine resistance has been widely attributed to the levels of one of its targets, RRM1, the molecular consequences of gemcitabine resistance in PDAC remain largely elusive. Here we sought to identify genomic, epigenomic, and transcriptomic events associated with gemcitabine resistance in PDAC and their potential clinical relevance. We found that gemcitabine-resistant cells displayed a coamplification of the adjacent RRM1 and STIM1 genes. Interestingly, RRM1, but not STIM1, was required for gemcitabine resistance, while high STIM1 levels caused an increase in cytosolic calcium concentration. Higher STIM1-dependent calcium influx led to an impaired endoplasmic reticulum stress response and a heightened nuclear factor of activated T-cell activity. Importantly, these findings were confirmed in patient and patient-derived xenograft samples. Taken together, our study uncovers previously unknown biologically relevant molecular properties of gemcitabine-resistant tumors, revealing an undescribed function of STIM1 as a rheostat directing the effects of calcium signaling and controlling epigenetic cell fate determination. It further reveals the potential benefit of targeting STIM1-controlled calcium signaling and its downstream effectors in PDAC. SIGNIFICANCE: Gemcitabine-resistant and some naïve tumors coamplify RRM1 and STIM1, which elicit gemcitabine resistance and induce a calcium signaling shift, promoting ER stress resistance and activation of NFAT signaling.
Collapse
Affiliation(s)
- Ana P Kutschat
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wang
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Q Wixom
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Zeynab Najafova
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Waltraut Kopp
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
25
|
Gu ZT, Li ZZ, Wang CF. Research advances of intracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:1150-1161. [DOI: 10.11569/wcjd.v28.i22.1150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most deadly malignant tumors that endanger human health, and pancreatic ductal adenocarcinoma (PDAC) is the most common histological type. Due to the lack of specific clinical symptoms, physical signs, and effective screening biomarkers for early stage PDAC, only 15%-20% of patients are qualified for surgical resection. Consequently, gemcitabine (GEM)-based monotherapy or combination therapy is still the most important or even the only treatment option. However, the overall response rate of PDAC to GEM is less than 20%, and GEM resistance is one of the most important factors affecting the efficacy of chemotherapy. At present, the mechanism of GEM resistance has not been clarified, which may involve congenital and acquired regulation. The heterogeneity of PDAC further increases its complexity. However, regulation of intracellular signaling pathways is the ultimate event to induce GEM resistance. This article will review the recent advances in research of GEM metabolism and regulation of signaling pathways in PDAC cells, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Lab of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Lab of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
26
|
Double-staining Immunohistochemistry Reveals in Malignant Pleural Mesothelioma the Coexpression of ERCC1 and RRM1 as a Frequent Biological Event Related to Poorer Survival. Appl Immunohistochem Mol Morphol 2020; 29:231-238. [PMID: 32842027 DOI: 10.1097/pai.0000000000000869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare cancer with a poor prognosis. To date, standard MPM therapy is still limited to surgery, radiotherapy, and chemotherapy, including pemetrexed and platinum compounds. The main mechanisms of platinum resistance are associated with DNA repair pathways. Excision repair cross-complementing group 1 (ERCC1) and ribonucleotide reductase subunit M1 (RRM1) are important components of the DNA repair, considered as prognostic and predictive biomarkers in various cancer types. The main goal of the present study was to investigate the ERCC1 and RRM1 expression and their potential impact on outcome in this tumor. A series of 73 MPM, mainly treated with a platin-based regimen, was collected and the immunohistochemistry tests were performed to assess ERCC1 and RRM1 expression. In addition, a multiplex immunohistochemistry has been validated to detect simultaneously the 2 proteins on the same slide. In our series, 36 of 73 cases showed ERCC1 expression and 55 of 73 showed RRM1 expression. The double immunohistochemical staining showed the coexpression of ERCC1/RRM1 in 34 of 73 cases. A significant association between ERCC1 and RRM1 expression was observed in our series (P<0.05). Patients with ERCC1/RRM1 coexpression experienced shorter median overall survival (6.6 vs. 13.8 mo, log-rank=7688; P=0.006). Our results suggest that the coexpression of ERCC1/RRM1 could define a group of MPM patients with the worst prognosis who should need likely alternative treatment. In conclusion, we propose the putative usefulness of ERCC1/RRM1 coexpression as prognostic biomarkers for overall survival in MPM.
Collapse
|
27
|
Fumarola S, Cecati M, Sartini D, Ferretti G, Milanese G, Galosi AB, Pozzi V, Campagna R, Morresi C, Emanuelli M, Bacchetti T. Bladder Cancer Chemosensitivity is Affected by Paraoxonase-2 Expression. Antioxidants (Basel) 2020; 9:175. [PMID: 32093309 PMCID: PMC7070528 DOI: 10.3390/antiox9020175] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
The goal of the current study was to identify potential roles of paraoxonase-2 in bladder carcinogenesis. T24 bladder cancer cells were transfected with plasmids inducing paraoxonase-2 silencing or overexpression. Upon the selection of clones stably down- or upregulating paraoxonase-2, cell proliferation, migration, and the production of reactive oxygen species were evaluated, before and after treatment with cisplatin and gemcitabine, used alone or in combination. The activity levels of both caspase-3 and caspase-8 were also analyzed. shRNA-mediated gene silencing and the overexpression of paraoxonase-2 revealed that the enzyme was able to promote both the proliferation and migration of T24 cells. Moreover, the knockdown of paraoxonase-2 was significantly associated with a reduced cell viability of T24 cells treated with chemotherapeutic drugs and led to both an increase of reactive oxygen species production and caspase-3 and caspase-8 activation. Conversely, under treatment with anti-neoplastic compounds, a higher proliferative capacity was found in T24 cells overexpressing paraoxonase-2 compared with controls. In addition, upon enzyme upregulation, both the production of reactive oxygen species and activation of caspase-3 and caspase-8 were reduced. Although further analyses will be required to fully understand the involvement of paraoxonase-2 in bladder tumorigenesis and in mechanisms leading to the development of chemoresistance, the data reported in this study seem to demonstrate that the enzyme could exert a great impact on tumor progression and susceptibility to chemotherapy, thus suggesting paraoxonase-2 as a novel and interesting molecular target for effective bladder cancer treatment.
