1
|
Ballabio C, Gianesello M, Lago C, Okonechnikov K, Anderle M, Aiello G, Antonica F, Zhang T, Gianno F, Giangaspero F, Hassan BA, Pfister SM, Tiberi L. Notch1 switches progenitor competence in inducing medulloblastoma. SCIENCE ADVANCES 2021; 7:7/26/eabd2781. [PMID: 34162555 PMCID: PMC8221631 DOI: 10.1126/sciadv.abd2781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/07/2021] [Indexed: 05/13/2023]
Abstract
The identity of the cell of origin is a key determinant of cancer subtype, progression, and prognosis. Group 3 medulloblastoma (MB) is a malignant childhood brain cancer with poor prognosis and few candidates as putative cell of origin. We overexpressed the group 3 MB genetic drivers MYC and Gfi1 in different candidate cells of origin in the postnatal mouse cerebellum. We found that S100b+ cells are competent to initiate group 3 MB, and we observed that S100b+ cells have higher levels of Notch1 pathway activity compared to Math1+ cells. We found that additional activation of Notch1 in Math1+ and Sox2+ cells was sufficient to induce group 3 MB upon MYC/Gfi1 expression. Together, our data suggest that the Notch1 pathway plays a critical role in group 3 MB initiation.
Collapse
Affiliation(s)
- Claudio Ballabio
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Matteo Gianesello
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Chiara Lago
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Marica Anderle
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Francesco Antonica
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Tingting Zhang
- Paris Brain Institute-Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 8, Paris, France
| | - Francesca Gianno
- Dept. of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Felice Giangaspero
- Dept. of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Bassem A Hassan
- Paris Brain Institute-Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 8, Paris, France
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Cancer, Department CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
2
|
Rodriguez-Blanco J, Li B, Long J, Shen C, Yang F, Orton D, Collins S, Kasahara N, Ayad NG, McCrea HJ, Roussel MF, Weiss WA, Capobianco AJ, Robbins DJ. A CK1α Activator Penetrates the Brain and Shows Efficacy Against Drug-resistant Metastatic Medulloblastoma. Clin Cancer Res 2018; 25:1379-1388. [PMID: 30487124 DOI: 10.1158/1078-0432.ccr-18-1319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Although most children with medulloblastoma are cured of their disease, Sonic Hedgehog (SHH) subgroup medulloblastoma driven by TRP53 mutations is essentially lethal. Casein kinase 1α (CK1α) phosphorylates and destabilizes GLI transcription factors, thereby inhibiting the key effectors of SHH signaling. We therefore tested a second-generation CK1α activator against TRP53-mutant, MYCN-amplified medulloblastoma. EXPERIMENTAL DESIGN The ability of this CK1α activator to block SHH signaling was determined in vitro using GLI reporter cells, granular precursor primary cultures, and PATCHED1 (PTCH1)-mutant sphere cultures. While in vivo efficacy was tested using 2 different medulloblastoma mouse models: PTCH1 and ND2:SMOA1. Finally, the clinical relevance of CK1α activators was demonstrated using a TRP53-mutant, MYCN-amplified patient-derived xenograft. RESULTS SSTC3 inhibited SHH activity in vitro, acting downstream of the vismodegib target SMOOTHENED (SMO), and reduced the viability of sphere cultures derived from SHH medulloblastoma. SSTC3 accumulated in the brain, inhibited growth of SHH medulloblastoma tumors, and blocked metastases in a genetically engineered vismodegib-resistant mouse model of SHH medulloblastoma. Importantly, SSTC3 attenuated growth and metastasis of orthotopic patient-derived TRP53-mutant, MYCN-amplified, SHH subgroup medulloblastoma xenografts, increasing overall survival. CONCLUSIONS Using a newly described small-molecule, SSTC3, we show that CK1a activators could address a significant unmet clinical need for patients with SMO inhibitor-resistant medulloblastoma, including those harboring mutations in TRP53.
