1
|
Zhou S, Li P, Qin L, Huang S, Dang N. Transcription factor YY1 contributes to human melanoma cell growth through modulating the p53 signaling pathway. Exp Dermatol 2022; 31:1563-1578. [PMID: 35730240 DOI: 10.1111/exd.14628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Melanoma has a higher mortality rate than any other skin cancer, and its cases are increasing. The transcription factor YY1 has been proven to be involved in tumor progression; however, the role of YY1 in melanoma is not well understood. METHODS This study investigates how YY1 functions in melanoma progression, and it also elucidates the underlying mechanisms involved. RESULTS We have found that in clinical human melanoma tissues, YY1 is overexpressed compared to YY1 expression in normal melanocytes and skin tissues. Cellular immunofluorescence shows that YY1 is mainly located in the nucleus. YY1 knockdown reduces proliferation, migration, and invasion of melanoma cell lines. Moreover, the apoptosis rate of cells is significantly increased in low-YY1 environments. The overexpression of YY1 resulted in decreased apoptotic rates in melanoma cells. YY1 also affects the expression of EMT-related proteins. Additional experiments reveal that YY1 knockdown disrupts the interaction of MDM2-p53, and that it both stabilizes and increases p53 activity. The upregulation of p53 expression in turn stimulates p21 expression just as it suppresses CDK4 expression, which then induces cells that were arrested in the G1 phase. The effect then is to constrain cell proliferation in melanoma cells. Upon activation of the p53 pathway, Bax, a pro-apoptotic protein, is upregulated, and Bcl-2, an anti-apoptotic protein, was downregulated in A375 cells. CONCLUSIONS The findings of this study provide novel insights into the pathology of melanoma as well as the role that YY1 plays in tumor progression. The findings also suggest that targeting YY1 has the potential to improve the diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Shumin Zhou
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Linyi people's Hospital, Linyi, Shandong, China
| | - Pin Li
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Li Qin
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuhong Huang
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.,Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
2
|
Tang J, Gong Y, Ma X. Bispecific Antibodies Progression in Malignant Melanoma. Front Pharmacol 2022; 13:837889. [PMID: 35401191 PMCID: PMC8984188 DOI: 10.3389/fphar.2022.837889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
The discovery of oncogenes and immune checkpoints has revolutionized the treatment of melanoma in the past 10 years. However, the current PD-L1 checkpoints lack specificity for tumors and target normal cells expressing PD-L1, thus reducing the efficacy on malignant melanoma and increasing the side effects. In addition, the treatment options for primary or secondary drug-resistant melanoma are limited. Bispecific antibodies bind tumor cells and immune cells by simultaneously targeting two antigens, enhancing the anti-tumor targeting effect and cytotoxicity and reducing drug-resistance in malignant melanoma, thus representing an emerging strategy to improve the clinical efficacy. This review focused on the treatment of malignant melanoma by bispecific antibodies and summarized the effective results of the experiments that have been conducted, also discussing the different aspects of these therapies. The role of the melanoma epitopes, immune cell activation, cell death and cytotoxicity induced by bispecific antibodies were evaluated in the clinical or preclinical stage, as these therapies appear to be the most suitable in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Juan Tang
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Youling Gong
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
4
|
Li B, Zhang G, Wang Z, Yang Y, Wang C, Fang D, Liu K, Wang F, Mei Y. c-Myc-activated USP2-AS1 suppresses senescence and promotes tumor progression via stabilization of E2F1 mRNA. Cell Death Dis 2021; 12:1006. [PMID: 34707111 PMCID: PMC8551278 DOI: 10.1038/s41419-021-04330-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022]
Abstract
The c-Myc oncoprotein plays a prominent role in cancer initiation, progression, and maintenance. Long noncoding RNAs (lncRNAs) are recently emerging as critical regulators of the c-Myc signaling pathway. Here, we report the lncRNA USP2-AS1 as a direct transcriptional target of c-Myc. Functionally, USP2-AS1 inhibits cellular senescence and acts as an oncogenic molecule by inducing E2F1 expression. Mechanistically, USP2-AS1 associates with the RNA-binding protein G3BP1 and facilitates the interaction of G3BP1 to E2F1 3′-untranslated region, thereby leading to the stabilization of E2F1 messenger RNA. Furthermore, USP2-AS1 is shown as a mediator of the oncogenic function of c-Myc via the regulation of E2F1. Together, these findings suggest that USP2-AS1 is a negative regulator of cellular senescence and also implicates USP2-AS1 as an important player in mediating c-Myc function.