Collapse
Affiliation(s)
- Stefania Fumarola
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Monia Cecati
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Giulio Milanese
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Andrea Benedetto Galosi
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Valentina Pozzi
- New York-Marche Structural Biology Center, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy (T.B.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (S.F.); (M.C.); (D.S.); (G.F.); (G.M.); (A.B.G.); (R.C.)
- New York-Marche Structural Biology Center, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy (T.B.)
| |
Collapse
|
28
|
Kong J, Wang T, Zhang Z, Yang X, Shen S, Wang W. Five Core Genes Related to the Progression and Prognosis of Hepatocellular Carcinoma Identified by Analysis of a Coexpression Network. DNA Cell Biol 2019; 38:1564-1576. [PMID: 31633379 DOI: 10.1089/dna.2019.4932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The molecular mechanism of tumorigenesis of the prevalent cancer hepatocellular carcinoma (HCC) is unclear. In this study, through weighted gene coexpression network analysis, a coexpression network was constructed by selecting the top 25% most variant genes in the dataset GSE62232. The average linkage hierarchical clustering identified 24 modules, and among them, the pink module associated with prognosis of HCC was screened. Five gene candidates (PCNA, RFC4, PTTG1, H2AFZ, and RRM1) with a common network in the module were screened after the protein-protein interaction network complex was combined with the coexpression network. After progression and survival analysis, all candidates were identified as real core genes. According to the Human Protein Atlas and the Oncomine database, these genes were dysregulated in HCC samples. The receiver operating characteristic curve proved that the expression levels of the core genes had high diagnostic efficacy. The results of gene set enrichment analysis and functional enrichment analysis demonstrated the importance of the cell cycle-related pathways in HCC progression and prognosis. In conclusion, the five real core genes and cell cycle-related pathways identified in this study could greatly improve the knowledge about HCC progression and contribute to HCC treatment.
Collapse
Affiliation(s)
- Junjie Kong
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Tao Wang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Zifei Zhang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Xianwei Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Shu Shen
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| | - Wentao Wang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu, P.R. China
| |
Collapse
|
29
|
Ding Y, Zhong T, Wang M, Xiang X, Ren G, Jia Z, Lin Q, Liu Q, Dong J, Li L, Li X, Jiang H, Zhu L, Li H, Shen D, Teng L, Li C, Shao J. Integrative Analysis Reveals Across-Cancer Expression Patterns and Clinical Relevance of Ribonucleotide Reductase in Human Cancers. Front Oncol 2019; 9:956. [PMID: 31637211 PMCID: PMC6788385 DOI: 10.3389/fonc.2019.00956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Mining cancer-omics databases deepens our understanding of cancer biology and can lead to potential breakthroughs in cancer treatment. Here, we propose an integrative analytical approach to reveal across-cancer expression patterns and identify potential clinical impacts for genes of interest from five representative public databases. Using ribonucleotide reductase (RR), a key enzyme in DNA synthesis and cancer-therapeutic targeting, as an example, we characterized the mRNA expression profiles and inter-component associations of three RR subunit genes and assess their differing pathological and prognostic significance across over 30-types of cancers and their related subtypes. Findings were validated by immunohistochemistry with clinical tissue samples (n = 211) collected from multiple cancer centers in China and with clinical follow-up. Underlying mechanisms were further explored and discussed using co-expression gene network analyses. This framework represents a simple, efficient, accurate, and comprehensive approach for cancer-omics resource analysis and underlines the necessity to separate the tumors by their histological or pathological subtypes during the clinical evaluation of molecular biomarkers.
Collapse
Affiliation(s)
- Yongfeng Ding
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Zhong
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Wang
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongjuan Jia
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinghui Lin
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwen Dong
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Li
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiawei Li
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Jiang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Zhu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoran Li
- Discovery Biochemistry, Kymera Therapeutics, Cambridge, MA, United States
| | - Dejun Shen
- Southern California Permanente Medical Group, Department of Pathology, Downey Medical Center, Downey, CA, United States
| | - Lisong Teng
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Department of Medical Oncology, Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Research Center for Air Pollution and Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Matsuda Y, Inoue Y, Hiratsuka M, Kawakatsu S, Arai T, Matsueda K, Saiura A, Takazawa Y. Encapsulating fibrosis following neoadjuvant chemotherapy is correlated with outcomes in patients with pancreatic cancer. PLoS One 2019; 14:e0222155. [PMID: 31491010 PMCID: PMC6730897 DOI: 10.1371/journal.pone.0222155] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Pathological assessments of the treatment effect are critical for predicting patient outcomes after surgery. This study included 82 localized pancreatic cancer, 40 of whom were treated with neoadjuvant therapy (NAT) using four courses of gemcitabine plus nab-paclitaxel (GnP) followed by pancreatectomy (GnP group). The remaining 42 patients were treated with upfront pancreatectomy (UP) followed by adjuvant chemotherapy (UP group). We reviewed clinicopathological data of these patients to assess differences between the GnP and UP groups and further evaluate the prognostic impact of residual tumors after GnP treatment. Adjuvant treatment (S1, GnP or gemcitabine) was administered for 36 patients in the GnP group and 33 patients in the UP group. Compared to the UP group, the GnP group showed lower serum CA19-9 levels, microscopic tumor volume, and tumor-stroma ratio and decreased number of lymph node metastasis and vascular invasion. Higher incidence of encapsulating fibrosis was observed in the GnP group than in the UP group. Relative to the UP group (69%), a higher R0 rate was observed in the GnP group (85%). As for prognosis, encapsulating fibrosis was correlated with the overall survival of patients in the GnP group. However, overall survival did not show any correlation with other clinicopathological factors, including tumor reduction ratio (determined by computed tomography) and tumor regression grade (determined following criteria of Evans’ grading system or those of the College of American Pathologists). In conclusion, the present study revealed that GnP-induced encapsulating fibrosis could predict patients’ outcome. Nevertheless, large cohort studies are warranted to further evaluate the prognostic value of fibrosis, possibly with the help of imaging and biomarkers.