Collapse
Affiliation(s)
- Jezabel Rodriguez-Blanco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Bin Li
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jun Long
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Chen Shen
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Fan Yang
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Sara Collins
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Noriyuki Kasahara
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| | - Nagi G Ayad
- Sylvester Comprehensive Cancer Center, University of Miami, Florida.,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine, Miami, Florida
| | - Heather J McCrea
- Department of Clinical Neurological Surgery, University of Miami, Florida
| | - Martine F Roussel
- Department of Tumor Cell Biology, St Jude Children's Research Hospital (SJCRH), Memphis, Tennessee
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California
| | - Anthony J Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| | - David J Robbins
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| |
Collapse
|
3
|
Li C, Li H, Zhang P, Yu LJ, Huang TM, Song X, Kong QY, Dong JL, Li PN, Liu J. SHP2, SOCS3 and PIAS3 Expression Patterns in Medulloblastomas: Relevance to STAT3 Activation and Resveratrol-Suppressed STAT3 Signaling. Nutrients 2016; 9:nu9010003. [PMID: 28035977 PMCID: PMC5295047 DOI: 10.3390/nu9010003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Activated STAT3 signaling is critical for human medulloblastoma cells. SHP2, SOCS3 and PIAS3 are known as the negative regulators of STAT3 signaling, while their relevance to frequent STAT3 activation in medulloblastomas remains unknown. METHODS Tissue microarrays were constructed with 17 tumor-surrounding noncancerous brain tissues and 61 cases of the classic medulloblastomas, 44 the large-cell medulloblastomas, and 15 nodular medulloblastomas, which were used for immunohistochemical profiling of STAT3, SHP2, SOCS3 and PIAS3 expression patterns and the frequencies of STAT3 nuclear translocation. Three human medulloblastoma cell lines (Daoy, UW228-2 and UW228-3) were cultured with and without 100 μM resveratrol supplementation. The influences of resveratrol in SHP2, SOCS3 and PIAS3 expression and SOCS3 knockdown in STAT3 activation were analyzed using multiple experimental approaches. RESULTS SHP2, SOCS3 and PIAS3 levels are reduced in medulloblastomas in vivo and in vitro, of which PIAS3 downregulation is more reversely correlated with STAT3 activation. In resveratrol-suppressed medulloblastoma cells with STAT3 downregulation and decreased incidence of STAT3 nuclear translocation, PIAS3 is upregulated, the SHP2 level remains unchanged and SOCS3 is downregulated. SOCS3 proteins are accumulated in the distal ends of axon-like processes of resveratrol-differentiated medulloblastoma cells. Knockdown of SOCS3 expression by siRNA neither influences cell proliferation nor STAT3 activation or resveratrol sensitivity but inhibits resveratrol-induced axon-like process formation. CONCLUSION Our results suggest that (1) the overall reduction of SHP2, SOCS3 and PIAS3 in medulloblastoma tissues and cell lines; (2) the more inverse relevance of PIAS3 expression with STAT3 activation; (3) the favorable prognostic values of PIAS3 for medulloblastomas and (4) the involvement of SOCS3 in resveratrol-promoted axon regeneration of medulloblastoma cells.
Collapse
Affiliation(s)
- Cong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Peng Zhang
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Li-Jun Yu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Tian-Miao Huang
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Xue Song
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Qing-You Kong
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Jian-Li Dong
- Department of Orthopedic Surgery, Second Hospital of Dalian Medical University, Dalian 116011, China.
| | - Pei-Nan Li
- Department of Orthopedic Surgery, Second Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
4
|
Not so Fast: Co-Requirements for Sonic Hedgehog Induced Brain Tumorigenesis. Cancers (Basel) 2015; 7:1484-98. [PMID: 26258793 PMCID: PMC4586781 DOI: 10.3390/cancers7030848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 01/17/2023] Open
Abstract
The Sonic hedgehog (Shh) pathway plays an integral role in cellular proliferation during normal brain development and also drives growth in a variety of cancers including brain cancer. Clinical trials of Shh pathway inhibitors for brain tumors have yielded disappointing results, indicating a more nuanced role for Shh signaling. We postulate that Shh signaling does not work alone but requires co-activation of other signaling pathways for tumorigenesis and stem cell maintenance. This review will focus on the interplay between the Shh pathway and these pathways to promote tumor growth in brain tumors, presenting opportunities for the study of combinatorial therapies.
Collapse
|
5
|
Mathieu P, Adami PVM, Morelli L. Notch signaling in the pathologic adult brain. Biomol Concepts 2013; 4:465-76. [DOI: 10.1515/bmc-2013-0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022] Open
Abstract
AbstractAlong the entire lifetime, Notch is actively involved in dynamic changes in the cellular architecture and function of the nervous system. It controls neurogenesis, the growth of axons and dendrites, synaptic plasticity, and ultimately neuronal death. The specific roles of Notch in adult brain plasticity and neurological disorders have begun to be unraveled in recent years, and pieces of experimental evidence suggest that Notch is operative in diverse brain pathologies including tumorigenesis, stroke, and neurological disorders such as Alzheimer’s disease, Down syndrome, and multiple sclerosis. In this review, we will cover the recent findings of Notch signaling and neural dysfunction in adult human brain and discuss its relevance in the pathogenesis of diseases of the central nervous system.