Collapse
Affiliation(s)
- Bingyan Li
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guang Zhang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongyu Wang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Yang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenfeng Wang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Debao Fang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiyue Liu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Wang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Yide Mei
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China. .,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Bauer S, Demetri GD, Halilovic E, Dummer R, Meille C, Tan DSW, Guerreiro N, Jullion A, Ferretti S, Jeay S, Van Bree L, Hourcade-Potelleret F, Wuerthner JU, Fabre C, Cassier PA. Pharmacokinetic-pharmacodynamic guided optimisation of dose and schedule of CGM097, an HDM2 inhibitor, in preclinical and clinical studies. Br J Cancer 2021; 125:687-698. [PMID: 34140638 PMCID: PMC8405607 DOI: 10.1038/s41416-021-01444-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND CGM097 inhibits the p53-HDM2 interaction leading to downstream p53 activation. Preclinical in vivo studies support clinical exploration while providing preliminary evidence for dosing regimens. This first-in-human phase I study aimed at assessing the safety, MTD, PK/PD and preliminary antitumor activity of CGM097 in advanced solid tumour patients (NCT01760525). METHODS Fifty-one patients received oral treatment with CGM097 10-400 mg 3qw (n = 31) or 300-700 mg 3qw 2 weeks on/1 week off (n = 20). Choice of dose regimen was guided by PD biomarkers, and quantitative models describing the effect of CGM097 on circulating platelet and PD kinetics. RESULTS No dose-limiting toxicities were reported in any regimens. The most common treatment-related grade 3/4 AEs were haematologic events. PK/PD models well described the time course of platelet and serum GDF-15 changes, providing a tool to predict response to CGM097 for dose-limiting thrombocytopenia and GDF-15 biomarker. The disease control rate was 39%, including one partial response and 19 patients in stable disease. Twenty patients had a cumulative treatment duration of >16 weeks, with eight patients on treatment for >32 weeks. The MTD was not determined. CONCLUSIONS Despite delayed-onset thrombocytopenia frequently observed, the tolerability of CGM097 appears manageable. This study provided insights on dosing optimisation for next-generation HDM2 inhibitors. TRANSLATIONAL RELEVANCE Haematologic toxicity with delayed thrombocytopenia is a well-known on-target effect of HDM2 inhibitors. Here we have developed a PK/PD guided approach to optimise the dose and schedule of CGM097, a novel HDM2 inhibitor, using exposure, platelets and GDF-15, a known p53 downstream target to predict patients at higher risk to develop thrombocytopenia. While CGM097 had shown limited activity, with disease control rate of 39% and only one patient in partial response, the preliminary data from the first-in-human escalation study together with the PK/PD modeling provide important insights on how to optimize dosing of next generation HDM2 inhibitors to mitigate hematologic toxicity.
Collapse
Affiliation(s)
- Sebastian Bauer
- grid.5718.b0000 0001 2187 5445Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University of Duisburg-Essen, Duisburg-Essen, Germany
| | - George D. Demetri
- grid.38142.3c000000041936754XDana-Farber Cancer Institute and Ludwig Center at Harvard Medical School, Boston, MA USA
| | - Ensar Halilovic
- grid.418424.f0000 0004 0439 2056Novartis Institutes for BioMedical Research (NIBR), Cambridge, MA USA
| | - Reinhard Dummer
- grid.412004.30000 0004 0478 9977University Hospital Zurich, Zurich, Switzerland
| | - Christophe Meille
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Daniel S. W. Tan
- grid.410724.40000 0004 0620 9745National Cancer Center Singapore, Singapore, Singapore
| | - Nelson Guerreiro
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland ,grid.417570.00000 0004 0374 1269Present Address: F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Astrid Jullion
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Stephane Ferretti
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Sebastien Jeay
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland ,grid.508389.f0000 0004 6414 2411Present Address: Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Laurence Van Bree
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | | | - Jens U. Wuerthner
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland ,grid.508900.40000 0004 4910 8549Present Address: ADC Therapeutics, Epalinges, Switzerland
| | - Claire Fabre
- grid.419481.10000 0001 1515 9979Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Philippe A. Cassier
- grid.418116.b0000 0001 0200 3174Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
6
|
Wang B, Li Y, Kou C, Sun J, Xu X. Mining Database for the Clinical Significance and Prognostic Value of ESRP1 in Cutaneous Malignant Melanoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4985014. [PMID: 32964032 PMCID: PMC7492958 DOI: 10.1155/2020/4985014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epithelial splicing regulatory protein 1 (ESRP1) has been described as an RNA-binding protein involved in cancer development. However, the expression and regulatory network of ESRP1 in cutaneous malignant melanoma (CMM) remain unclear. METHODS From the sequencing data of 103 CMM samples in The Cancer Genome Atlas database, the expression level of ESRP1 and its correlation with the clinicopathological characteristics were analyzed using the Oncomine 4.5, Gene Expression Profiling Interactive Analysis (GEPIA), and UALCAN tools, while LinkedOmics was used to identify differential gene expression with ESRP1 and to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Gene enrichment analysis examined target networks of kinases, miRNAs, and transcription factors. Finally, TIMER was used to analyze the relationship between ESRP1 and tumor immune cell infiltration. RESULTS We found that ESRP1 was lowly expressed in CMM tissues, and a low level of ESRP1 expression correlated with better overall survival. Expression of this gene was linked to functional networks involving the condensed chromosomes, epidermal development, and translation initiation. Functional network analysis suggested that ESRP1 regulated ribosome metabolism, drug metabolism, and chemical carcinogenesis via pathways involving several cancer-related kinases, miRNAs, and transcription factors. Furthermore, our results suggested that ESRP1 played an important role in regulating tumor-associated macrophage polarization, dendritic cell infiltration, Treg cells, and T cell exhaustion. CONCLUSION Our study demonstrates ESRP1 expression, prognostic value, and potential regulatory networks in CMM, thereby shedding light on the clinical significance of ESRP1, and provides a novel biomarker for determining prognosis and immune infiltration in CMM.