Collapse
Affiliation(s)
- Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
- * E-mail:
| | - Yosuke Inoue
- Department of Digestive and HBP Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makiko Hiratsuka
- Department of Radiology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shoji Kawakatsu
- Department of Digestive and HBP Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Kiyoshi Matsueda
- Department of Radiology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akio Saiura
- Department of Digestive and HBP Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yutaka Takazawa
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
31
|
Apostolou P, Iliopoulos AC, Parsonidis P, Papasotiriou I. Gene expression profiling as a potential predictor between normal and cancer samples in gastrointestinal carcinoma. Oncotarget 2019; 10:3328-3338. [PMID: 31164955 PMCID: PMC6534363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/03/2019] [Indexed: 10/25/2022] Open
Abstract
Analysis and comparison of gene expression profile among molecules, correlated with essential and crucial biological processes, is of primary importance in cancer research, since it provides significant info regarding the resistance to chemo/radiotherapy, risk for relapse or prediction of metastasis etc. In this study, gene expression profile is used for discriminating efficiently colon cancer cell lines from normal cells and cancer cells in blood samples of colon cancer patients and categorizing different types of gastrointestinal cancer. In particular, blood samples were collected from normal donors as well as from colon cancer patients. Peripheral blood mononuclear cells were isolated and gene expression analysis was performed for more than fifty genes. The same assays were performed for commercial cancer cell lines representing different types of gastrointestinal cancer. In order to examine whether the comparison of gene expression profile can lead to a thorough discrimination between cancer and normal states as well as between different cancer types, we performed clustering analysis based on hierarchical, and k-means algorithms. The clustering analysis efficiently separated: a) colon cancer cell lines from colon patients' samples, b) normal from the colon cancer samples, c) gastric and pancreatic cancer from liver and colon types based. The exploitation of gene expression profile can be successfully used for the discrimination between normal vs cancer samples and/or for categorizing various types of cancer. This of course has important implications in cancer management since it enables the quick discrimination based on cells, isolated from bloodstream, needless of tissue examination or protocols requiring specialized equipment.
Collapse
Affiliation(s)
- Panagiotis Apostolou
- 1 Research & Development Department, Research Genetic Cancer Centre S.A., Florina, Greece
| | - Aggelos C. Iliopoulos
- 1 Research & Development Department, Research Genetic Cancer Centre S.A., Florina, Greece
| | - Panagiotis Parsonidis
- 1 Research & Development Department, Research Genetic Cancer Centre S.A., Florina, Greece
| | - Ioannis Papasotiriou
- 1 Research & Development Department, Research Genetic Cancer Centre S.A., Florina, Greece
| |
Collapse
|
32
|
Gene expression profiling as a potential predictor between normal and cancer samples in gastrointestinal carcinoma. Oncotarget 2019. [DOI: 10.18632/oncotarget.26913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
33
|
Tesfaye AA, Wang H, Hartley ML, He AR, Weiner L, Gabelia N, Kapanadze L, Shezad M, Brody JR, Marshall JL, Pishvaian MJ. A Pilot Trial of Molecularly Tailored Therapy for Patients with Metastatic Pancreatic Ductal Adenocarcinoma. J Pancreat Cancer 2019; 5:12-21. [PMID: 31065624 PMCID: PMC6503449 DOI: 10.1089/pancan.2019.0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose: Despite the wide adoption of tumor molecular profiling, there is a dearth of evidence linking molecular biomarkers for treatment selection to prediction of treatment outcomes in patients with metastatic pancreatic cancer. We initiated a pilot study to test the feasibility of designing a larger phase II trial of molecularly tailored treatment for metastatic pancreatic cancer. Methods: Our study aimed to assess the feasibility of following a treatment algorithm based on the expression of three published predictive markers of response to chemotherapy: ribonucleotide reductase catalytic subunit M1 (for gemcitabine); excision repair cross-complementation group 1 (for platinum agents); and thymidylate synthase (for 5-fluorouracil) in patients with untreated, metastatic pancreatic cancer. Results of the tumor biopsy analysis were used to assign patients to one of seven doublet regimens. Key secondary objectives included response rate (RR), disease control rate (DCR), progression-free survival (PFS), and overall survival (OS). Results: Between December 2012 and March 2015, 30 patients were enrolled into the study. Ten patients failed screening primarily due to inadequate tumor tissue availability. Of the remaining 20 patients, 19 were assigned into 6 different chemotherapy doublets, and achieved an RR of 28%, with a DCR rate of 78%. The median PFS and OS were 5.78 and 8.21 months, respectively. Conclusions: The incorporation of biomarkers into a treatment algorithm is feasible and resulted in a PFS and OS similar to other doublet therapies for patients with metastatic pancreatic cancer. Based on the results from this pilot study, a larger phase II randomized trial of molecularly targeted therapy versus physicians' choice of standard of care has been initiated in the second-line setting (NCT02967770).
Collapse
Affiliation(s)
- Anteneh A Tesfaye
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Hongkun Wang
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Marion L Hartley
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Aiwu Ruth He
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Louis Weiner
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Nina Gabelia
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Lana Kapanadze
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Muhammad Shezad
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Jonathan R Brody
- Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - John L Marshall
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
34
|
Zou Y, Zhou J, Xu B, Li W, Wang Z. Ribonucleotide reductase subunit M2 as a novel target for clear-cell renal cell carcinoma. Onco Targets Ther 2019; 12:3267-3275. [PMID: 31118677 PMCID: PMC6501780 DOI: 10.2147/ott.s196347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Sufficient supply of deoxyribonucleoside triphosphates (dNTPs) is required for the uncontrolled replication of cancers. The current study aimed to investigate the biological and clinical role of ribonucleotide reductase subunit M2 (RRM2), a key enzyme regulating the dNTP pool, in clear-cell renal cell carcinoma (ccRCC). Methods: The expression of RRM2 on disease progression and patient outcome was assessed in ccRCC. Then, the effect of RRM2 inhibition on renal cell carcinoma (RCC) growth using siRNA or Triapine, an RRM2-specific inhibitor, was characterized in RCC cell lines. Results: The expression of RRM2 was up-regulated in ccRCC tissues as compared to the normal tissues. Patients with high RRM2 expression tend to have advanced pT stages, high Fuhrman grades, and shortened overall survival (OS). RRM2-siRNAs or Triapine significantly inhibited the cell growth by inducing G0/G1 cell cycle arrest in RCC cells through the attenuation of dNTP pool. Conclusions: The current results provided evidence that RRM2 might act as a novel target for ccRCC, and exploration of nonnucleoside, reversible, small-molecule inhibitors against RRM2 could be promising.
