1
|
Abulfaraj AA, Alshareef SA. Concordant Gene Expression and Alternative Splicing Regulation under Abiotic Stresses in Arabidopsis. Genes (Basel) 2024; 15:675. [PMID: 38927612 PMCID: PMC11202685 DOI: 10.3390/genes15060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The current investigation endeavors to identify differentially expressed alternatively spliced (DAS) genes that exhibit concordant expression with splicing factors (SFs) under diverse multifactorial abiotic stress combinations in Arabidopsis seedlings. SFs serve as the post-transcriptional mechanism governing the spatiotemporal dynamics of gene expression. The different stresses encompass variations in salt concentration, heat, intensive light, and their combinations. Clusters demonstrating consistent expression profiles were surveyed to pinpoint DAS/SF gene pairs exhibiting concordant expression. Through rigorous selection criteria, which incorporate alignment with documented gene functionalities and expression patterns observed in this study, four members of the serine/arginine-rich (SR) gene family were delineated as SFs concordantly expressed with six DAS genes. These regulated SF genes encompass cactin, SR1-like, SR30, and SC35-like. The identified concordantly expressed DAS genes encode diverse proteins such as the 26.5 kDa heat shock protein, chaperone protein DnaJ, potassium channel GORK, calcium-binding EF hand family protein, DEAD-box RNA helicase, and 1-aminocyclopropane-1-carboxylate synthase 6. Among the concordantly expressed DAS/SF gene pairs, SR30/DEAD-box RNA helicase, and SC35-like/1-aminocyclopropane-1-carboxylate synthase 6 emerge as promising candidates, necessitating further examinations to ascertain whether these SFs orchestrate splicing of the respective DAS genes. This study contributes to a deeper comprehension of the varied responses of the splicing machinery to abiotic stresses. Leveraging these DAS/SF associations shows promise for elucidating avenues for augmenting breeding programs aimed at fortifying cultivated plants against heat and intensive light stresses.
Collapse
Affiliation(s)
- Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia;
| |
Collapse
|
2
|
Zhang K, Hu Y, Li R, Li T. Single-cell atlas of murine adrenal glands reveals immune-adrenal crosstalk during systemic <i>Candida albicans</i> infection. Front Immunol 2022; 13:966814. [PMID: 36389688 PMCID: PMC9664004 DOI: 10.3389/fimmu.2022.966814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Fungal sepsis remains a major health threat with high mortality, where the adrenal gland stress response has been rarely reported. <i>Candida albicans</i> (<i>C.albicans</i>) is the most common opportunistic fungal pathogen of life-threatening disseminated candidiasis and fungal sepsis. In the present study, we performed single-cell RNA sequencing (scRNA-Seq) using the 10x Genomics platform to analyze the changes in murine adrenal transcriptome following systemic <i>C.albicans</i> infection. A total of 16 021 cells were categorized into 18 transcriptionally distinct clusters, representing adrenocortical cells, endothelial cells, various immune cells, mesenchymal cells, smooth muscle cells, adrenal capsule, chromaffin cells, neurons and glials. As the main cell component in the adrenal gland responsible for steroidogenesis, the adrenocortical cells dramatically diminished and were further grouped into 10 subclusters, which differently distributed in the infected and uninfected samples. Pseudo-time analysis revealed transitions of the adrenocortical cells from the initial normal states to active or dysfunctional states following systemic <i>C.albicans</i> infection <i>via</i> two trajectory paths. Endothelial cells in the highly vascularized organ of adrenal gland further proliferated following infection, with the upregulation of genes positively regulating angiogenesis and downregulation of protective genes of endothelial cells. Immune cells were also excessively infiltrated in adrenal glands of <i>C.albicans</i>-infected mice. Macrophages dominated the immune microenvironments in murine adrenal glands both before and after <i>C.albicans</i> infection, mediating the crosstalk among the steroid-producing cells, endothelial cells and immune cells within the adrenal gland. NLR family, pyrin domain containing 3 (NLRP3, encoded by <i>Nlrp3</i>) and complement receptor 3 (CR3, encoded by <i>Itgam</i>) were found to be significantly upregulated on the adrenal macrophages upon systemic <i>C.albicans</i> infection and might play critical roles in mediating the myeloid response. Meanwhile, the number and strength of the interactions between the infiltrating immune cells and adrenal resident cells were unveiled by cell-cell communication analysis to be dramatically increased after systemic <i>C.albicans</i> infection, indicating that the immune-adrenal crosstalk might contribute to the compromised functions of adrenal cells. Overall, our comprehensive picture of the murine adrenal gland microenvironment in systemic <i>C.albicans</i> infection provides deeper insights into the immune-adrenal cell communications during fungal sepsis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China,National Clinical Research Center for Skin and Immune Diseases, Beijing, China,Research Center for Medical Mycology, Peking University, Beijing, China,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yuzhe Hu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China,Key Laboratory of Medical Immunology, National Health Commission of the People's Republic of China, Beijing, China,Peking University Center for Human Disease Genomics, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China,National Clinical Research Center for Skin and Immune Diseases, Beijing, China,Research Center for Medical Mycology, Peking University, Beijing, China,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China,*Correspondence: Ting Li, ; Ruoyu Li,
| | - Ting Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China,Key Laboratory of Medical Immunology, National Health Commission of the People's Republic of China, Beijing, China,Peking University Center for Human Disease Genomics, Beijing, China,*Correspondence: Ting Li, ; Ruoyu Li,
| |
Collapse
|
3
|
A CRISPR knockout screen reveals new regulators of canonical Wnt signaling. Oncogenesis 2021; 10:63. [PMID: 34552058 PMCID: PMC8458386 DOI: 10.1038/s41389-021-00354-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
The Wnt signaling pathways play fundamental roles during both development and adult homeostasis. Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer, and is especially implicated in the development and progression of colorectal cancer. Although extensively studied, new genes, mechanisms and regulatory modulators involved in Wnt signaling activation or silencing are still being discovered. Here we applied a genome-scale CRISPR-Cas9 knockout (KO) screen based on Wnt signaling induced cell survival to reveal new inhibitors of the oncogenic, canonical Wnt pathway. We have identified several potential Wnt signaling inhibitors and have characterized the effects of the initiation factor DExH-box protein 29 (DHX29) on the Wnt cascade. We show that KO of DHX29 activates the Wnt pathway leading to upregulation of the Wnt target gene cyclin-D1, while overexpression of DHX29 inhibits the pathway. Together, our data indicate that DHX29 may function as a new canonical Wnt signaling tumor suppressor and demonstrates that this screening approach can be used as a strategy for rapid identification of novel Wnt signaling modulators.