Collapse
Affiliation(s)
- Baihe Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| | - Yang Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Caixia Kou
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| | - Jianfang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| | - Xiulian Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing 210042, China
| |
Collapse
|
7
|
Vilgelm AE, Saleh N, Shattuck-Brandt R, Riemenschneider K, Slesur L, Chen SC, Johnson CA, Yang J, Blevins A, Yan C, Johnson DB, Al-Rohil RN, Halilovic E, Kauffmann RM, Kelley M, Ayers GD, Richmond A. MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21. Sci Transl Med 2020; 11:11/505/eaav7171. [PMID: 31413145 DOI: 10.1126/scitranslmed.aav7171] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/17/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Intrinsic resistance of unknown mechanism impedes the clinical utility of inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) in malignancies other than breast cancer. Here, we used melanoma patient-derived xenografts (PDXs) to study the mechanisms for CDK4/6i resistance in preclinical settings. We observed that melanoma PDXs resistant to CDK4/6i frequently displayed activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, and inhibition of this pathway improved CDK4/6i response in a p21-dependent manner. We showed that a target of p21, CDK2, was necessary for proliferation in CDK4/6i-treated cells. Upon treatment with CDK4/6i, melanoma cells up-regulated cyclin D1, which sequestered p21 and another CDK inhibitor, p27, leaving a shortage of p21 and p27 available to bind and inhibit CDK2. Therefore, we tested whether induction of p21 in resistant melanoma cells would render them responsive to CDK4/6i. Because p21 is transcriptionally driven by p53, we coadministered CDK4/6i with a murine double minute (MDM2) antagonist to stabilize p53, allowing p21 accumulation. This resulted in improved antitumor activity in PDXs and in murine melanoma. Furthermore, coadministration of CDK4/6 and MDM2 antagonists with standard of care therapy caused tumor regression. Notably, the molecular features associated with response to CDK4/6 and MDM2 inhibitors in PDXs were recapitulated by an ex vivo organotypic slice culture assay, which could potentially be adopted in the clinic for patient stratification. Our findings provide a rationale for cotargeting CDK4/6 and MDM2 in melanoma.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA. .,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Nabil Saleh
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rebecca Shattuck-Brandt
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kelsie Riemenschneider
- Department of Dermatology, University of Texas Southwestern, Medical Center, Dallas, TX 75390, USA
| | - Lauren Slesur
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sheau-Chiann Chen
- Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Center for Quantitative Sciences, Nashville, TN 37232, USA
| | - C Andrew Johnson
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jinming Yang
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ashlyn Blevins
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chi Yan
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Douglas B Johnson
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rami N Al-Rohil
- Department of Pathology, Duke University, Durham, NC 27708, USA
| | - Ensar Halilovic
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Rondi M Kauffmann
- Division of Surgical Oncology, Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mark Kelley
- Division of Surgical Oncology, Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gregory D Ayers
- Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Center for Quantitative Sciences, Nashville, TN 37232, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Llanos S, Megias D, Blanco-Aparicio C, Hernández-Encinas E, Rovira M, Pietrocola F, Serrano M. Lysosomal trapping of palbociclib and its functional implications. Oncogene 2019; 38:3886-3902. [PMID: 30692638 PMCID: PMC6756094 DOI: 10.1038/s41388-019-0695-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 01/10/2023]
Abstract
Palbociclib is a selective inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6) approved for the treatment of some cancers. The main mechanism of action of palbociclib is to induce cell cycle arrest and senescence on responsive cells. Here, we report that palbociclib concentrates in intracellular acidic vesicles, where it can be readily observed due to its intrinsic fluorescence, and it is released from these vesicles upon dilution or washing out of the extracellular medium. This reversible storage of drugs into acidic vesicles is generally known as lysosomal trapping and, based on this, we uncover novel properties of palbociclib. In particular, a short exposure of cells to palbociclib is sufficient to produce a stable cell-cycle arrest and long-term senescence. Moreover, after washing out the drug, palbociclib-treated cells release the drug to the medium and this conditioned medium is active on susceptible cells. Interestingly, cancer cells resistant to palbociclib also accumulate and release the drug producing paracrine senescence on susceptible cells. Finally, other lysosomotropic drugs, such as chloroquine, interfere with the accumulation of palbociclib into lysosomes, thereby reducing the minimal dose of palbociclib required for cell-cycle arrest and senescence. In summary, lysosomal trapping explains the prolonged temporal activity of palbociclib, the paracrine activity of exposed cells, and the cooperation with lysosomotropic drugs. These are important features that may help to improve the therapeutic dosing and efficacy of palbociclib. Finally, two other clinically approved CDK4/6 inhibitors, ribociclib and abemaciclib, present a similar behavior as palbociclib, suggesting that lysosomal trapping is a property common to all three clinically-approved CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Susana Llanos
- Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Diego Megias
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | | | - Miguel Rovira
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Federico Pietrocola
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuel Serrano
- Spanish National Cancer Research Center (CNIO), Madrid, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
9
|
Rouaud F, Hamouda-Tekaya N, Cerezo M, Abbe P, Zangari J, Hofman V, Ohanna M, Mograbi B, El-Hachem N, Benfodda Z, Lebeau A, Tulic MK, Hofman P, Bertolotto C, Passeron T, Annicotte JS, Ballotti R, Rocchi S. E2F1 inhibition mediates cell death of metastatic melanoma. Cell Death Dis 2018; 9:527. [PMID: 29743521 PMCID: PMC5943238 DOI: 10.1038/s41419-018-0566-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023]
Abstract
Melanoma is one of the most lethal cancers when it reaches a metastatic stage. Despite advancements in targeted therapies (BRAF inhibitors) or immunotherapies (anti-CTLA-4 or anti-PD1), most patients with melanoma will need additional treatment. Thus, there is an urgent need to develop new therapeutical approaches to bypass resistance and achieve more prolonged responses. In this context, we were interested in E2F1, a transcription factor that plays a major role in the control of cell cycle under physiological and pathological conditions. Here we confirmed that E2F1 is highly expressed in melanoma cells. Inhibition of E2F1 activity further increased melanoma cell death and senescence, both in vitro and in vivo. Moreover, blocking E2F1 also induced death of melanoma cells resistant to BRAF inhibitors. In conclusion, our studies suggest that targeting the E2F1 signaling pathway may be therapeutically relevant for melanoma.
Collapse
Affiliation(s)
- Florian Rouaud
- INSERM, U1065, team 12, Study of molecular mechanisms involved in pigmentation and melanoma using translational approaches, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.,Université Cote d'azur, UFR de Médecine, Nice, France
| | - Nedra Hamouda-Tekaya
- INSERM, U1065, team 12, Study of molecular mechanisms involved in pigmentation and melanoma using translational approaches, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.,Université Cote d'azur, UFR de Médecine, Nice, France
| | - Michaël Cerezo
- INSERM, U1065, team 12, Study of molecular mechanisms involved in pigmentation and melanoma using translational approaches, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.,Université Cote d'azur, UFR de Médecine, Nice, France
| | - Patricia Abbe
- INSERM, U1065, team 12, Study of molecular mechanisms involved in pigmentation and melanoma using translational approaches, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.,Université Cote d'azur, UFR de Médecine, Nice, France
| | - Joséphine Zangari
- Université Cote d'azur, UFR de Médecine, Nice, France.,Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR7284, INSERM U1081, 06107, Nice, France
| | - Veronique Hofman
- Université Cote d'azur, UFR de Médecine, Nice, France.,Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR7284, INSERM U1081, 06107, Nice, France.,Laboratoire de pathologie clinique et expérimentale et Hospital-related biobank (BB-0033-00025), Hôpital Pasteur, Nice, France
| | - Mickaël Ohanna
- INSERM, U1065, team 12, Study of molecular mechanisms involved in pigmentation and melanoma using translational approaches, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.,Université Cote d'azur, UFR de Médecine, Nice, France
| | - Baharia Mograbi
- Université Cote d'azur, UFR de Médecine, Nice, France.,Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR7284, INSERM U1081, 06107, Nice, France
| | - Najla El-Hachem
- INSERM, U1065, team 12, Study of molecular mechanisms involved in pigmentation and melanoma using translational approaches, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.,Université Cote d'azur, UFR de Médecine, Nice, France
| | - Zohra Benfodda
- Laboratoire de Détection, évaluation gestion des risques émergents et chroniques, Université de Nimes, Nîmes, France
| | - Alexandre Lebeau
- Laboratoire de Détection, évaluation gestion des risques émergents et chroniques, Université de Nimes, Nîmes, France
| | - Meri K Tulic
- INSERM, U1065, team 12, Study of molecular mechanisms involved in pigmentation and melanoma using translational approaches, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.,Université Cote d'azur, UFR de Médecine, Nice, France
| | - Paul Hofman
- Université Cote d'azur, UFR de Médecine, Nice, France.,Institute of Research on Cancer and Ageing of Nice (IRCAN), CNRS UMR7284, INSERM U1081, 06107, Nice, France.,Laboratoire de pathologie clinique et expérimentale et Hospital-related biobank (BB-0033-00025), Hôpital Pasteur, Nice, France
| | - Corine Bertolotto
- Université Cote d'azur, UFR de Médecine, Nice, France.,Centre Méditerranéen de Médecine Moléculaire (C3M), Team 1, INSERM U1065, Nice, France
| | - Thierry Passeron
- INSERM, U1065, team 12, Study of molecular mechanisms involved in pigmentation and melanoma using translational approaches, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.,Service de Dermatologie, Hôpital Archet II, CHU de Nice, Nice, France
| | | | - Robert Ballotti
- Université Cote d'azur, UFR de Médecine, Nice, France.,Centre Méditerranéen de Médecine Moléculaire (C3M), Team 1, INSERM U1065, Nice, France
| | - Stéphane Rocchi
- INSERM, U1065, team 12, Study of molecular mechanisms involved in pigmentation and melanoma using translational approaches, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France. .,Université Cote d'azur, UFR de Médecine, Nice, France.