Collapse
Affiliation(s)
- Yun Zou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Juan Zhou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Bin Xu
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Wenzhi Li
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Zhong Wang
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
35
|
A Phase II Clinical Trial of Molecular Profiled Neoadjuvant Therapy for Localized Pancreatic Ductal Adenocarcinoma. Ann Surg 2018; 268:610-619. [PMID: 30080723 DOI: 10.1097/sla.0000000000002957] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, Shlomi T, Gil Z. Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma. Cancer Res 2018; 78:5287-5299. [PMID: 30042153 DOI: 10.1158/0008-5472.can-18-0124] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is known for its resistance to gemcitabine, which acts to inhibit cell growth by termination of DNA replication. Tumor-associated macrophages (TAM) were recently shown to contribute to gemcitabine resistance; however, the exact mechanism of this process is still unclear. Using a genetic mouse model of PDAC and electron microscopy analysis, we show that TAM communicate with the tumor microenvironment via secretion of approximately 90 nm vesicles, which are selectively internalized by cancer cells. Transfection of artificial dsDNA (barcode fragment) to murine peritoneal macrophages and injection to mice bearing PDAC tumors revealed a 4-log higher concentration of the barcode fragment in primary tumors and in liver metastasis than in normal tissue. These macrophage-derived exosomes (MDE) significantly decreased the sensitivity of PDAC cells to gemcitabine, in vitro and in vivo This effect was mediated by the transfer of miR-365 in MDE. miR-365 impaired activation of gemcitabine by upregulation of the triphospho-nucleotide pool in cancer cells and the induction of the enzyme cytidine deaminase; the latter inactivates gemcitabine. Adoptive transfer of miR-365 in TAM induced gemcitabine resistance in PDAC-bearing mice, whereas immune transfer of the miR-365 antagonist recovered the sensitivity to gemcitabine. Mice deficient of Rab27 a/b genes, which lack exosomal secretion, responded significantly better to gemcitabine than did wildtype. These results identify MDE as key regulators of gemcitabine resistance in PDAC and demonstrate that blocking miR-365 can potentiate gemcitabine response.Significance: Harnessing macrophage-derived exosomes as conveyers of antagomiRs augments the effect of chemotherapy against cancer, opening new therapeutic options against malignancies where resistance to nucleotide analogs remains an obstacle to overcome. Cancer Res; 78(18); 5287-99. ©2018 AACR.
Collapse
Affiliation(s)
- Yoav Binenbaum
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel
| | - Eran Fridman
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel
| | - Zvi Yaari
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Israel Institute of Technology, Haifa, Israel
| | - Neta Milman
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Israel Institute of Technology, Haifa, Israel
| | - Gil Ben David
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel
| | - Tomer Shlomi
- Departments of Computer Science and Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ziv Gil
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel. .,Technion Integrated Cancer Center, Rappaport Institute of Medicine and Research, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
37
|
Rao S, Beckman RA, Riazi S, Yabar CS, Boca SM, Marshall JL, Pishvaian MJ, Brody JR, Madhavan S. Quantification and expert evaluation of evidence for chemopredictive biomarkers to personalize cancer treatment. Oncotarget 2018; 8:37923-37934. [PMID: 27888622 PMCID: PMC5514962 DOI: 10.18632/oncotarget.13544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/12/2016] [Indexed: 02/06/2023] Open
Abstract
Predictive biomarkers have the potential to facilitate cancer precision medicine by guiding the optimal choice of therapies for patients. However, clinicians are faced with an enormous volume of often-contradictory evidence regarding the therapeutic context of chemopredictive biomarkers. We extensively surveyed public literature to systematically review the predictive effect of 7 biomarkers claimed to predict response to various chemotherapy drugs: ERCC1-platinums, RRM1-gemcitabine, TYMS-5-fluorouracil/Capecitabine, TUBB3-taxanes, MGMT-temozolomide, TOP1-irinotecan/topotecan, and TOP2A-anthracyclines. We focused on studies that investigated changes in gene or protein expression as predictors of drug sensitivity or resistance. We considered an evidence framework that ranked studies from high level I evidence for randomized controlled trials to low level IV evidence for pre-clinical studies and patient case studies. We found that further in-depth analysis will be required to explore methodological issues, inconsistencies between studies, and tumor specific effects present even within high evidence level studies. Some of these nuances will lend themselves to automation, others will require manual curation. However, the comprehensive cataloging and analysis of dispersed public data utilizing an evidence framework provides a high level perspective on clinical actionability of these protein biomarkers. This framework and perspective will ultimately facilitate clinical trial design as well as therapeutic decision-making for individual patients.
Collapse
Affiliation(s)
- Shruti Rao
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA
| | - Robert A Beckman
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - Shahla Riazi
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA
| | - Cinthya S Yabar
- Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Surgery, Albert Einstein Medical Center, Philadelphia, PA, USA
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC, USA
| | - John L Marshall
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Otto J. Ruesch Center for the Cure of Gastrointestinal Cancer, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Michael J Pishvaian
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Otto J. Ruesch Center for the Cure of Gastrointestinal Cancer, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Jonathan R Brody
- Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA.,Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
38
|
Oba A, Ban D, Kudo A, Kirimura S, Ito H, Matsumura S, Mitsunori Y, Aihara A, Ochiai T, Tanaka S, Tanabe M. Correlation Between the Acquisition of Resistance to Gemcitabine Therapy and the Expression of HuR in Pancreatic Ductal Adenocarcinoma: A Case Report. Int Surg 2018; 103:116-120. [DOI: 10.9738/intsurg-d-15-00278.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Recently, several studies have revealed the usefulness of biomarkers to predict the response to chemotherapy for pancreatic ductal adenocarcinoma (PDAC). Among them, human antigen R (HuR) is reported as a powerful marker for response to gemcitabine chemotherapy for PDAC. The present report describes a patient with PDAC who underwent gemcitabine therapy before resection and after recurrence, and HuR expression was examined at multiple stages. A 72-year-old man was diagnosed with locally advanced unresectable PDAC invading the common hepatic artery. After 9 cycles of gemcitabine treatment, a computed tomography (CT) scan demonstrated a partial response. He underwent distal pancreatectomy with portal vein resection. The pathologic assessment for response to the chemotherapy was grade Ib by Evans's criteria, and HuR expression was high. Serum carbohydrate antigen 19-9 (CA19-9) level rose rapidly at 4 months after the first resection. A CT scan and needle biopsy revealed a solitary recurrence in the abdominal wall, and HuR expression remained high. After 4 cycles of gemcitabine and S-1 combination therapy, a CT scan demonstrated a partial response, and serum CA19-9 decreased. However, after 2 additional cycles of the therapy, a CT scan demonstrated progressive disease, and serum CA19-9 increased slightly. By laparotomy, an abdominal wall recurrence and multiple peritoneal dissemination were found. HuR expression in the biopsy specimen obtained during the laparotomy was decreased. Although gemcitabine therapy was reinitiated, the disease progressed rapidly so the treatment was stopped. In this case, a correlation between the acquisition of resistance to gemcitabine therapy and change in HuR expression was demonstrated.