Collapse
|
4
|
Bai Z, Feng M, Du Y, Cong L, Cheng Y. Carboxypeptidase E down-regulation regulates transcriptional and epigenetic profiles in pancreatic cancer cell line: A network analysis. Cancer Biomark 2021; 29:79-88. [PMID: 32675394 DOI: 10.3233/cbm-191163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pancreatic cancer is a malignant tumor and its incidence has increased in recent years. Carboxypeptidase E (CPE) is a prohormone/proneuropeptide processing enzyme that has been shown to be associated with tumor growth and invasion in various cancers including pancreatic cancer. OBJECTIVE To understand the molecular mechanism underlying the proliferative effects of CPE in cancer cells. METHODS We down-regulated CPE gene expression in PANC-1 cell, a pancreatic cell line, and investigated mRNA, miRNA, circRNA and lncRNA expression profiling in PANC-1 cells from control group and CPE knock-down group by microarray analysis. We further validated the top 14 differentially expressed circRNAs by qRT-PCR. RESULTS Our results showed that CPE down-regulation caused decreased cell proliferation. The microarray data showed 107, 15, 299 and 360 differentially expressed mRNAs, miRNAs, circRNAs, and lncRNAs, respectively between control group and CPE knock-down group. Of Which, 41 mRNAs, 12 miRNAs, 133 circRNAs, and 262 lncRNAs were down-regulated; 66 mRNAs, 3 miRNAs, 166 circRNAs, and 98 lncRNAs were up-regulated. Bioinformatics analysis showed that the top significantly enriched pathways for the differentially expressed RNAs were related to cancer onset and/or progression, these included p53 signaling pathway, ECM-receptor interaction, focal adhesion and Wnt signaling pathway. We further performed network analysis to assess the mRNA, miRNA, circRNA and lncRNA correlations, and showed that HUWE1, hsa-miR-6780b-5p, has_circ_0058208 and lnc-G3BP1-3:8 were in the core position of the network. CONCLUSIONS Taken together, these results identified potential CPE regulated core genes and pathways for cell proliferation in pancreatic cancer cell, and therefore provide potential targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhile Bai
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
5
|
Yuan J, Xing H, Li Y, Song Y, Zhang N, Xie M, Liu J, Xu Y, Shen Y, Wang B, Zhang L, Yang M. EPB41 suppresses the Wnt/β-catenin signaling in non-small cell lung cancer by sponging ALDOC. Cancer Lett 2020; 499:255-264. [PMID: 33242559 DOI: 10.1016/j.canlet.2020.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
Despite advancements in therapeutic options, the overall prognosis for non-small-cell lung cancer (NSCLC) remains poor. Further exploration of the etiology and targets for novel treatments is crucial for managing NSCLC. In this study, we revealed the significant potential of EPB41 for inhibiting NSCLC proliferation, invasion and metastasis in vitro and in vivo. Consistent with its tumor suppressor role in NSCLC, the expression of EPB41 in NSCLC specimens evidently decreased compared to that in normal tissues, and low EPB41 expression was associated with poor prognoses for NSCLC patients. We further demonstrated the importance of EPB41 protein as a novel inhibitor of the Wnt signaling, which regulates β-Catenin stability, and elucidated the crucial role of the EPB41/ALDOC/GSK3β/β-Catenin axis in NSCLC. Suppression of EPB41 expression in cancer cells elevated the levels of free ALDOC protein released from the EPB41-ALDOC complex, leading to disassembly of the β-catenin destruction complex, reduced proteolytic degradation of β-catenin, elevated cytoplasmic accumulation and nuclear translocation of β-catenin, thereby activating the expression of multiple oncogenes and, thus, NSCLC pathogenesis. Our study highlights the potential of EPB41 as a future therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yankang Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Li Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
6
|
Substrate Specificity and Structural Modeling of Human Carboxypeptidase Z: A Unique Protease with a Frizzled-Like Domain. Int J Mol Sci 2020; 21:ijms21228687. [PMID: 33217972 PMCID: PMC7698808 DOI: 10.3390/ijms21228687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/29/2022] Open
Abstract
Metallocarboxypeptidase Z (CPZ) is a secreted enzyme that is distinguished from all other members of the M14 metallocarboxypeptidase family by the presence of an N-terminal cysteine-rich Frizzled-like (Fz) domain that binds Wnt proteins. Here, we present a comprehensive analysis of the enzymatic properties and substrate specificity of human CPZ. To investigate the enzymatic properties, we employed dansylated peptide substrates. For substrate specificity profiling, we generated two different large peptide libraries and employed isotopic labeling and quantitative mass spectrometry to study the substrate preference of this enzyme. Our findings revealed that CPZ has a strict requirement for substrates with C-terminal Arg or Lys at the P1′ position. For the P1 position, CPZ was found to display specificity towards substrates with basic, small hydrophobic, or polar uncharged side chains. Deletion of the Fz domain did not affect CPZ activity as a carboxypeptidase. Finally, we modeled the structure of the Fz and catalytic domains of CPZ. Taken together, these studies provide the molecular elucidation of substrate recognition and specificity of the CPZ catalytic domain, as well as important insights into how the Fz domain binds Wnt proteins to modulate their functions.
Collapse
|
7
|
Hebert L, Hillman P, Baker C, Brown M, Ashley-Koch A, Hixson JE, Morrison AC, Northrup H, Au KS. Burden of rare deleterious variants in WNT signaling genes among 511 myelomeningocele patients. PLoS One 2020; 15:e0239083. [PMID: 32970752 PMCID: PMC7514064 DOI: 10.1371/journal.pone.0239083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Genes in the noncanonical WNT signaling pathway controlling planar cell polarity have been linked to the neural tube defect myelomeningocele. We hypothesized that some genes in the WNT signaling network have a higher mutational burden in myelomeningocele subjects than in reference subjects in gnomAD. Exome sequencing data from 511 myelomeningocele subjects was obtained in-house and data from 29,940 ethnically matched subjects was provided by version 2 of the publicly available Genome Aggregation Database. To compare mutational burden, we collapsed rare deleterious variants across each of 523 human WNT signaling genes in case and reference populations. Ten WNT signaling genes were disrupted with a higher mutational burden among Mexican American myelomeningocele subjects compared to reference subjects (Fishers exact test, P ≤ 0.05) and seven different genes were disrupted among individuals of European ancestry compared to reference subjects. Gene ontology enrichment analyses indicate that genes disrupted only in the Mexican American population play a role in planar cell polarity whereas genes identified in both populations are important for the regulation of canonical WNT signaling. In summary, evidence for WNT signaling genes that may contribute to myelomeningocele in humans is presented and discussed.
Collapse
Affiliation(s)
- Luke Hebert
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Paul Hillman
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Craig Baker
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Michael Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Allison Ashley-Koch
- Department of Medicine and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States of America
| | - James E. Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Hope Northrup
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
| | - Kit Sing Au
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
8
|
Tyson J, Bundy K, Roach C, Douglas H, Ventura V, Segars MF, Schwartz O, Simpson CL. Mechanisms of the Osteogenic Switch of Smooth Muscle Cells in Vascular Calcification: WNT Signaling, BMPs, Mechanotransduction, and EndMT. Bioengineering (Basel) 2020; 7:bioengineering7030088. [PMID: 32781528 PMCID: PMC7552614 DOI: 10.3390/bioengineering7030088] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
Characterized by the hardening of arteries, vascular calcification is the deposition of hydroxyapatite crystals in the arterial tissue. Calcification is now understood to be a cell-regulated process involving the phenotypic transition of vascular smooth muscle cells into osteoblast-like cells. There are various pathways of initiation and mechanisms behind vascular calcification, but this literature review highlights the wingless-related integration site (WNT) pathway, along with bone morphogenic proteins (BMPs) and mechanical strain. The process mirrors that of bone formation and remodeling, as an increase in mechanical stress causes osteogenesis. Observing the similarities between the two may aid in the development of a deeper understanding of calcification. Both are thought to be regulated by the WNT signaling cascade and bone morphogenetic protein signaling and can also be activated in response to stress. In a pro-calcific environment, integrins and cadherins of vascular smooth muscle cells respond to a mechanical stimulus, activating cellular signaling pathways, ultimately resulting in gene regulation that promotes calcification of the vascular extracellular matrix (ECM). The endothelium is also thought to contribute to vascular calcification via endothelial to mesenchymal transition, creating greater cell plasticity. Each of these factors contributes to calcification, leading to increased cardiovascular mortality in patients, especially those suffering from other conditions, such as diabetes and kidney failure. Developing a better understanding of the mechanisms behind calcification may lead to the development of a potential treatment in the future.