| |
Collapse
|
10
|
Paoluzzi L, Hanniford D, Sokolova E, Osman I, Darvishian F, Wang J, Bradner JE, Hernando E. BET and BRAF inhibitors act synergistically against BRAF-mutant melanoma. Cancer Med 2016; 5:1183-93. [PMID: 27169980 PMCID: PMC4867668 DOI: 10.1002/cam4.667] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/20/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022] Open
Abstract
Despite major advances in the treatment of metastatic melanoma, treatment failure is still inevitable in most cases. Manipulation of key epigenetic regulators, including inhibition of Bromodomain and extra‐terminal domain (BET) family members impairs cell proliferation in vitro and tumor growth in vivo in different cancers, including melanoma. Here, we investigated the effect of combining the BET inhibitor JQ1 with the BRAF inhibitor Vemurafenib in in vitro and in vivo models of BRAF‐mutant melanoma. We performed cytotoxicity and apoptosis assays, and a xenograft mouse model to determine the in vitro and in vivo efficacy of JQ1 in combination with Vemurafenib against BRAF‐mutant melanoma cell lines. Further, to investigate the molecular mechanisms underlying the effects of combined treatment, we conducted antibody arrays of in vitro drug‐treated cell lines and RNA sequencing of drug‐treated xenograft tumors. The combination of JQ1 and Vemurafenib acted synergistically in BRAF‐mutant cell lines, resulting in marked apoptosis in vitro, with upregulation of proapoptotic proteins. In vivo, combination treatment suppressed tumor growth and significantly improved survival compared to either drug alone. RNA sequencing of tumor tissues revealed almost four thousand genes that were uniquely modulated by the combination, with several anti‐apoptotic genes significantly down‐regulated. Collectively, our data provide a rationale for combined BET and BRAF inhibition as a novel strategy for the treatment of melanoma.
Collapse
Affiliation(s)
- Luca Paoluzzi
- New York University Cancer Institute, New York University Langone Medical Center, New York, New York.,Department of Pathology, New York University School of Medicine, New York, New York.,Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, NYU Langone Medical Center, New York, New York
| | - Douglas Hanniford
- Department of Pathology, New York University School of Medicine, New York, New York.,Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, NYU Langone Medical Center, New York, New York
| | - Elena Sokolova
- Department of Pathology, New York University School of Medicine, New York, New York.,Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, NYU Langone Medical Center, New York, New York
| | - Iman Osman
- Department of Pathology, New York University School of Medicine, New York, New York.,Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, NYU Langone Medical Center, New York, New York.,Department of Dermatology, New York University School of Medicine, New York, New York
| | - Farbod Darvishian
- Department of Pathology, New York University School of Medicine, New York, New York.,Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, NYU Langone Medical Center, New York, New York
| | - Jinhua Wang
- New York University Cancer Institute, New York University Langone Medical Center, New York, New York.,Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, NYU Langone Medical Center, New York, New York.,NYU Center for Health Informatics and Bioinformatics, New York, New York
| | - James E Bradner
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York, New York.,Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, NYU Langone Medical Center, New York, New York
| |
Collapse
|
11
|
HEDGEHOG/GLI-E2F1 axis modulates iASPP expression and function and regulates melanoma cell growth. Cell Death Differ 2015; 22:2006-19. [PMID: 26024388 PMCID: PMC4816112 DOI: 10.1038/cdd.2015.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/26/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
Abstract
HEDGEHOG (HH) signaling is a key regulator of tissue development and its aberrant activation is involved in several cancer types, including melanoma. We and others have shown a reciprocal cross talk between HH signaling and p53, whose function is often impaired in melanoma. Here we present evidence that both GLI1 and GLI2, the final effectors of HH signaling, regulate the transcription factor E2F1 in melanoma cells, by binding to a functional non-canonical GLI consensus sequence. Consistently, we find a significant correlation between E2F1 and PATCHED1 (PTCH1), GLI1 and GLI2 expression in human melanomas. Functionally, we find that E2F1 is a crucial mediator of HH signaling and it is required for melanoma cell proliferation and xenograft growth induced by activation of the HH pathway. Interestingly, we present evidence that the HH/GLI-E2F1 axis positively modulates the inhibitor of apoptosis-stimulating protein of p53 (iASPP) at multiple levels. HH activation induces iASPP expression through E2F1, which directly binds to iASPP promoter. HH pathway also contributes to iASPP function, by the induction of Cyclin B1 and by the E2F1-dependent regulation of CDK1, which are both involved in iASPP activation. Our data show that activation of HH signaling enhances proliferation in presence of E2F1 and promotes apoptosis in its absence or upon CDK1 inhibition, suggesting that E2F1/iASPP dictates the outcome of HH signaling in melanoma. Together, these findings identify a novel HH/GLI-E2F1-iASPP axis that regulates melanoma cell growth and survival, providing an additional mechanism through which HH signaling restrains p53 proapoptotic function.