Collapse
Affiliation(s)
- Patricia Mathieu
- 1Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| | - Pamela V. Martino Adami
- 1Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| | - Laura Morelli
- 1Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| |
Collapse
|
6
|
Natarajan S, Li Y, Miller EE, Shih DJ, Taylor MD, Stearns TM, Bronson RT, Ackerman SL, Yoon JK, Yun K. Notch1-induced brain tumor models the sonic hedgehog subgroup of human medulloblastoma. Cancer Res 2013; 73:5381-90. [PMID: 23852537 DOI: 10.1158/0008-5472.can-13-0033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While activation of the Notch pathway is observed in many human cancers, it is unknown whether elevated Notch1 expression is sufficient to initiate tumorigenesis in most tissues. To test the oncogenic potential of Notch1 in solid tumors, we expressed an activated form of Notch1 (N1ICD) in the developing mouse brain. N1ICD;hGFAP-cre mice were viable but developed severe ataxia and seizures, and died by weaning age. Analysis of transgenic embryo brains revealed that N1ICD expression induced p53-dependent apoptosis. When apoptosis was blocked by genetic deletion of p53, 30% to 40% of N1ICD;GFAP-cre;p53(+/-) and N1ICD;GFAP-cre;p53(-/-) mice developed spontaneous medulloblastomas. Interestingly, N1ICD-induced medulloblastomas most closely resembled the sonic hedgehog subgroup of human medulloblastoma at the molecular level. Surprisingly, N1ICD-induced tumors do not maintain high levels of the Notch pathway gene expression, except for Notch2, showing that initiating oncogenic events may not be decipherable by analyzing growing tumors in some cases. In summary, this study shows that Notch1 has an oncogenic potential in the brain when combined with other oncogenic hits, such as p53 loss, and provides a novel mouse model of medulloblastoma. Cancer Res; 73(17); 5381-90. ©2013 AACR.
Collapse
|
7
|
Abstract
Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children, respectively. Recent genomic and transcriptional approaches present a complex group of diseases and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing, and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development and the potential for these animals to impact brain tumor research.
Collapse
Affiliation(s)
- Fredrik J. Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - Sanna-Maria Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, SE-75185, Sweden
| | - William A. Weiss
- University of California, Depts. of Neurology, Pathology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, San Francisco CA 94158, USA
| |
Collapse
|
8
|
A contemporary review of molecular candidates for the development and treatment of childhood medulloblastoma. Childs Nerv Syst 2013; 29:381-8. [PMID: 23292496 DOI: 10.1007/s00381-012-2014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/22/2012] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Medulloblastoma is the most common pediatric central nervous system tumor; however, the causes are not well established. There has been some emphasis on mutations in developmental pathways and their impact on tumor pathology in hereditary diseases, but, in order to better understand the nature of diseases like medulloblastoma, other mechanisms also require attention. PURPOSE The purpose of this review is to provide an overview of the main genes involved in neurodevelopment, their downstream targets, and modulatory links by growth factors. Occurrence of pediatric brain tumors including medulloblastoma are mostly sporadic, but some hereditary diseases like Li-Fraumeni syndrome, Gorlin's syndrome, Turcot's syndrome, and Rubenstein-Tarbi syndrome are known to contribute their development as consequences of germline mutations at specific points: DNA-repairing gene Tp53 for Li-Fraumeni syndrome or Patch for Gorlin's, and apoptosis-related gene product adenomatous polyposis coli for Turcot's disease. CONCLUSION Intracellular relations at molecular level and future therapeutics that specifically target the corresponding pathways should be well understood in order to prevent and cure childhood medulloblastoma.
Collapse
|
9
|
de Antonellis P, Liguori L, Falanga A, Carotenuto M, Ferrucci V, Andolfo I, Marinaro F, Scognamiglio I, Virgilio A, De Rosa G, Galeone A, Galdiero S, Zollo M. MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:287-302. [DOI: 10.1007/s00210-013-0837-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 01/14/2013] [Indexed: 12/23/2022]
|
10
|
Kang S, Xie J, Miao J, Li R, Liao W, Luo R. A knockdown of Maml1 that results in melanoma cell senescence promotes an innate and adaptive immune response. Cancer Immunol Immunother 2013; 62:183-90. [PMID: 22864395 PMCID: PMC11029605 DOI: 10.1007/s00262-012-1318-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 07/06/2012] [Indexed: 01/05/2023]
Abstract
Maml1 is emerging as a coactivator of many signaling pathways, including the Notch and Wnt pathways. Targeting Maml1 in melanoma cells efficiently knocks down the downstream transcriptional repressors Hey1 and Hes1, resulting in melanoma cell senescence, cellular differentiation, and increased melanin production. Significantly, higher IFNβ and chemokine gene transcripts have been observed, together with increased STAT1 and decreased STAT3 and NF-κB signaling activities. Although decreased cell proliferation contributes to slower tumor growth in vivo, the depletion of NK and CD8(+) T cells in an shMaml1-B16 tumor carrier mouse leads to more rapid tumor growth than that observed in control shC002-B16 tumors. This result demonstrates that the knockdown of Maml1 transcription and function contributes to increased immune surveillance. The knockdown of Maml1 transcription in the human melanoma cell line M537 also results in senescence, IFNβ upregulation, increased chemokine gene expression, and greater NK and CD8(+) T cell migration in a transwell system. This study demonstrated that targeting Maml1-induced tumor cell senescence and differentiation may alter the tumor microenvironment and cytokine and chemokine profiles and may also promote innate and adaptive immune cell infiltration and function.