Collapse
|
9
|
Ruan W, Hu J, Zhou H, Li Y, Xu C, Luo Y, Chen T, Xu B, Yan F, Chen G. Intranasal wnt-3a alleviates neuronal apoptosis in early brain injury post subarachnoid hemorrhage via the regulation of wnt target PPAN mediated by the moonlighting role of aldolase C. Neurochem Int 2020; 134:104656. [DOI: 10.1016/j.neuint.2019.104656] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 12/29/2019] [Indexed: 01/01/2023]
|
10
|
Zhang L, Yu M, Xu H, Wei X, Liu Y, Huang C, Chen H, Guo Z. RNA sequencing revealed the abnormal transcriptional profile in cloned bovine embryos. Int J Biol Macromol 2020; 150:492-500. [PMID: 32035150 DOI: 10.1016/j.ijbiomac.2020.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Somatic cell nuclear transfer (SCNT) has potential applications in agriculture and biomedicine, but the efficiency of cloning is still low. In this study, the transcriptional profiles in cloned and fertilized embryos were measured and compared by RNA sequencing. The 2-cell embryos were detected to identify the earliest transcriptional differences between embryos derived through IVF and SCNT. As a result, 364 genes showed decreased expression in cloned 2-cell embryos and were enriched in "intracellular protein transport" and "ubiquitin mediated proteolysis". In blastocysts, 593 genes showed decreased expression in cloned blastocysts and were enriched in "RNA binding", "nucleotide binding", "embryo development", and "adherens junction". We identified 14 development related genes that were not activated in the cloned embryos. Then, 68 and 245 long non-coding RNAs were recognized abnormally expressed in cloned 2-cell embryos and cloned blastocysts, respectively. Furthermore, we found that incomplete RNA-editing occurred in cloned embryos and might be caused by decreased ADAR expression. In conclusion, our study revealed the abnormal transcripts and deficient RNA-editing sites in cloned embryos and provided new data for further mechanistic studies of somatic nuclear reprogramming.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Mengying Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Xing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Yingxiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Huanhuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
11
|
Sun J, Meng D, Yu T, Li F, Zhang G, Tian X, Zhao N, Li G, Li L, Wang H, Liu Y, Meng Y, Ma Y, Wan Z, Bao J, Piao H. N-terminal truncated carboxypeptidase E represses E-cadherin expression in lung cancer by stabilizing the Snail-HDAC complex. Am J Cancer Res 2020; 10:925-938. [PMID: 32266100 PMCID: PMC7136916 DOI: pmid/32266100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
The N-terminal truncated carboxypeptidase E (CPEΔN) protein, an alternative splicing product of the carboxypeptidase E gene, has recently been recognized as an independent predictor for the recurrence and metastasis of lung adenocarcinoma. In this study, we showed that CPEΔN may accelerate lung cancer invasion via an E-cadherin-dependent mechanism. In vitro experiments and in vivo bioluminescence imaging assay revealed CPEΔN promoted the mobility and invasion of human lung cancer cells by suppressing endogenous expression of E-cadherin, a critical regulator for epithelial tissue homeostasis. Further mechanistic analyses revealed that CPEΔN directly interacted with and stabilized the Snail/HDAC1/HDAC3 complex within the promoter region of the E-cadherin-encoding CDH1 gene. CPEΔN overexpression led to a reduction of histone H3K9 acetylation and an increase of H3K9 and H3K27 trimethylation in the CHD1 gene promoter and ultimately inhibited E-cadherin transcription. In addition, correlations among CPEΔN, E-cadherin expression and tumor progression in 195 cases of lung adenocarcinoma patients were analyzed. Higher nuclear expression of CPEΔN was detected in patients with advanced stage of lung adenocarcinoma. Nuclear expression of CPEΔN was negatively correlated with the cell membrane expression of E-cadherin. Collectively, our findings illustrated that CPEΔN was involved in the transcriptional regulation of the epithelial-mesenchymal transition-related gene CDH1 and provide novel insights into CPEΔN-associated lung cancer metastasis.
Collapse
Affiliation(s)
- Jing Sun
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| | - Dawei Meng
- Department of Otolaryngology Head and Neck Surgery, Liaoning Provincial Jinqiu HospitalShenyang 110016, Liaoning, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health of The PRC, China Medical UniversityShenyang 110122, Liaoning, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of The PRC, China Medical UniversityShenyang 110122, Liaoning, China
| | - Guirong Zhang
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| | - Xin Tian
- Molecular Oncology Laboratory of Cancer Research Institute, China Medical University First HospitalShenyang 110001, Liaoning, China
| | - Nannan Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| | - Guimin Li
- Department of Otolaryngology Head and Neck Surgery, Liaoning Provincial Jinqiu HospitalShenyang 110016, Liaoning, China
| | - Lu Li
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical CollegeShantou 515000, Guangdong, China
| | - Hongyue Wang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| | - Yeqiu Liu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| | - Yushu Ma
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| | - Zhong Wan
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| | - Jimin Bao
- Department of Otolaryngology Head and Neck Surgery, Liaoning Provincial Jinqiu HospitalShenyang 110016, Liaoning, China
| | - Haozhe Piao
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang 110042, Liaoning, China
| |
Collapse
|
12
|
Fan S, Gao X, Chen P, Li X. Carboxypeptidase E-ΔN promotes migration, invasiveness, and epithelial–mesenchymal transition of human osteosarcoma cells via the Wnt–β-catenin pathway. Biochem Cell Biol 2019; 97:446-453. [PMID: 30508384 DOI: 10.1139/bcb-2018-0236] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents, and metastatic OS is the major cause of OS-related death. Carboxypeptidase E (CPE) is known to be highly expressed in some cancer types, and its N-terminal truncated form, CPE-ΔN, is implicated in tumor metastasis and poor prognosis. In this study, we investigated the effect of CPE-ΔN on cell migration, invasiveness, and the epithelial–mesenchymal transition (EMT) of OS cells, and illustrated the molecular mechanisms. We first constructed CPE-ΔN overexpressing human OS cell lines (143B and U2OS cells), and found that ectopic CPE-ΔN expression in OS cells enhanced cell migration and invasiveness, and promoted the EMT process. Further, overexpression of CPE-ΔN increased the levels of c-myc and nuclear β-catenin in OS cells, which suggested the CPE-ΔN promotes activation of the Wnt–β-catenin pathway in OS cells. Treatment with β-catenin small interfering RNA (siRNA) inhibited the migration and invasiveness of CPE-ΔN-overexpressing cells, and reduced the expression of E-cadherin. Together, these results suggest that CPE-ΔN promotes migration, invasiveness, and the EMT of OS cells via the Wnt–β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuli Fan
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | - Xiang Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | - Peng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | - Xu Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| |
Collapse
|
13
|
Ai L, Ren Y, Li Y, Chen H, Qian Y, Lu S, Xu A, Ren L, Zhao S, Chen Z, Chen YX, Xu J, Fang JY. Synbindin deficiency inhibits colon carcinogenesis by attenuating Wnt cascade and balancing gut microbiome. Int J Cancer 2019; 145:206-220. [PMID: 30561033 DOI: 10.1002/ijc.32074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/17/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms that control the development of colorectal cancer (CRC) remain poorly defined. Here we show Synbindin promoted CRC oncogenesis by activating Wnt signaling and altering gut microbiome. Synbindin upregulation in human CRCs was associated with poor patient prognosis. Intestine-specific disruption of Synbindin balanced the disturbed gut microbiota and protected mice against tumor formation in the colitis-associated cancer (CAC) model. The protective role was compromised after gut microbiota depletion. In host, increased goblet cells and mucin2 expression, together with increased intestinal epithelial cells (IECs) apoptosis and decreased epithelial proliferation were observed. Further transcriptomic sequencing identified Wnt signaling a major regulatory node downstream of Synbindin. Combined molecular and cellular characterizations revealed that Synbindin confers Disheveled-3 (DVL3)-based signalosome assembly and acts as a modular scaffold for DVL3 and Axin2 complex, orchestrating the intensity of Wnt signaling. These findings identify a critical role of Synbindin in gut microbiome composition and Wnt signaling activation in colorectal carcinogenesis, and highlight Synbindin as an adaptor protein with multifaceted roles.