Collapse
Affiliation(s)
- Atsushi Oba
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Kirimura
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromitsu Ito
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Matsumura
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Aihara
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Ochiai
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
39
|
Zhao X, Wang X, Sun W, Cheng K, Qin H, Han X, Lin Y, Wang Y, Lang J, Zhao R, Zheng X, Zhao Y, shi J, Hao J, Miao QR, Nie G, Ren H. Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment. Biomaterials 2018; 158:44-55. [DOI: 10.1016/j.biomaterials.2017.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
|
40
|
Chen Z, Zheng Y, Shi Y, Cui Z. Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int J Nanomedicine 2018; 13:319-336. [PMID: 29391792 PMCID: PMC5768424 DOI: 10.2147/ijn.s149196] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in targeted therapies and immunotherapies, chemotherapy using cytotoxic agents remains an indispensable modality in cancer treatment. Recently, there has been a growing emphasis in using nanomedicine in cancer chemotherapy, and several nanomedicines have already been used clinically to treat cancers. There is evidence that formulating small molecular cancer chemotherapeutic agents into nanomedicines significantly modifies their pharmacokinetics and often improves their efficacy. Importantly, cancer cells often develop resistance to chemotherapy, and formulating anticancer drugs into nanomedicines also helps overcome chemoresistance. In this review, we briefly describe the different classes of cancer chemotherapeutic agents, their mechanisms of action and resistance, and evidence of overcoming the resistance using nanomedicines. We then emphasize on gemcitabine and our experience in discovering the unique (stearoyl) gemcitabine solid lipid nanoparticles that are effective against tumor cells resistant to gemcitabine and elucidate the underlying mechanisms. It seems that lysosomes, which are an obstacle in the delivery of many drugs, are actually beneficial for our (stearoyl) gemcitabine solid lipid nanoparticles to overcome tumor cell resistance to gemcitabine.
Collapse
Affiliation(s)
- Zhe Chen
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhengrong Cui
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
41
|
Han QL, Zhou YH, Lyu Y, Yan H, Dai GH. Effect of ribonucleotide reductase M1 expression on overall survival in patients with pancreatic cancer receiving gemcitabine chemotherapy: A literature-based meta-analysis. J Clin Pharm Ther 2017; 43:163-169. [PMID: 29214667 DOI: 10.1111/jcpt.12655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The prognostic value of ribonucleotide reductase M1 (RRM1) in patients with pancreatic cancer receiving gemcitabine chemotherapy has been evaluated in several studies. However, the conclusions remain controversial. METHODS By searching the PubMed and Embase databases, we conducted a meta-analysis to evaluate the prognostic significance of RRM1 expression in patients with pancreatic cancer receiving gemcitabine chemotherapy. Studies were pooled, and the hazard ratio (HR) and its corresponding 95% confidence interval (CI) were calculated. RESULTS Nine relevant articles were included for this meta-analysis study. Our results revealed that the high-RRM1 expression patients had significantly poorer overall survival (HR = 1.70, 95% CI = 1.33-2.16, Pheterogeneity = .061, I2 = 44.8%) and disease-free survival (HR = 1.84, 95% CI = 1.56-2.18, Pheterogeneity = .669, I2 = 0%) than the low-RRM1 expression patients. Furthermore, a statistically significant association between RRM1 expression and OS was found among both Japanese (HR = 1.80, 95% CI = 1.36-2.37, Pheterogeneity = .843, I2 = 0%) and American patients (HR = 1.76, 95% CI = 1.60-1.94, Pheterogeneity = .439, I2 = 0%). WHAT IS NEW AND CONCLUSION In conclusion, the expression of RRM1 can be considered a predictor of poor survival in patients with pancreatic cancer receiving gemcitabine chemotherapy. RRM1 expression assessment could provide more detailed information for patients with pancreatic cancer and could be used to optimize therapeutic schemes.
Collapse
Affiliation(s)
- Q L Han
- Department of Medical Oncology, Chinese PLA General Hospital & Chinese PLA Medical Academy, Beijing, China
| | - Y H Zhou
- Department of Medical Oncology, Chinese PLA General Hospital & Chinese PLA Medical Academy, Beijing, China
| | - Y Lyu
- Department of Medical Oncology, Chinese PLA General Hospital & Chinese PLA Medical Academy, Beijing, China
| | - H Yan
- Department of Medical Oncology, Chinese PLA General Hospital & Chinese PLA Medical Academy, Beijing, China
| | - G H Dai
- Department of Medical Oncology, Chinese PLA General Hospital & Chinese PLA Medical Academy, Beijing, China
| |
Collapse
|
42
|
Henning JEK, Deutschbein T, Altieri B, Steinhauer S, Kircher S, Sbiera S, Wild V, Schlötelburg W, Kroiss M, Perotti P, Rosenwald A, Berruti A, Fassnacht M, Ronchi CL. Gemcitabine-Based Chemotherapy in Adrenocortical Carcinoma: A Multicenter Study of Efficacy and Predictive Factors. J Clin Endocrinol Metab 2017; 102:4323-4332. [PMID: 29092062 DOI: 10.1210/jc.2017-01624] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/14/2017] [Indexed: 02/11/2023]
Abstract
CONTEXT Adrenocortical carcinoma (ACC) is rare and confers an unfavorable prognosis in advanced stages. Other than combination chemotherapy with cisplatin, etoposide, doxorubicin, and mitotane, the second- and third-line regimens are not well-established. Gemcitabine (GEM)-based chemotherapy was suggested in a phase 2 clinical trial with 28 patients. In other solid tumors, human equilibrative nucleoside transporter type 1 (hENT1) and/or ribonucleotide reductase catalytic subunit M1 (RRM1) expression have been associated with resistance to GEM. OBJECTIVE To assess the efficacy of GEM-based chemotherapy in ACC in a real-world setting and the predictive role of molecular parameters. DESIGN Retrospective multicenter study. SETTING Referral centers of university hospitals. PATIENTS AND MATERIALS A total of 145 patients with advanced ACC were treated with GEM-based chemotherapy (132 with concomitant capecitabine). Formalin-fixed paraffin-embedded tumor material was available for 70 patients for immunohistochemistry. OUTCOME MEASURES The main outcome measures were progression-free survival (PFS) and an objective response to GEM-based chemotherapy. The secondary objective was the predictive role of hENT1 and RRM1. RESULTS The median PFS for the patient population was 12 weeks (range, 1 to 94). A partial response or stable disease was achieved in 4.9% and 25.0% of cases, with a median duration of 26.8 weeks. Treatment was generally well tolerated, with adverse events of grade 3 or 4 occurring in 11.0% of cases. No substantial effect of hENT1 and/or RRM1 expression was observed in response to GEM-based chemotherapy. CONCLUSIONS GEM-based chemotherapy is a well-tolerated, but modestly active, regimen against advanced ACC. No reliable molecular predictive factors could be identified. Owing to the scarce alternative therapeutic options, GEM-based chemotherapy remains an important option for salvage treatment for advanced ACC.