Collapse
|
12
|
Coleman DJ, Chagani S, Hyter S, Sherman AM, Löhr CV, Liang X, Ganguli-Indra G, Indra AK. Loss of keratinocytic RXRα combined with activated CDK4 or oncogenic NRAS generates UVB-induced melanomas via loss of p53 and PTEN in the tumor microenvironment. Mol Cancer Res 2014; 13:186-96. [PMID: 25189354 DOI: 10.1158/1541-7786.mcr-14-0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED Understanding the molecular mechanisms behind formation of melanoma, the deadliest form of skin cancer, is crucial for improved diagnosis and treatment. One key is to better understand the cross-talk between epidermal keratinocytes and pigment-producing melanocytes. Here, using a bigenic mouse model system combining mutant oncogenic NRAS(Q61K) (constitutively active RAS) or mutant activated CDK4(R24C/R24C) (prevents binding of CDK4 by kinase inhibitor p16(INK4A)) with an epidermis-specific knockout of the nuclear retinoid X receptor alpha (RXRα(ep-/-)) results in increased melanoma formation after chronic ultraviolet-B (UVB) irradiation compared with control mice with functional RXRα. Melanomas from both groups of bigenic RXRα(ep-/-) mice are larger in size with higher proliferative capacity, and exhibit enhanced angiogenic properties and increased expression of malignant melanoma markers. Analysis of tumor adjacent normal skin from these mice revealed altered expression of several biomarkers indicative of enhanced melanoma susceptibility, including reduced expression of tumor suppressor p53 and loss of PTEN, with concomitant increase in activated AKT. Loss of epidermal RXRα in combination with UVB significantly enhances invasion of melanocytic cells to draining lymph nodes in bigenic mice expressing oncogenic NRAS(Q61K) compared with controls with functional RXRα. These results suggest a crucial role of keratinocytic RXRα to suppress formation of UVB-induced melanomas and their progression to malignant cancers in the context of driver mutations such as activated CDK4(R24C/R24C) or oncogenic NRAS(Q61K). IMPLICATIONS These findings suggest that RXRα may serve as a clinical diagnostic marker and therapeutic target in melanoma progression and metastasis.
Collapse
Affiliation(s)
- Daniel J Coleman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon. Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon
| | - Sharmeen Chagani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon. Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon
| | - Stephen Hyter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon. Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon
| | - Anna M Sherman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon. BioResource Research Program, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Xiaobo Liang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Gitali Ganguli-Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon. Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon. Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon. Environmental Health Science Center, Oregon State University, Corvallis, Oregon. Department of Dermatology, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
13
|
Meng P, Ghosh R. Transcription addiction: can we garner the Yin and Yang functions of E2F1 for cancer therapy? Cell Death Dis 2014; 5:e1360. [PMID: 25101673 PMCID: PMC4454301 DOI: 10.1038/cddis.2014.326] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/29/2022]
Abstract
Classically, as a transcription factor family, the E2Fs are known to regulate the expression of various genes whose products are involved in a multitude of biological functions, many of which are deregulated in diseases including cancers. E2F is deregulated and hyperactive in most human cancers with context dependent, dichotomous and contradictory roles in almost all cancers. Cancer cells have an insatiable demand for transcription to ensure that gene products are available to sustain various biological processes that support their rapid growth and survival. In this context, cutting-off hyperactivity of transcription factors that support transcription dependence could be a valuable therapeutic strategy. However, one of the greatest challenges of targeting a transcription factor is the global effects on non-cancerous cells given that they control cellular functions in general. Recently, there is growing realization regarding the possibility to target the oncogenic activation of transcription factors to modulate transcription addiction without affecting the normal activity required for cell functions. In this review, we used E2F1 as a prototype transcription factor to address transcription factor activity in cancer cell functions. We focused on melanoma considering that E2F1 executes critical functions in response to UV, an etiological factor of cutaneous melanoma and lies immediately downstream of the CDKN2A/pRb axis, which is frequently deregulated in melanoma. Further, activation of E2F1 in melanomas can also occur independent of loss of CDKN2A. Given its activated status and the ability to transcriptionally control a plethora of genes involved in regulating melanoma development and progression, we review the current literature on its differential role in controlling signaling pathways involved in melanoma as well as therapeutic resistance, and discuss the practical value of weaning melanoma cells from E2F1-mediated transcription dependence for melanoma management.