Collapse
Affiliation(s)
- Luoyan Ai
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Li
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyuan Lu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Antao Xu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Ren
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuliang Zhao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaofei Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xuan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Xiao L, Yang X, Loh YP. Neurotrophic, Gene Regulation, and Cognitive Functions of Carboxypeptidase E-Neurotrophic Factor-α1 and Its Variants. Front Neurosci 2019; 13:243. [PMID: 30941009 PMCID: PMC6433828 DOI: 10.3389/fnins.2019.00243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Carboxypeptidase E, also known as neurotrophic factor-α1 (CPE-NFα1), was first discovered as an exopeptidase and is known to work by cleaving C-terminal basic amino acids from prohormone intermediates to produce mature peptide hormones and neuropeptides in the endocrine and central nervous systems, respectively. CPE-NFα1 also plays a critical role in prohormone sorting and secretory vesicle transportation. Recently, emerging studies have indicated that CPE-NFα1 exerts multiple non-enzymatic physiological roles in maintaining normal central nervous system function and in neurodevelopment. This includes potent neuroprotective and anti-depressant activities, as well as stem cell differentiation functions. In addition, N-terminal truncated variants of CPE-NFα1 have been identified to regulate expression of important neurodevelopmental genes. This mini-review summarizes recent advances in understanding the mechanisms underlying CPE-NFα1’s function in neuroprotection during stress and aspects of neurodevelopment.
Collapse
Affiliation(s)
- Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Klotho suppresses colorectal cancer through modulation of the unfolded protein response. Oncogene 2018; 38:794-807. [PMID: 30232408 DOI: 10.1038/s41388-018-0489-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
Abstract
Klotho is an anti-aging transmembrane protein, which can be shed and function as a hormone. Accumulating data indicate klotho as a tumor suppressor in a wide array of malignancies and indicate the subdomain KL1 as the active region of the protein. We aimed to study the role of klotho as a tumor suppressor in colorectal cancer. Bioinformatics analyses of TCGA datasets indicated reduced klotho mRNA levels in human colorectal cancer, along with negative regulation of klotho expression by hypermethylation of the promoter and 1st exon, and hypomethylation of an area within the gene. Overexpression or treatment with klotho or KL1 inhibited proliferation of colorectal cancer cells in vitro. The in vivo activity of klotho and KL1 was examined using two models recapitulating development of tumors in the normal colonic environment of immune-competent mice. Treatment with klotho inhibited formation of colon polyps induced by the carcinogen azoxymethane, and KL1 treatment slowed growth of orthotopically-implanted colorectal tumors. Gene expression array revealed that klotho and KL1 expression enhanced the unfolded protein response (UPR) and this was further established by increased levels of spliced XBP1, GRP78 and phosphorylated-eIF2α. Furthermore, attenuation of the UPR partially abrogated klotho tumor suppressor activity. In conclusion, this study indicates klotho as a tumor suppressor in colorectal cancer and identifies, for the first time, the UPR as a pathway mediating klotho activities in cancer. These data suggest that administration of exogenous klotho or KL1 may serve as a novel strategy for prevention and treatment of colorectal cancer.
Collapse
|
16
|
Begam N, Jamil K, Raju GS. Promoter epigenetics of APC gene and its implication in sporadic breast cancer patients from South Indian population. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Brunt L, Scholpp S. The function of endocytosis in Wnt signaling. Cell Mol Life Sci 2018; 75:785-795. [PMID: 28913633 PMCID: PMC5809524 DOI: 10.1007/s00018-017-2654-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 10/31/2022]
Abstract
Wnt growth factors regulate one of the most important signaling networks during development, tissue homeostasis and disease. Despite the biological importance of Wnt signaling, the mechanism of endocytosis during this process is ill described. Wnt molecules can act as paracrine signals, which are secreted from the producing cells and transported through neighboring tissue to activate signaling in target cells. Endocytosis of the ligand is important at several stages of action: One central function of endocytic trafficking in the Wnt pathway occurs in the source cell. Furthermore, the β-catenin-dependent Wnt ligands require endocytosis for signal activation and to regulate gene transcription in the responding cells. Alternatively, Wnt/β-catenin-independent signaling regulates endocytosis of cell adherence plaques to control cell migration. In this comparative review, we elucidate these three fundamental interconnected functions, which together regulate cellular fate and cellular behavior. Based on established hypotheses and recent findings, we develop a revised picture for the complex function of endocytosis in the Wnt signaling network.
Collapse
Affiliation(s)
- Lucy Brunt
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK.
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
18
|
Globus O, Evron T, Caspi M, Siman-Tov R, Rosin-Arbesfeld R. High-Temperature Requirement A1 (Htra1) - A Novel Regulator of Canonical Wnt Signaling. Sci Rep 2017; 7:17995. [PMID: 29269789 PMCID: PMC5740065 DOI: 10.1038/s41598-017-18203-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Abstract
Different cancer types as well as many other diseases are caused by aberrant activation of the canonical Wnt signal transduction pathway, and it is especially implicated in the development and progression of colorectal cancer (CRC). The main effector protein of the canonical Wnt signaling cascade is β-catenin, which binds to the T- cell factor/lymphoid enhancer factor (TCF/LEF) and triggers the activation of Wnt target genes. Here, we identify the serine protease High-Temperature Requirement A1 (HTRA1) as a novel component of the canonical Wnt pathway. We show that the HTRA1 protein inhibits the Wnt/β-catenin signaling, in both paracrine and autocrine manners, and affects the expression of several Wnt target genes. Moreover, HTRA1 forms a complex with β-catenin and reduces the proliferation rates of cells. Taken together, our findings indicate that HTRA1 functions as a novel suppressor of the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Oriane Globus
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tamar Evron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
19
|
Liu ZL, Li H, Liu J, Wu ML, Chen XY, Liu LH, Wang Q. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication. Oncol Lett 2017; 14:2239-2243. [PMID: 28781663 PMCID: PMC5530146 DOI: 10.3892/ol.2017.6458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common epidermal malignancy, and Wnt/β-catenin signaling is frequently activated in SCC. Resveratrol prevents rodent epidermal carcinogenesis, while its effect on human epidermal cancer remains unknown. To address this issue, the impact of resveratrol on the growth and Wnt signaling of skin SCC Colo16 cells were investigated at the cellular and molecular biology levels by flow cytometry, immunocytochemistry, reverse transcription-polymerase chain reaction, western blotting and β-catenin-specific small interfering RNA (siRNA) transfection. Resveratrol (100 µM) suppressed cell growth and induced apoptosis in Colo16 cells. Wnt2 and its downstream genes were downregulated, which was accompanied by increased expression of the Wnt signaling inhibitor Axin2. Transfection with a β-catenin-specific siRNA did not affect cell growth but enhanced the resveratrol susceptibility of Colo16 transfectants. The present results suggest the inhibitory effects of resveratrol on epidermal SCCs and inactivation of Wnt signaling as one of the resveratrol-caused molecular events in Colo16 cells. β-catenin oriented siRNA is insufficient to induce cell crisis, implicating the presence of more critical cancer-associated element(s) as the target in Colo16 cells.