Collapse
Affiliation(s)
- Shijun Kang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
11
|
Huang Z, Bao S. Ubiquitination and deubiquitination of REST and its roles in cancers. FEBS Lett 2012; 586:1602-5. [PMID: 22569092 DOI: 10.1016/j.febslet.2012.04.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 01/08/2023]
Abstract
REST/NRSF (the RE-1 silencing transcription factor or neuron-restrictive silencer factor) was originally identified as a transcriptional repressor of a number of neuronal-specific genes in neural stem cells and non-neuronal cells. REST functions as a master regulator in the maintenance of neural stem cells. During tumorigenesis, REST shows opposing roles in different type of cells. In human epithelial cancers such as colon cancer, REST acts as a tumor suppressor. In contrast, REST plays an oncogenic role in the development of brain tumors and other cancers. Abnormal upregulation of REST has been found in medulloblastoma, neuroblastoma and glioblastoma (GBM). Recent studies in GBMs suggest that REST exerts its oncogenic function by maintaining self-renewal potential of glioma stem cells (GSCs).
Collapse
Affiliation(s)
- Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
12
|
Abstract
Myc proteins are often deregulated in human brain tumors, especially in embryonal tumors that affect children. Many observations have shown how alterations of these pleiotropic Myc transcription factors provide initiation, maintenance, or progression of tumors. This review will focus on the role of Myc family members (particularly c-myc and Mycn) in tumors like medulloblastoma and glioma and will further discuss how to target stabilization of these proteins for future brain tumor therapies.
Collapse
Affiliation(s)
- Fredrik J Swartling
- Uppsala University, Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala, Sweden.
| |
Collapse
|
13
|
Andolfo I, Liguori L, De Antonellis P, Cusanelli E, Marinaro F, Pistollato F, Garzia L, De Vita G, Petrosino G, Accordi B, Migliorati R, Basso G, Iolascon A, Cinalli G, Zollo M. The micro-RNA 199b-5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma. Neuro Oncol 2012; 14:596-612. [PMID: 22411914 DOI: 10.1093/neuonc/nos002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Micro-RNA (miR) 199b-5p targets Hes1 in medulloblastoma, one of the downstream effectors of both the canonical Notch and noncanonical Sonic Hedgehog pathways. In medulloblastoma patients, expression of miR-199b-5p is significantly decreased in metastatic cases, thus suggesting a downregulation mechanism. We studied this mechanism, which is mediated mostly by Hes1 and epigenetic promoter modifications. The miR-199b-5p promoter region was characterized, which identified a Hes1 binding site, thus demonstrating a negative feedback loop of regulation. MiR-199b-5p was shown to be downregulated in several medulloblastoma cell lines and in tumors by epigenetic methylation of a cytosine-phosphate-guanine island upstream of the miR-199b-5p promoter. Furthermore, the cluster of differention (CD) carbohydrate antigen CD15, a marker of medulloblastoma tumor-propagating cells, is an additional direct target of miR-199b-5p. Most importantly, regulation of miR-199b-5p expression in these CD15+/CD133+ tumor-propagating cells was influenced by only Hes1 expression and not by any epigenetic mechanism of regulation. Moreover, reverse-phase protein array analysis showed both the Akt and extracellular-signal-regulated kinase pathways as being mainly negatively regulated by miR-199b-5p expression in several medulloblastoma cell lines and in primary cell cultures. We present here the finely tuned regulation of miR-199b-5p in medulloblastoma, underlining its crucial role by its additional targeting of CD15.