Collapse
Affiliation(s)
- P Meng
- Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - R Ghosh
- 1] Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [2] Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [3] Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [4] Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
14
|
Laine A, Westermarck J. Molecular pathways: harnessing E2F1 regulation for prosenescence therapy in p53-defective cancer cells. Clin Cancer Res 2014; 20:3644-50. [PMID: 24788101 DOI: 10.1158/1078-0432.ccr-13-1942] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Induction of terminal proliferation arrest, senescence, is important for in vivo tumor-suppressive function of p53. Moreover, p53-mutant cells are highly resistant to senescence induction by either oncogenic signaling during cellular transformation or in response to different therapies. Senescence resistance in p53-mutant cells has been attributed mostly to inhibition of the checkpoint function of p53 in response to senescence-inducing stress signals. Here, we review very recent evidence that offers an alternative explanation for senescence resistance in p53-defective cancer cells: p21-mediated E2F1 expression. We discuss the potential relevance of these findings for senescence-inducing therapies and highlight cyclin-dependent kinases (CDK) and mechanisms downstream of retinoblastoma protein (RB) as prospective prosenescence therapeutic targets. In particular, we discuss recent findings indicating an important role for the E2F1-CIP2A feedback loop in causing senescence resistance in p53-compromised cancer cells. We further propose that targeting of the E2F1-CIP2A feedback loop could provide a prosenescence therapeutic approach that is effective in both p53-deficient and RB-deficient cancer cells, which together constitute the great majority of all cancer cells. Diagnostic evaluation of the described senescence resistance mechanisms in human tumors might also be informative for patient stratification for already existing therapies.
Collapse
Affiliation(s)
- Anni Laine
- Authors' Affiliations: Turku Centre for Biotechnology, University of Turku and Åbo Akademi University; and
| | - Jukka Westermarck
- Authors' Affiliations: Turku Centre for Biotechnology, University of Turku and Åbo Akademi University; and Department of Pathology, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Dou J, He X, Liu Y, Wang Y, Zhao F, Wang X, Chen D, Shi F, Wang J. Effect of downregulation of ZEB1 on vimentin expression, tumour migration and tumourigenicity of melanoma B16F10 cells and CSCs. Cell Biol Int 2014; 38:452-61. [PMID: 24339410 DOI: 10.1002/cbin.10223] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/08/2013] [Indexed: 01/30/2023]
Affiliation(s)
- Jun Dou
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Xiangfeng He
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
- Department of Medical Oncology; Affiliated Tumor Hospital of Nantong University; Nantong 226361 China
| | - Yurong Liu
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Yaqian Wang
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Xiaoying Wang
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Dengyu Chen
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
| | - Fangfang Shi
- Department of Pathogenic Biology and Immunology of Medical School; Southeast University; Nanjing 210009 China
- Department of Oncology, Zhongda Hospital; Southeast University; Nanjing 210009 China
| | - Jing Wang
- Department of Gynecology & Obstetrics, Zhongda Hospital, Medical School; Southeast University; Nanjing 210009 China
| |
Collapse
|
16
|
Zhang L, Zhou Q, Zhang N, Li W, Ying M, Ding W, Yang B, He Q. E2F1 impairs all-trans retinoic acid-induced osteogenic differentiation of osteosarcoma via promoting ubiquitination-mediated degradation of RARα. Cell Cycle 2014; 13:1277-87. [PMID: 24608861 DOI: 10.4161/cc.28190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
All-trans retinoic acid (ATRA) is a widely used differentiation drug that can effectively induce osteogenic differentiation of osteosarcoma cells, but the underlying mechanism remains elusive, which limits the clinical application for ATRA in osteosarcoma patients. In this study, we identified E2F1 as a novel regulator involved in ATRA-induced osteogenic differentiation of osteosarcoma cells. We observed that osteosarcoma cells are coupled with individual differences in the expression levels of E2F1 in patients, and E2F1 impairs ATRA-induced differentiation of osteosarcoma cells. Moreover, remarkable anti-proliferative and differentiation-inducing effects of ATRA treatment are only observed in E2F1 low to negative expressed primary osteosarcoma cultures. These results strongly suggested that E2F1 may serve as a potent indicator for the effectiveness of ATRA treatment in osteosarcoma. Interestingly, E2F1 is found to downregulate retinoic acid receptor α (RARα), a key factor determines the effectiveness of ATRA. E2F1 specifically binds to RARα and promotes its ubiquitination-mediated degradation; as a consequence, RARα-mediated differentiation is inhibited in osteosarcoma. Therefore, our studies present E2F1 as a potent biomarker, as well as a therapeutic target for ATRA-based differentiation therapeutics, and raise the hope of using differentiation-based approaches for osteosarcoma patients.
Collapse
Affiliation(s)
- Lei Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Qian Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Ning Zhang
- Department of Orthopedics; The Second Affiliated Hospital of Zhejiang University; Zhejiang University; Hangzhou, China
| | - Weixu Li
- Department of Orthopedics; The Second Affiliated Hospital of Zhejiang University; Zhejiang University; Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Wanjing Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| |
Collapse
|
17
|
Abstract
Melanoma is the most aggressive skin cancer; there is no cure in advanced stages. Identifying molecular participants in melanoma progression may provide useful diagnostic and therapeutic tools. FK506 binding protein 51 (FKBP51), an immunophilin with a relevant role in developmental stages, is highly expressed in melanoma and correlates with aggressiveness and therapy resistance. We hypothesized a role for FKBP51 in melanoma invasive behaviour. FKBP51 promoted activation of epithelial-to-mesenchymal transition (EMT) genes and improved melanoma cell migration and invasion. In addition, FKBP51 induced some melanoma stem cell (MCSC) genes. Purified MCSCs expressed high EMT genes levels, suggesting that genetic programs of EMT and MCSCs overlap. Immunohistochemistry of samples from patients showed intense FKBP51 nuclear signal and cytoplasmic positivity for the stem cell marker nestin in extravasating melanoma cells and metastatic brains. In addition, FKBP51 targeting by small interfering RNA (siRNA) prevented the massive metastatic substitution of liver and lung in a mouse model of experimental metastasis. The present study provides evidence that the genetic programs of cancer stemness and invasiveness overlap in melanoma, and that FKBP51 plays a pivotal role in sustaining such a program.