Collapse
Affiliation(s)
- Zhi-Li Liu
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Dermatology, Dalian Hospital for Skin Diseases, Dalian, Liaoning 116021, P.R. China
| | - Hong Li
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiao-Yan Chen
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Li-Hong Liu
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qian Wang
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
20
|
Armento A, Ilina EI, Kaoma T, Muller A, Vallar L, Niclou SP, Krüger MA, Mittelbronn M, Naumann U. Carboxypeptidase E transmits its anti-migratory function in glioma cells via transcriptional regulation of cell architecture and motility regulating factors. Int J Oncol 2017; 51:702-714. [DOI: 10.3892/ijo.2017.4051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
|
21
|
Ji L, Wu HT, Qin XY, Lan R. Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr Connect 2017; 6:R18-R38. [PMID: 28348001 PMCID: PMC5434747 DOI: 10.1530/ec-17-0020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Since discovery in 1982, carboxypeptidase E (CPE) has been shown to be involved in the biosynthesis of a wide range of neuropeptides and peptide hormones in endocrine tissues, and in the nervous system. This protein is produced from pro-CPE and exists in soluble and membrane forms. Membrane CPE mediates the targeting of prohormones to the regulated secretory pathway, while soluble CPE acts as an exopeptidase and cleaves C-terminal basic residues from peptide intermediates to generate bioactive peptides. CPE also participates in protein internalization, vesicle transport and regulation of signaling pathways. Therefore, in two types of CPE mutant mice, Cpefat/Cpefat and Cpe knockout, loss of normal CPE leads to a lot of disorders, including diabetes, hyperproinsulinemia, low bone mineral density and deficits in learning and memory. In addition, the potential roles of CPE and ΔN-CPE, an N-terminal truncated form, in tumorigenesis and diagnosis were also addressed. Herein, we focus on dissecting the pathophysiological roles of CPE in the endocrine and nervous systems, and related diseases.
Collapse
Affiliation(s)
- Lin Ji
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| | - Huan-Tong Wu
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Cong L, Cheng Y, Cawley NX, Murthy SRK, Loh YP. A Novel Single Nucleotide T980C Polymorphism in the Human Carboxypeptidase E Gene Results in Loss of Neuroprotective Function. PLoS One 2017; 12:e0170169. [PMID: 28114332 PMCID: PMC5256889 DOI: 10.1371/journal.pone.0170169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 12/30/2016] [Indexed: 11/18/2022] Open
Abstract
Report of a human with a homozygous truncating null mutation of the Carboxypeptidase E (CPE) gene with endocrinological and neurological deficits prompted us to search for other mutations in the human CPE gene that might be linked to disease. We searched an EST database and identified from a small population of patients, a novel T to C single nucleotide polymorphism (SNP) in the CPE gene at bp980 of exon 4, herein called TC-CPE. This introduces a tryptophan to arginine (W235R) mutation in the catalytic domain of human CPE protein. Over-expression of TC-CPE in N2A cells, a neuroendocrine cell line, showed that it was synthesized, but was found in lesser amounts compared to over-expressed WT-CPE in these cells. Furthermore, TC-CPE was secreted poorly from these N2A cells. The levels of TC-CPE were significantly increased after the N2A cells were treated with MG132 (a proteasome inhibitor), suggesting that TC-CPE was targeted to proteasomes for degradation in N2A cells. In addition, TC-CPE induced ER stress as demonstrated by the increased expression of CHOP in N2A cells. Double labeling of CPE and calnexin (and ER marker) suggested the accumulation of TC-CPE in the ER, and the accumulation appears to be enhanced by the treatment of MG132 in the cells. Moreover, the secreted levels of TC-CPE were not affected by the treatment of MG132 in the cells. Over-expression studies revealed that while N2A cells transfected with WT-CPE showed reduced cytotoxicity when challenged with H2O2 compared to cells expressing an empty vector, cells transfected with TC-CPE had no effect. Furthermore, WT-CPE condition medium showed protective effect against oxidative stress, but not TC-CPE condition medium. Although co-expression of WT-CPE and TC-CPE in N2A cells resulted in the reduction in secretion of WT-CPE, co-expression of WT-CPE and TC-CPE did not significantly affect the protective effect of WT-CPE. Taken together, we have identified a novel SNP in the CPE gene which results in the loss of its neuroprotective function in cells and may confer neurological disorders in humans.
Collapse
Affiliation(s)
- Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Yong Cheng
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Saravana R. K. Murthy
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
23
|
Yedid N, Kalma Y, Malcov M, Amit A, Kariv R, Caspi M, Rosin-Arbesfeld R, Ben-Yosef D. The effect of a germline mutation in the APC gene on β-catenin in human embryonic stem cells. BMC Cancer 2016; 16:952. [PMID: 28010732 PMCID: PMC5180406 DOI: 10.1186/s12885-016-2809-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Background Most cases of colorectal cancer (CRC) are initiated by inactivation mutations in the APC gene, which is a negative regulator of the Wnt-β-catenin pathway. Patients with familial adenomatous polyposis (FAP) inherit a germline mutation in one APC allele, and loss of the second allele leads to the development of polyps that will turn malignant if not removed. It is not fully understood which molecular mechanisms are activated by APC loss and when the loss of the second APC allele occurs. Methods Two FAP human embryonic stem cell (hESCs) lines were derived from APC mutated embryos following pre-implantation genetic diagnosis (PGD) for FAP. These FAP-hESCs were cultured in vitro and following extended culture: 1) β-catenin expression was analyzed by Western blot analysis; 2) Wnt-β-catenin/TCF-mediated transcription luciferase assay was performed; 3) cellular localization of β-catenin was evaluated by immunoflorecence confocal microscopy; and 4) DNA sequencing of the APC gene was performed. Results We have established a novel human in-vitro model for studying malignant transformation, using hESCs that carry a germline mutation in the APC gene following PGD for FAP. Extended culturing of FAP1 hESCs led to activation of the Wnt signaling pathway, as demonstrated by enhanced β-catenin/TCF-mediated activity. Additionally, β-catenin showed a distinct perinuclear distribution in most (91 %) of the FAP1 hESCs high passage colonies. DNA sequencing of the whole gene detected several polymorphisms in FAP1 hESCs, however, no somatic mutations were discovered in the APC gene. On the other hand, no changes in β-catenin were detected in the FAP2 hESCs, demonstrating the natural diversity of the human FAP population. Conclusions Our results describe the establishment of novel hESC lines from FAP patients with a predisposition for cancer mutation. These cells can be maintained in culture for long periods of time and may serve as a platform for studying the initial molecular and cellular changes that occur during early stages of malignant transformation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2809-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nofar Yedid
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yael Kalma
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mira Malcov
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Amit
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Revital Kariv
- Departmant of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Tel-Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Tel-Aviv University, Tel Aviv, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD-Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel. .,Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Selvaraj P, Xiao L, Lee C, Murthy SRK, Cawley NX, Lane M, Merchenthaler I, Ahn S, Loh YP. Neurotrophic Factor-α1: A Key Wnt-β-Catenin Dependent Anti-Proliferation Factor and ERK-Sox9 Activated Inducer of Embryonic Neural Stem Cell Differentiation to Astrocytes in Neurodevelopment. Stem Cells 2016; 35:557-571. [PMID: 27709799 DOI: 10.1002/stem.2511] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/08/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
Abstract
Embryonic neurodevelopment involves inhibition of proliferation of multipotent neural stem cells (NSCs) followed by differentiation into neurons, astrocytes and oligodendrocytes to form the brain. We have identified a new neurotrophic factor, NF-α1, which inhibits proliferation and promotes differentiation of NSC/progenitors derived from E13.5 mouse cortex. Inhibition of proliferation of these cells was mediated through negatively regulating the Wnt pathway and decreasing β-catenin. NF-α1 induced differentiation of NSCs to astrocytes by enhancing Glial Fibrillary Acidic Protein (GFAP) expression through activating the ERK1/2-Sox9 signaling pathway. Cultured E13.5 cortical stem cells from NF-α1-knockout mice showed decreased astrocyte numbers compared to wild-type mice, which was rescued by treatment with NF-α1. In vivo, immunocytochemistry of brain sections and Western blot analysis of neocortex of mice showed a gradual increase of NF-α1 expression from E14.5 to P1 and a surge of GFAP expression at P1, the time of increase in astrogenesis. Importantly, NF-α1-Knockout mice showed ∼49% fewer GFAP positive astrocytes in the neocortex compared to WT mice at P1. Thus, NF-α1 is critical for regulating antiproliferation and cell fate determination, through differentiating embryonic stem cells to GFAP-positive astrocytes for normal neurodevelopment. Stem Cells 2017;35:557-571.