Collapse
Affiliation(s)
- Judith E K Henning
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Timo Deutschbein
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
- Division of Endocrinology and Metabolic Diseases, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Sonja Steinhauer
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Stefan Kircher
- Institute of Pathology, University of Wuerzburg, Wuerzburg 97070, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Vanessa Wild
- Institute of Pathology, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Wiebke Schlötelburg
- Institute for Diagnostic and Interventional Radiology, University Hospital of Wuerzburg, Wuerzburg 97070, Germany
| | - Matthias Kroiss
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Paola Perotti
- Division of Internal Medicine I, University of Turin, San Luigi Hospital, Turin 10124, Italy
| | - Andreas Rosenwald
- Institute of Pathology, University of Wuerzburg, Wuerzburg 97070, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Alfredo Berruti
- Division of Medical Oncology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Spedali Civili Hospital, Brescia 25151, Italy
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg 97070, Germany
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg 97070, Germany
| |
Collapse
|
43
|
Tóth C, Sükösd F, Valicsek E, Herpel E, Schirmacher P, Renner M, Mader C, Tiszlavicz L, Kriegsmann J. Expression of ERCC1, RRM1, TUBB3 in correlation with apoptosis repressor ARC, DNA mismatch repair proteins and p53 in liver metastasis of colorectal cancer. Int J Mol Med 2017; 40:1457-1465. [PMID: 28949378 PMCID: PMC5627886 DOI: 10.3892/ijmm.2017.3136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/25/2017] [Indexed: 12/14/2022] Open
Abstract
Liver metastasis in colorectal cancer is common and the primary treatment is chemotherapy. To date, there is no routinely used test in clinical practice to predict the effectiveness of conventional chemotherapy. Therefore, biomarkers with predictive value for conventional chemotherapy would be of considerable benefit in treatment planning. We analysed three proteins [excision repair cross-complementing 1 (ERCC1), ribonucleoside-diphosphate reductase 1 (RRM1) and class III β-tubulin (TUBB3)] in colorectal cancer liver metastasis. We used tissue microarray slides with 101 liver metastasis samples, stained for ERCC1, RRM1 and TUBB3 and established scoring systems (fitted for tissue microarray) for each protein. In statistical analysis, we compared the expression of ERCC1, RRM1 and TUBB3 to mismatch proteins (MLH1, MSH2, MSH6 and PMS2), p53 and to apoptosis repressor protein (ARC). Statistically significant correlations were found between ERCC1, TUBB3 and MLH1, MSH2 and RRM1 and MSH2, MSH6. Noteworthy, our analysis revealed a strong significant correlation between cytoplasmic ARC expression and RRM1, TUBB3 (p=0.000 and p=0.001, respectively), implying an additional role of TUBB3 and RRM1 not only in therapy resistance, but also in the apoptotic machinery. Our data strengthens the importance of ERCC1, TUBB3 and RRM1 in the prediction of chemotherapy effectiveness and suggest new functional connections in DNA repair, microtubule network and apoptotic signaling (i.e. ARC protein). In conclusion, we showed the importance and need of predictive biomarkers in metastasized colorectal cancer and pointed out the relevance not only of single predictive markers but also of their interactions with other known and newly explored relations between different signaling pathways.
Collapse
Affiliation(s)
- Csaba Tóth
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Farkas Sükösd
- Department of Pathology, University of Szeged, H-6720 Szeged, Hungary
| | - Erzsébet Valicsek
- Department of Oncotherapy, University of Szeged, H-6720 Szeged, Hungary
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Marcus Renner
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Christoph Mader
- Institute of Pathology, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - László Tiszlavicz
- Department of Pathology, University of Szeged, H-6720 Szeged, Hungary
| | - Jörg Kriegsmann
- MVZ for Histology, Cytology and Molecular Diagnostics, Trier, D-54296 Trier, Germany
| |
Collapse
|
44
|
Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Cancer Lett 2017; 402:1-8. [PMID: 28536008 DOI: 10.1016/j.canlet.2017.05.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/26/2017] [Accepted: 05/14/2017] [Indexed: 12/23/2022]
Abstract
Treatment of pancreatic cancer with gemcitabine (GEM) is limited due to its rapid plasma metabolism and development of chemoresistance. MicroRNA (miRNA) regulates cancer stem cell (CSC) maintenance and induces chemoresistance in cancer cells. In this study, we observed differential downregulation of miR-205 (miR-205-5p) in human pancreatic cancer tissues and cells. Compared to GEM-sensitive MIA PaCa-2 cells, miR-205 was highly downregulated in GEM-resistant MIA PaCa-2R cells. Lentivirus-mediated overexpression of miR-205 inhibits MIA PaCa-2R cell proliferation after GEM-treatment. Further investigation confirmed that miR-205 alone significantly reduces the proliferation of CSCs and tumor growth in mouse models. However, miR-205 in combination with GEM was more efficient in reducing the proliferation of CSCs and 3D spheroids. Moreover, miR-205 overexpressing MIA PaCa-2R cells induced orthotopic tumor growth was significantly inhibited after intravenous administration of GEM-conjugated methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate)-graft-gemcitabine-graft-dodecanol (mPEG-b-PCC-g-GEM-g-DC) (mPEG-b-PCC-g-GEM-g-DC) polymeric micelles. Also, a reduction in CSCs, EMT and chemoresistance markers was observed in miR-205 overexpressing MIA PaCa-2R cells. Immunohistochemical analysis of orthotopic tumors showed a decrease in drug resistance protein caveolin-1 and cell proliferation marker Ki-67 in combination treatment. Overall, our findings suggest that miR-205 resensitizes GEM-resistant pancreatic cancer cells to GEM and acts as a tumor suppressor miRNA.