Collapse
|
14
|
Aberger F, Kern D, Greil R, Hartmann TN. Canonical and noncanonical Hedgehog/GLI signaling in hematological malignancies. VITAMINS AND HORMONES 2012; 88:25-54. [PMID: 22391298 DOI: 10.1016/b978-0-12-394622-5.00002-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly conserved Hedgehog/GLI signaling pathway regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis and the hematopoietic system by controlling cell fate decisions, stem cell self-renewal, and activation. Loss of negative control of Hedgehog signaling contributes to tumor pathogenesis and progression. In the classical view of canonical Hedgehog signaling, Hedgehog ligand binding to its receptor Patched culminates in the activation of the key pathway activator Smoothened, followed by activation of the GLI transcription factors. Its essential function and druggability render Smoothened well suited to therapeutic intervention. However, recent evidence suggests a critical role of Smoothened-independent regulation of GLI activity by several other signaling pathways including the PI3K/AKT and RAS/RAF/MEK/ERK axes. In addition, the contribution of canonical Hedgehog signaling via Patched and Smoothened to normal and malignant hematopoiesis has been the subject of recent controversies. In this review, we discuss the current understanding and controversial findings of canonical and noncanonical GLI activation in hematological malignancies in light of the current therapeutic strategies targeting the Hedgehog pathway.
Collapse
Affiliation(s)
- Fritz Aberger
- Division of Molecular Tumor Biology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | | |
Collapse
|
15
|
Emerging Evidence for MicroRNAs as Regulators of Cancer Stem Cells. Cancers (Basel) 2011; 3:3957-71. [PMID: 24213119 PMCID: PMC3763404 DOI: 10.3390/cancers3043957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/01/2011] [Accepted: 10/13/2011] [Indexed: 12/31/2022] Open
Abstract
Cancer stem cells are defined as a subpopulation of cells within a tumor that are capable of self-renewal and differentiation into the heterogeneous cell lineages that comprise the tumor. Many studies indicate that cancer stem cells may be responsible for treatment failure and relapse in cancer patients. The factors that regulate cancer stem cells are not well defined. MicroRNAs (miRNAs) are small non-coding RNAs that regulate translational repression and transcript degradation. miRNAs play a critical role in embryonic and inducible pluripotent stem cell regulation and emerging evidence supports their role in cancer stem cell evolution. To date, miRNAs have been shown to act either as tumor suppressor genes or oncogenes in driving critical gene expression pathways in cancer stem cells in a wide range of human malignancies, including hematopoietic and epithelial tumors and sarcomas. miRNAs involved in cancer stem cell regulation provide attractive, novel therapeutic targets for cancer treatment. This review attempts to summarize progress to date in defining the role of miRNAs in cancer stem cells.
Collapse
|
16
|
Schreck KC, Taylor P, Marchionni L, Gopalakrishnan V, Bar EE, Gaiano N, Eberhart CG. The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 2011; 16:6060-70. [PMID: 21169257 DOI: 10.1158/1078-0432.ccr-10-1624] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Multiple developmental pathways including Notch, Hedgehog, and Wnt are active in malignant brain tumors such as medulloblastoma and glioblastoma (GBM). This raises the possibility that tumors might compensate for therapy directed against one pathway by upregulating a different one. We investigated whether brain tumors show resistance to therapies against Notch, and whether targeting multiple pathways simultaneously would kill brain tumor cells more effectively than monotherapy. EXPERIMENTAL DESIGN We used GBM neurosphere lines to investigate the effects of a gamma-secretase inhibitor (MRK-003) on tumor growth, and chromatin immunoprecipitation to study the regulation of other genes by Notch targets. We also evaluated the effect of combined therapy with a Hedgehog inhibitor (cyclopamine) in GBM and medulloblastoma lines, and in primary human GBM cultures. RESULTS GBM cells are at least partially resistant to long-term MRK-003 treatment, despite ongoing Notch pathway suppression, and show concomitant upregulation of Wnt and Hedgehog activity. The Notch target Hes1, a repressive transcription factor, bound the Gli1 first intron, and may inhibit its expression. Similar results were observed in a melanoma-derived cell line. Targeting Notch and Hedgehog simultaneously induced apoptosis, decreased cell growth, and inhibited colony-forming ability more dramatically than monotherapy. Low-passage neurospheres isolated from freshly resected human GBMs were also highly susceptible to coinhibition of the two pathways, indicating that targeting multiple developmental pathways can be more effective than monotherapy at eliminating GBM-derived cells. CONCLUSIONS Notch may directly suppress Hedgehog via Hes1 mediated inhibition of Gli1 transcription, and targeting both pathways simultaneously may be more effective at eliminating GBMs cells.
Collapse
Affiliation(s)
- Karisa C Schreck
- Department of Neuroscience, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|