Collapse
Affiliation(s)
| | - Lan Xiao
- Section on Cellular Neurobiology, Bethesda, Maryland, USA
| | - Cheol Lee
- Unit on Developmental Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Niamh X Cawley
- Section on Cellular Neurobiology, Bethesda, Maryland, USA
| | - Malcolm Lane
- Department of Epidemiology and Public Health and Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland, USA
| | - Istvan Merchenthaler
- Department of Epidemiology and Public Health and Anatomy and Neurobiology, University of Maryland, Baltimore, Maryland, USA
| | - Sohyun Ahn
- Unit on Developmental Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Sun J, Meng D, Li L, Tian X, Jia Y, Wang H, Yu H, Sun T, Qu A, Shen H, Bao J, Zhang G. N-terminal truncated carboxypeptidase E expression is associated with poor prognosis of lung adenocarcinoma. Oncol Lett 2016; 12:4659-4664. [PMID: 28101219 DOI: 10.3892/ol.2016.5283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/09/2016] [Indexed: 01/23/2023] Open
Abstract
Lung cancer is a malignant tumor with high morbidity and mortality rates. To date, no suitable molecular diagnostic tool to predict disease recurrence and metastasis has been identified. The current study aimed to evaluate the potential of N-terminal truncated carboxypeptidase E (CPEΔN) to predict the recurrence and metastasis of lung adenocarcinoma. Western blotting revealed the co-expression of CPE and CPEΔN in the surgically collected pathological and pericarcinoma tissues tissues of 62.1% (59/95) lung adenocarcinoma patients. The full length CPE protein was predominantly expressed in pericarcinoma tissues and CPEΔN expression was identified in the pericarcinoma normal tissues of only 5.26% (5/95) patients. The 3-year postoperative recurrence and metastasis rates were significantly higher in patients with positive CPEΔN expression than in patients with negative CPEΔN expression (P=0.009). Furthermore, the overall survival rate of patients with predominant nuclear CPE expression was lower than that of patients with predominant cytoplasmic CPE expression (46.3 vs. 64.7%); however, no statistically significant difference was identified (P=0.125). Thus, the results of the current study indicated that CPEΔN may present a novel molecular biomarker for predicting recurrence and metastasis of lung adenocarcinoma, which may aid with stratifying patients by risk and thus, may facilitate individualized therapy.
Collapse
Affiliation(s)
- Jing Sun
- Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China; Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Dawei Meng
- Department of Otolaryngology-Head and Neck Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Li Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Xin Tian
- Molecular Oncology Laboratory, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunji Jia
- Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Hongyue Wang
- Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China; Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Huihui Yu
- Department of Epidemiology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Tiemin Sun
- Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China; Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Aibing Qu
- Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China; Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Hui Shen
- Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China; Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jimin Bao
- Department of Otolaryngology-Head and Neck Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Guirong Zhang
- Cancer Hospital of China Medical University, Shenyang, Liaoning 110042, P.R. China; Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
26
|
Carboxypeptidase E (CPE) inhibits the secretion and activity of Wnt3a. Oncogene 2016; 35:6416-6428. [DOI: 10.1038/onc.2016.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/26/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
|
27
|
CPE overexpression is correlated with pelvic lymph node metastasis and poor prognosis in patients with early-stage cervical cancer. Arch Gynecol Obstet 2015; 294:333-42. [PMID: 26695643 DOI: 10.1007/s00404-015-3985-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Elevated carboxypeptidase E (CPE) levels play crucial roles in tumorigenesis and metastasis. This study investigated the expression and clinicopathological significance of CPE in early-stage cervical cancer. METHODS Elevated carboxypeptidase E expression was analyzed using quantitative polymerase chain reaction and western blotting in normal cervical tissue, cervical cancer cell lines, and in cervical cancer tissues and adjacent noncancerous tissues (ANTs) from the same patient. Immunohistochemistry (IHC) was used to examine CPE expression in tissue samples from 112 patients with early-stage cervical cancer (FIGO stages Ia2-IIa2), 60 patients with cervical intraepithelial neoplasia, and 19 patients with normal cervical tissues (NCTs). Associations between CPE expression and prognostic and diagnostic factors were evaluated statistically. RESULTS CPE expression was significantly higher in cervical cancer cell lines and tissues than in normal tissues and ANTs. Semi-quantitative analysis of IHC indicated that CPE gradually increased from CIN I to cervical cancer, but was absent in NCTs. CPE expression was seen in 40.2 % (45/112) of the cervical cancer samples. CPE expression was significantly associated with FIGO stage (P = 0.003), tumor size (P = 0.012), stromal invasion (P < 0.001), lymphovascular space invasion (P = 0.016), parametrial infiltration (P = 0.027), vaginal involvement (P = 0.007), postoperative adjuvant therapy (P = 0.024), recurrence (P < 0.001), survival (P < 0.001), and pelvic lymph node metastasis (PLNM) (P < 0.001), and it was significantly higher in tissues from patients with PLNM than without PLNM. Logistic regression analysis identified high-level CPE expression as an independent risk factor for PLNM (P = 0.001). Patients with higher CPE expression had shorter overall survival duration than patients with lower CPE expression. Univariate and multivariate Cox-regression analyses suggested that high-level CPE expression is an independent prognostic factor for overall survival in early-stage cervical cancer. CONCLUSIONS High-level CPE expression was associated with a poor prognosis in early-stage cervical cancer. CPE may serve as a biomarker for predicting PLNM and survival in these patients.