Collapse
|
45
|
Sagawa M, Ohguchi H, Harada T, Samur MK, Tai YT, Munshi NC, Kizaki M, Hideshima T, Anderson KC. Ribonucleotide Reductase Catalytic Subunit M1 (RRM1) as a Novel Therapeutic Target in Multiple Myeloma. Clin Cancer Res 2017; 23:5225-5237. [PMID: 28442502 DOI: 10.1158/1078-0432.ccr-17-0263] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022]
Abstract
Purpose: To investigate the biological and clinical significance of ribonucleotide reductase (RR) in multiple myeloma.Experimental Design: We assessed the impact of RR expression on patient outcome in multiple myeloma. We then characterized the effect of genetic and pharmacologic inhibition of ribonucleotide reductase catalytic subunit M1 (RRM1) on multiple myeloma growth and survival using siRNA and clofarabine, respectively, in both in vitro and in vivo mouse xenograft models.Results: Newly diagnosed multiple myeloma patients with higher RRM1 expression have shortened survival. Knockdown of RRM1 triggered significant growth inhibition and apoptosis in multiple myeloma cells, even in the context of the bone marrow microenvironment. Gene expression profiling showed upregulation of DNA damage response genes and p53-regulated genes after RRM1 knockdown. Immunoblot and qRT-PCR analysis confirmed that γ-H2A.X, ATM, ATR, Chk1, Chk2, RAD51, 53BP1, BRCA1, and BRCA2 were upregulated/activated. Moreover, immunoblots showed that p53, p21, Noxa, and Puma were activated in p53 wild-type multiple myeloma cells. Clofarabine, a purine nucleoside analogue that inhibits RRM1, induced growth arrest and apoptosis in p53 wild-type cell lines. Although clofarabine did not induce cell death in p53-mutant cells, it did trigger synergistic toxicity in combination with DNA-damaging agent melphalan. Finally, we demonstrated that tumor growth of RRM1-knockdown multiple myeloma cells was significantly reduced in a murine human multiple myeloma cell xenograft model.Conclusions: Our results therefore demonstrate that RRM1 is a novel therapeutic target in multiple myeloma in the preclinical setting and provide the basis for clinical evaluation of RRM1 inhibitor, alone or in combination with DNA-damaging agents, to improve patient outcome in multiple myeloma. Clin Cancer Res; 23(17); 5225-37. ©2017 AACR.
Collapse
Affiliation(s)
- Morihiko Sagawa
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hiroto Ohguchi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Takeshi Harada
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,West Roxbury Division, VA Boston Healthcare System, West Roxbury, Massachusetts
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
46
|
Aoyama T, Miyagi Y, Murakawa M, Yamaoku K, Atsumi Y, Shiozawa M, Ueno M, Morimoto M, Oshima T, Yukawa N, Yoshikawa T, Rino Y, Masuda M, Morinaga S. Clinical implications of ribonucleotide reductase subunit M1 in patients with pancreatic cancer who undergo curative resection followed by adjuvant chemotherapy with gemcitabine. Oncol Lett 2017; 13:3423-3430. [PMID: 28521448 PMCID: PMC5431334 DOI: 10.3892/ol.2017.5935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/07/2017] [Indexed: 12/12/2022] Open
Abstract
To the best of our knowledge, the clinical implications of using ribonucleoside reductase subunit M1 (RRM1) in patients who undergo curative resection and adjuvant chemotherapy have not been established. In the present study, the clinical data from 101 consecutive patients who underwent macroscopically curative resection, and who received adjuvant gemcitabine chemotherapy for pancreatic cancer at the Kanagawa Cancer Centre (Yokohama, Kanagawa, Japan) between April 2005 and December 2014 were retrospectively analyzed. The association between the RRM1 status and survival and clinicopathological features were assessed. Of the 101 patients, 41 patients expressed high levels of RRM1 expression (40.6%). Although a significant difference was observed in lymphatic invasion, there was no difference between the two groups with regard to any other clinicopathological parameters. The median follow-up period was 67.3 months. There was a significant difference between the recurrence-free survival (RFS) rates at 5 years after surgery, which were 12.9 and 0% in the high RRM1 and low RRM1 groups, respectively (P=0.042). Furthermore, there was a significant difference in the 5-year overall survival (OS) rates following surgery, which were 5.1 and 21.5% in the high RRM1 and low RRM1 groups, respectively (P=0.015). The results of the present study indicated that out of the factors assessed, RRM1 was the most important prognostic factor for OS and RFS in patients with pancreatic cancer who underwent curative resection followed by adjuvant chemotherapy with gemcitabine. Adjuvant chemotherapy with gemcitabine alone may be insufficient for the treatment of pancreatic cancer, particularly in patients with relevant risk factors.