Collapse
|
18
|
Matin RN, Chikh A, Chong SLP, Mesher D, Graf M, Sanza' P, Senatore V, Scatolini M, Moretti F, Leigh IM, Proby CM, Costanzo A, Chiorino G, Cerio R, Harwood CA, Bergamaschi D. p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis. ACTA ACUST UNITED AC 2013; 210:581-603. [PMID: 23420876 PMCID: PMC3600906 DOI: 10.1084/jem.20121439] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
p63 is up-regulated in melanoma and prevents nuclear accumulation of p53. The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents.
Collapse
Affiliation(s)
- Rubeta N Matin
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene 2013; 32:5129-43. [PMID: 23416979 DOI: 10.1038/onc.2012.640] [Citation(s) in RCA: 784] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 11/09/2022]
Abstract
p53 functions as a transcription factor involved in cell-cycle control, DNA repair, apoptosis and cellular stress responses. However, besides inducing cell growth arrest and apoptosis, p53 activation also modulates cellular senescence and organismal aging. Senescence is an irreversible cell-cycle arrest that has a crucial role both in aging and as a robust physiological antitumor response, which counteracts oncogenic insults. Therefore, via the regulation of senescence, p53 contributes to tumor growth suppression, in a manner strictly dependent by its expression and cellular context. In this review, we focus on the recent advances on the contribution of p53 to cellular senescence and its implication for cancer therapy, and we will discuss p53's impact on animal lifespan. Moreover, we describe p53-mediated regulation of several physiological pathways that could mediate its role in both senescence and aging.
Collapse
Affiliation(s)
- A Rufini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | | | | | | |
Collapse
|
20
|
Dar AA, Majid S, Rittsteuer C, de Semir D, Bezrookove V, Tong S, Nosrati M, Sagebiel R, Miller JR, Kashani-Sabet M. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J Natl Cancer Inst 2013; 105:433-42. [PMID: 23365201 PMCID: PMC3601951 DOI: 10.1093/jnci/djt003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Although p53 is inactivated by point mutations in many tumors, melanomas infrequently harbor mutations in the p53 gene. Here we investigate the biological role of microRNA-18b (miR-18b) in melanoma by targeting the MDM2-p53 pathway. Methods Expression of miR-18b was examined in nevi (n = 48) and melanoma (n = 92) samples and in melanoma cell lines and normal melanocytes. Immunoblotting was performed to determine the expression of various proteins regulated by miR-18b. The effects of miR-18b overexpression in melanoma cell lines were investigated using assays of colony formation, cell viability, migration, invasion, and cell cycle and in a xenograft model (n = 10 mice per group). Chromatin immunoprecipitation and methylation assays were performed to determine the mechanism of microRNA silencing. Results Expression of miR-18b was substantially reduced in melanoma specimens and cell lines by virtue of hypermethylation and was reinduced (by 1.5- to 5.3-fold) in melanoma cell lines after 5-AZA-deoxycytidine treatment. MDM2 was identified as a target of miR-18b action, and overexpression of miR-18b in melanoma cells was accompanied by 75% reduced MDM2 expression and 2.5-fold upregulation of p53, resulting in 70% suppression of melanoma cell colony formation. The effects of miR-18b overexpression on the p53 pathway and on melanoma cell growth were reversed by MDM2 overexpression. Stable overexpression of miR-18b produced potent tumor suppressor activity, as evidenced by suppressed melanoma cell viability, induction of apoptosis, and reduced tumor growth in vivo. miR-18b overexpression suppressed melanoma cell migration and invasiveness and reversed epithelial-to-mesenchymal transition. Conclusions Our results demonstrate a novel role for miR-18b as a tumor suppressor in melanoma, identify the MDM2-p53 pathway as a target of miR-18b action, and suggest miR-18b overexpression as a novel strategy to reactivate the p53 pathway in human tumors.
Collapse
Affiliation(s)
- Altaf A Dar
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, 475 Brannan St, Ste 220, San Francisco, CA 94107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Weisbart RH, Gera JF, Chan G, Hansen JE, Li E, Cloninger C, Levine AJ, Nishimura RN. A Cell-Penetrating Bispecific Antibody for Therapeutic Regulation of Intracellular Targets. Mol Cancer Ther 2012; 11:2169-73. [DOI: 10.1158/1535-7163.mct-12-0476-t] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|