Collapse
|
28
|
Selvaraj P, Huang JSW, Chen A, Skalka N, Rosin-Arbesfeld R, Loh YP. Neurotrophic factor-α1 modulates NGF-induced neurite outgrowth through interaction with Wnt-3a and Wnt-5a in PC12 cells and cortical neurons. Mol Cell Neurosci 2015; 68:222-33. [PMID: 26276171 DOI: 10.1016/j.mcn.2015.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
Wnt-3a and Wnt-5a signaling activities inhibit and promote neurite outgrowth, respectively, to regulate dendritic and axonal genesis during neurodevelopment. NF-α1, a neurotrophic factor, has been shown to modulate dendritic remodeling and negatively regulate the canonical Wnt-3a pathway. Here, we investigated whether NF-α1 could modify nerve growth factor (NGF)-induced neurite outgrowth through interaction with Wnt-3a and Wnt-5a in PC12 cells and mouse primary cortical neurons. We showed that NGF-induced neurite outgrowth was inhibited by Wnt-3a, and this inhibition was prevented by NF-α1. Western blot analysis revealed that NF-α1 reduced the expression of both β-catenin in the canonical Wnt-3a pathway and Rho, a downstream effector of Wnt-3a's non-canonical signaling pathway. Treatment of PC12 cells with a ROCK inhibitor prevented the inhibition of NGF-induced neurite outgrowth by Wnt-3a, suggesting that NF-α1 promotes neurite outgrowth in the presence of Wnt-3a by down-regulating its canonical and non-canonical activities. Interestingly, treatment of PC12 cells with Wnt-5a, which formed a complex with NF-α1, induced neurite outgrowth that was enhanced by treatment with the combination of Wnt-5a, NGF, and NF-α1. These effects of NF-α1 on Wnt 3a's and Wnt 5a's regulation of neurite outgrowth in PC12 cells were also demonstrated in primary cultures of mouse cortical neurons. In addition, we showed in PC12 cells that NF-α1 acts by upregulating adenomatous polyposis coli (APC) accumulation at neurite tips, thereby providing positive and negative Wnt-3a/Wnt-5a mediated cues to modulate neurite outgrowth, a process important during neurodevelopment.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jane S W Huang
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Chen
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nir Skalka
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Sun J, Zhang G, Wang H, Shen H. [Screening of Highly Expressed CPEΔN Lung Cancer H1299 Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:340-4. [PMID: 26104889 PMCID: PMC5999908 DOI: 10.3779/j.issn.1009-3419.2015.06.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
背景与目的 N端截短的羧肽酶E(N-terminal truncated carboxypeptidase E, CPEΔN)是一个新的肿瘤转移相关蛋白。本研究旨在筛选高表达CPEΔN的H1299肺癌细胞株,为完成小鼠活体成像实验创造条件。 方法 构建CPEΔN的慢病毒表达载体。分别用CPEΔN慢病毒表达载体或对照慢病毒空载体转染H1299细胞,2 μg/mL的嘌呤霉素加压筛选。Western blot分析CPEΔN蛋白的表达,荧光素酶报告基因实验分析荧光素酶对底物的分解作用。 结果 当感染倍数(multiple of infection, MOI)是20时,慢病毒对H1299细胞的转染效率可以达到80%。CPEΔN高表达H1299细胞株(H1299-CPEΔN)和对照慢病毒载体表达H1299细胞株(H1299-control)中CPEΔN蛋白的表达量为4:1。H1299-CPEΔN和H1299-control均能够有效分解荧光素酶底物,可以满足活体成像实验的需求。 结论 筛选出高表达CPEΔN的H1299肺癌细胞株,为活体成像实验的开展创造了条件,也为进一步解释CPEΔN促进肿瘤转移的分子机制奠定了基础。
Collapse
Affiliation(s)
- Jing Sun
- Biotherapy Research Center, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Guirong Zhang
- Biotherapy Research Center, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Hongyue Wang
- Biotherapy Research Center, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Hui Shen
- Biotherapy Research Center, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| |
Collapse
|
30
|
Liu A, Shao C, Jin G, Liu R, Hao J, Shao Z, Liu Q, Hu X. Downregulation of CPE regulates cell proliferation and chemosensitivity in pancreatic cancer. Tumour Biol 2014; 35:12459-65. [PMID: 25374060 DOI: 10.1007/s13277-014-2564-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common cancers worldwide and a leading cause of cancer-related death. Discovering novel targets is a key for its therapy. Carboxypeptidase E (CPE), a subtype of the pro-protein convertases, has been shown to be upregulated in many types of cancer, yet its function in PC remains elusive. The expressions of CPE in PC cell lines and cancer patients were investigated by Western blot and qRT-PCR. In PC cell line BX-pc-3, CPE was downregulated and its effect on cancer cell proliferation, migration, cisplatin chemosensitivity, and in vivo tumor growth was analyzed by Western blot, proliferation assay, invasion assay, and in vivo transplantation, respectively. The expression of nuclear factor-kappaB (NF-κB), a possible downstream target of CPE was examined by Western blot upon CPE regulation in PC cells, and the effects of inhibiting NF-κB on PC cell invasion and proliferation were examined. CPE was significantly upregulated in PC cell lines and tumor tissues. Proliferation and invasion assays indicated that downregulation of CPE inhibited cancer cell growth and migration and increased chemosensitivity to cisplatin. Inoculation of small interfering RNA (siRNA) transfected BX-pc-3 cells into null mice demonstrated that downregulation of CPE prevented tumor growth in vivo. NF-κB was directly regulated by CPE in pancreatic cancer, and siRNA-mediated inhibition of NF-κB exerted similar anti-tumor effect as downregulating CPE. Taken together, our results demonstrate that CPE plays an important role in pancreatic cancer. Inhibition of CPE may serve as a potential target for PC therapeutics.
Collapse
Affiliation(s)
- Anan Liu
- Department of Pancreatic Surgery, Changhai Hospital of Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Caspi M, Perry G, Skalka N, Meisel S, Firsow A, Amit M, Rosin-Arbesfeld R. Aldolase positively regulates of the canonical Wnt signaling pathway. Mol Cancer 2014; 13:164. [PMID: 24993527 PMCID: PMC4094682 DOI: 10.1186/1476-4598-13-164] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/20/2014] [Indexed: 11/10/2022] Open
Abstract
The Wnt signaling pathway is an evolutionary conserved system, having pivotal roles during animal development. When over-activated, this signaling pathway is involved in cancer initiation and progression. The canonical Wnt pathway regulates the stability of β-catenin primarily by a destruction complex containing a number of different proteins, including Glycogen synthase kinase 3β (GSK-3β) and Axin, that promote proteasomal degradation of β-catenin. As this signaling cascade is modified by various proteins, novel screens aimed at identifying new Wnt signaling regulators were conducted in our laboratory. One of the different genes that were identified as Wnt signaling activators was Aldolase C (ALDOC). Here we report that ALDOC, Aldolase A (ALDOA) and Aldolase B (ALDOB) activate Wnt signaling in a GSK-3β-dependent mechanism, by disrupting the GSK-3β-Axin interaction and targeting Axin to the dishevelled (Dvl)-induced signalosomes that positively regulate the Wnt pathway thus placing the Aldolase proteins as novel Wnt signaling regulators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty School of Medicine, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
32
|
Li HD, Menon R, Omenn GS, Guan Y. The emerging era of genomic data integration for analyzing splice isoform function. Trends Genet 2014; 30:340-7. [PMID: 24951248 DOI: 10.1016/j.tig.2014.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 01/17/2023]
Abstract
The vast majority of multi-exon genes in humans undergo alternative splicing, which greatly increases the functional diversity of protein species. Predicting functions at the isoform level is essential to further our understanding of developmental abnormalities and cancers, which frequently exhibit aberrant splicing and dysregulation of isoform expression. However, determination of isoform function is very difficult, and efforts to predict isoform function have been limited in the functional genomics field. Deep sequencing of RNA now provides an unprecedented amount of expression data at the transcript level. We describe here emerging computational approaches that integrate such large-scale whole-transcriptome sequencing (RNA-seq) data for predicting the functions of alternatively spliced isoforms, and we discuss their applications in developmental and cancer biology. We outline future directions for isoform function prediction, emphasizing the need for heterogeneous genomic data integration and tissue-specific, dynamic isoform-level network modeling, which will allow the field to realize its full potential.
Collapse
Affiliation(s)
- Hong-Dong Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, MI, USA; Department of Electrical Engineering and Computer Science, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Cheng Y, Cawley NX, Loh YP. Carboxypeptidase E (NF-α1): a new trophic factor in neuroprotection. Neurosci Bull 2014; 30:692-6. [PMID: 24691800 DOI: 10.1007/s12264-013-1430-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/15/2022] Open
Abstract
Carboxypeptidase E (CPE) is a prohormone-processing enzyme and sorting receptor that functions intracellularly. However, recent studies have demonstrated that CPE acts as a trophic factor extracellularly to up-regulate the expression of a pro-survival gene. This mini-review summarizes the roles of CPE in neuroprotection and the implications for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
34
|
Dovrat S, Caspi M, Zilberberg A, Lahav L, Firsow A, Gur H, Rosin-Arbesfeld R. 14-3-3 and β-catenin are secreted on extracellular vesicles to activate the oncogenic Wnt pathway. Mol Oncol 2014; 8:894-911. [PMID: 24721736 DOI: 10.1016/j.molonc.2014.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/12/2014] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation of the canonical Wnt signal transduction pathway is involved in a large number of human diseases. β-catenin, the key effector protein of the canonical Wnt pathway, functions in the nucleus with T-cell factor/lymphoid enhancer factor (TCF/LEF) to activate expression of Wnt target genes. Here we show that members of the 14-3-3 protein family bind disheveled-2 (Dvl-2) and glycogen synthase-3β (GSK-3β) to attenuate the interaction between GSK-3β and β-catenin. Importantly, 14-3-3 and β-catenin form "bleb-like" structures and are secreted via extracellular vesicles to induce Wnt signaling activity in target cells. Our data suggest a novel way of transducing the oncogenic Wnt signal in which β-catenin is regulated by 14-3-3ζ through the formation of "oncosomes" that contain both the 14-3-3 and β-catenin proteins.