Collapse
Affiliation(s)
- Toru Aoyama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241-8515, Japan
| | - Masaaki Murakawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Koichiro Yamaoku
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Yosuke Atsumi
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Manabu Shiozawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Makoto Ueno
- Department of Hepatobiliary Pancreatic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Manabu Morimoto
- Department of Hepatobiliary Pancreatic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| | - Takashi Oshima
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Norio Yukawa
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Takaki Yoshikawa
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Soichiro Morinaga
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa 241-8515, Japan
| |
Collapse
|
47
|
Abstract
OBJECTIVES There is a need for validated predictive markers of gemcitabine response to guide precision medicine treatment in pancreatic cancer. We previously validated human equilibrative nucleoside transporter 1 as a predictive marker of gemcitabine treatment response using Radiation Therapy Oncology Group 9704. Controversy exists about the predictive value of gemcitabine metabolism pathway biomarkers: deoxycytidine kinase (DCK), ribonucleotide reductase 1 (RRM1), RRM2, and p53R2. METHODS Radiation Therapy Oncology Group 9704 prospectively randomized 538 patients after pancreatic resection to receive either 5-fluorouracil or gemcitabine. Tumor DCK, RRM1, RRM2, and p53R protein expressions were analyzed using a tissue microarray and immunohistochemistry and correlated with treatment outcome (overall survival and disease-free survival) by unconditional logistic regression analysis. RESULTS There were 229 patients eligible for analysis from both the 5-fluorouracil and gemcitabine arms. Only RRM2 protein expression, and not DCK, RRM1, or p53R2 protein expression, was associated with survival in the gemcitabine treatment arm. CONCLUSIONS Despite limited data from other nonrandomized treatment data, our data do not support the predictive value of DCK, RRM1, or p53R2. Efforts should focus on human equilibrative nucleoside transporter 1 and possibly RRM2 as valid predictive markers of the treatment response of gemcitabine in pancreatic cancer.
Collapse
|
48
|
Postlewait LM, Ethun CG, Kooby DA, Sarmiento JM, Chen Z, Staley CA, Brutcher E, Adsay V, El-Rayes B, Maithel SK. Combination gemcitabine/cisplatin therapy and ERCC1 expression for resected pancreatic adenocarcinoma: Results of a Phase II prospective trial. J Surg Oncol 2016; 114:336-41. [PMID: 27501338 DOI: 10.1002/jso.24317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Standard adjuvant treatment for pancreatic adenocarcinoma (PDAC) is gemcitabine [Gem(CONKO-001: Gem vs. placebo DFS:13.4 vs. 6.7 mo; P < 0.001; OS:22.8 vs. 20.2 mo; P = 0.01)]. Addition of cisplatin (Cis) to Gem has resulted in increased PFS for advanced and metastatic disease, which may be predicted by low expression of excision repair cross-complementing group-1 (ERCC1), the key enzyme in nucleotide excision repair. This Phase II prospective trial assesses outcomes of patients treated with adjuvant Gem/Cis, stratifying results by tumor ERCC1 expression. METHODS Patients with resected PDAC were enrolled (2010-2013) and received Gem(1,000 mg/m(2) )/Cis(50 mg/m(2) ). Tumor ERCC1 expression was evaluated by immunohistochemistry and dichotomized into low or high expression. Primary outcomes were recurrence-free and overall survival (RFS/OS). RESULTS Of 22 pts, 16(73%) were Stage IIB, 5(23%) Stage IIA, and 1(4%) Stage IA. Grade 3/4 toxicity occurred in 13 pts (59%); neutropenia was most common (n = 9;41%). Median follow-up was 37.5 months. Median RFS was 16.7 mo; OS was 35.5 mo. Low ERCC1 (n = 15;75%) compared to high ERCC1 (n = 5;25%) was not associated with improved RFS (12.4 vs. 16.7 mo; P = 0.68) or OS (Median not reached vs. 21.6 mo; P = 0.22). CONCLUSIONS Adjuvant Gem/Cis is feasible in patients with resected pancreatic adenocarcinoma. RFS and OS for Gem/Cis appear promising compared to historic control. Tumor ERCC1 expression can be reliably evaluated, and low expression is present in most patients. J. Surg. Oncol. 2016;114:336-341. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lauren M Postlewait
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Cecilia G Ethun
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - David A Kooby
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Juan M Sarmiento
- Division of General Surgery, Department of Surgery, Emory University, Atlanta, Georgia
| | - Zhengjia Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Charles A Staley
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Edith Brutcher
- Department of Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Volkan Adsay
- Department of Pathology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Bassel El-Rayes
- Department of Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Shishir K Maithel
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
49
|
Systematic review of peri-operative prognostic biomarkers in pancreatic ductal adenocarcinoma. HPB (Oxford) 2016; 18:652-63. [PMID: 27485059 PMCID: PMC4972371 DOI: 10.1016/j.hpb.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) continues to be associated with a poor prognosis. This systematic review aimed to summarize the literature regarding potential prognostic biomarkers to facilitate validation studies and clinical application. METHODS A systematic review was performed (2004-2014) according to PRISMA guidelines. Studies were ranked using REMARK criteria and the following outcomes were examined: overall/disease free survival, nodal involvement, tumour characteristics, metastasis, recurrence and resectability. RESULTS 256 biomarkers were identified in 158 studies. 171 biomarkers were assessed with respect to overall survival: urokinase-type plasminogen activator receptor, atypical protein kinase C and HSP27 ranked the highest. 33 biomarkers were assessed for disease free survival: CD24 and S100A4 were the highest ranking. 17 biomarkers were identified for lymph node involvement: Smad4/Dpc4 and FOXC1 ranked highest. 13 biomarkers were examined for tumour grade: mesothelin and EGFR were the highest ranking biomarkers. 10 biomarkers were identified for metastasis: p16 and sCD40L were the highest ranking. 4 biomarkers were assessed resectability: sCD40L, s100a2, Ca 19-9, CEA. CONCLUSION This review has identified and ranked specific biomarkers that should be a primary focus of ongoing validation and clinical translational work in PDAC.
Collapse
|
50
|
Flores JPE, Diasio RB, Saif MW. Drug metabolism and pancreatic cancer. Ann Gastroenterol 2016; 30:54-61. [PMID: 28042238 PMCID: PMC5198247 DOI: 10.20524/aog.2016.0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains a fatal disease in the majority of patients. The era of personalized medicine is upon us: customizing therapy according to each patient's individual cancer. Potentially, therapy can be targeted at individuals who would most likely have a favorable response, making it more efficacious and cost effective. This is particularly relevant for pancreatic cancer, which currently portends a very poor prognosis. However, there is much to be done in this field, and more studies are needed to bring this concept to reality.
Collapse
Affiliation(s)
- John Paul E Flores
- Division of Hematology/Oncology and Experimental Therapeutics, Tufts Medical Center, Boston, MA (John Paul E. Flores, Muhammad Wasif Saif)
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN (Robert B. Diasio)
| | - Muhammad Wasif Saif
- Division of Hematology/Oncology and Experimental Therapeutics, Tufts Medical Center, Boston, MA (John Paul E. Flores, Muhammad Wasif Saif)
| |
Collapse
|