Collapse
Affiliation(s)
- Shiri Dovrat
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Caspi
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alona Zilberberg
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lital Lahav
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anastasia Firsow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hila Gur
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rina Rosin-Arbesfeld
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
35
|
Cheng Y, Cawley NX, Loh YP. Carboxypeptidase E/NFα1: a new neurotrophic factor against oxidative stress-induced apoptotic cell death mediated by ERK and PI3-K/AKT pathways. PLoS One 2013; 8:e71578. [PMID: 23977080 PMCID: PMC3744492 DOI: 10.1371/journal.pone.0071578] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/07/2013] [Indexed: 12/23/2022] Open
Abstract
Mice lacking Carboxypeptidase E (CPE) exhibit degeneration of hippocampal neurons caused by stress at weaning while over-expression of CPE in hippocampal neurons protect them against hydrogen peroxide-induced cell death. Here we demonstrate that CPE acts as an extracellular trophic factor to protect neurons. Rat hippocampal neurons pretreated with purified CPE protected the cells against hydrogen peroxide-, staurosporine- and glutamate-induced cell death. This protection was observed even when hippocampal neurons were treated with an enzymatically inactive mutant CPE or with CPE in the presence of its inhibitor, GEMSA. Purified CPE added to the culture medium rescued CPE knock-out hippocampal neurons from cell death. Both ERK and AKT were phosphorylated within 15 min after CPE treatment of hippocampal neurons and, using specific inhibitors, both signaling pathways were shown to be required for the neuroprotective effect. The expression of the anti-apoptotic protein, B-cell lymphoma 2 (BCL-2), was up-regulated after hippocampal neurons were treated with CPE. Furthermore, hydrogen peroxide induced down-regulation of BCL-2 protein and subsequent activation of caspase-3 were inhibited by CPE treatment. Thus, this study has identified CPE as a new neurotrophic factor that can protect neurons against degeneration through the activation of ERK and AKT signaling pathways to up-regulate expression of BCL-2.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Murthy SRK, Dupart E, Al-Sweel N, Chen A, Cawley NX, Loh YP. Carboxypeptidase E promotes cancer cell survival, but inhibits migration and invasion. Cancer Lett 2013; 341:204-13. [PMID: 23941827 DOI: 10.1016/j.canlet.2013.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 01/30/2023]
Abstract
Carboxypeptidase E (CPE), a prohormone processing enzyme is highly expressed and secreted from (neuro)endocrine tumors and gliomas, and has been implicated in cancer progression by promoting tumor growth. Our study demonstrates that secreted or exogenously applied CPE promotes survival of pheochromocytoma (PC12) and hepatocellular carcinoma (MHCC97H) cells under nutrient starvation and hypoxic conditions, but had no effect on their proliferation. CPE also reduced migration and invasion of fibrosarcoma (HT1080) cells. We show that CPE treatment mediates survival of MHCC97H cells during metabolic stress by up-regulating the expression of anti-apoptotic protein BCL-2, and other pro-survival genes, via activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Saravana R K Murthy
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Evan Dupart
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Najla Al-Sweel
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Alexander Chen
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Niamh X Cawley
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892. USA
| |
Collapse
|
37
|
Overexpression of CPE-ΔN predicts poor prognosis in colorectal cancer patients. Tumour Biol 2013; 34:3691-9. [PMID: 23852859 DOI: 10.1007/s13277-013-0952-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022] Open
Abstract
Carboxypeptidase E (CPE) is one of the most important carboxypeptidases involved in biosynthesis of numerous peptide hormones and neurotransmitters and has an important role in endocrine regulation. A splice variant of CPE (CPE-ΔN) has been detected and the mechanism of CPE-ΔN action in tumorigenesis has been studied in many different cancers. The aim of this study was to examine CPE-ΔN expression in human colorectal cancer (CRC) and to evaluate its possible use as a potential prognostic marker. Two hundred nineteen primary colorectal tumors and corresponding normal tissues were included in the study. We have analyzed CPE-ΔN isoform expression by qRT-PCR and Western blot in 219 CRC patients. Correlations between CPE-ΔN mRNA expression and clinicopathological variables were determined with chi-square tests. Survival probabilities were determined using Kaplan-Meier analysis, and univariate and multivariate analyses of the prognostic factors were performed with a Cox regression model. Our results show that CPE-ΔN is overexpressed in colorectal tumor tissue and that high CPE-ΔN mRNA expression is closely correlated with tumor differentiation, pT classification, pN classification, tumor recurrence, and lymph node metastasis (P = 0.042, 0.036, 0.031, 0.006, and 0.008, respectively). However, no correlation was observed between CPE-ΔN expression and age, gender, tumor localization, gross features, and the tumor size. In addition, patients with high CPE-ΔN expression had a significantly shorter survival (P < 0.001, logrank test). Tumor differentiation, gross feature, pT classification, pN classification, tumor recurrence, lymph node metastasis, and CPE-ΔN status were significantly associated with poor prognosis after performing a univariate Cox survival analysis. High CPE-ΔN expression was also identified as an independent prognostic factor using a multivariate analysis (P = 0.011). Based on these results, we can conclude that CPE-ΔN expression might be a potential prognostic marker for colorectal cancer patients.
Collapse
|
38
|
Omenn GS, Menon R, Zhang Y. Innovations in proteomic profiling of cancers: alternative splice variants as a new class of cancer biomarker candidates and bridging of proteomics with structural biology. J Proteomics 2013; 90:28-37. [PMID: 23603631 DOI: 10.1016/j.jprot.2013.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 01/05/2023]
Abstract
Alternative splicing allows a single gene to generate multiple RNA transcripts which can be translated into functionally diverse protein isoforms. Current knowledge of splicing is derived mainly from RNA transcripts, with very little known about the expression level, 3D structures, and functional differences of the proteins. Splicing is a remarkable phenomenon of molecular and biological evolution. Studies which simply report up-regulation or down-regulation of protein or mRNA expression are confounded by the effects of mixtures of these isoforms. Besides understanding the net biological effects of the mixtures, we may be able to develop biomarker tests based on the observable differential expression of particular splice variants or combinations of splice variants in specific disease states. Here we review our work on differential expression of splice variant proteins in cancers and the feasibility of integrating proteomic analysis with structure-based conformational predictions of the differences between such isoforms.
Collapse
Affiliation(s)
- Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2218, USA.
| | | | | |
Collapse
|
39
|
Abstract
Wnt signal transduction is crucial for embryonic development and tissue homeostasis in multicellular animals. Hyperactivation of the Wnt pathway drives tumor formation, yet activation of the Wnt pathway in stem cells holds great promise for injury repair and regeneration. Between 27 June and 1 July 2012, scientists from all over the globe gathered in the beachfront town of Egmond aan Zee in the Netherlands to celebrate the 30th anniversary of this blossoming and exciting field. The latest advances and breakthroughs were discussed at the aptly named European Molecular Biology Organization conference 30 Years of Wnt Signalling. Many presenters discussed unpublished data, a hallmark of past and hopefully future Wnt meetings. This Meeting Report summarizes some of the highlights of this conference, including the presentation of the long-awaited crystal structure of a Wnt protein bound to its receptor and the identification of exciting new possibilities for targeting the pathway in treating disease.
Collapse
Affiliation(s)
- Folkert Verkaar
- Division of Medicinal Chemistry, VU University, De Boelelaan 1083, 1081 HV Amsterdam, Netherlands
| | | | | |
Collapse
|