1
|
Sun M, Ji Y, Zhang G, Li Y, Dong F, Wu T. Posttranslational modifications of E2F family members in the physiological state and in cancer: Roles, mechanisms and therapeutic targets. Biomed Pharmacother 2024; 178:117147. [PMID: 39053422 DOI: 10.1016/j.biopha.2024.117147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
The E2F transcription factor family, whose members are encoded by the E2F1-E2F8 genes, plays pivotal roles in the cell cycle, apoptosis, metabolism, stemness, metastasis, aging, angiogenesis, tumor promotion or suppression, and other biological processes. The activity of E2Fs is regulated at multiple levels, with posttranslational modifications being an important regulatory mechanism. There are numerous types of posttranslational modifications, among which phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, and poly(ADP-ribosyl)ation are the most commonly studied in the context of the E2F family. Posttranslational modifications of E2F family proteins regulate their biological activity, stability, localization, and interactions with other biomolecules, affecting cell proliferation, apoptosis, DNA damage, etc., and thereby playing roles in physiological and pathological processes. Notably, these modifications do not always act alone but rather form an interactive regulatory network. Currently, several drugs targeting posttranslational modifications are being studied or clinically applied, in which the proteolysis-targeting chimera and molecular glue can target E2Fs. This review aims to summarize the roles and regulatory mechanisms of different PTMs of E2F family members in the physiological state and in cancer and to briefly discuss their clinical significance and potential therapeutic use.
Collapse
Affiliation(s)
- Mingyang Sun
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Yitong Ji
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Guojun Zhang
- Department of Physiology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China
| | - Yang Li
- Department of Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fengming Dong
- Department of Urology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Tianyi Wu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Sun S, Cheng Y, Hou W, Yan Y, Meng T, Li H, Xiao N. Etoposide-induced SENP8 confers a feed-back drug resistance on acute lymphoblastic leukemia cells. Biochem Biophys Rep 2024; 37:101650. [PMID: 38314144 PMCID: PMC10837060 DOI: 10.1016/j.bbrep.2024.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Chemotherapy is the most common treatment for acute lymphoblastic leukemia (ALL). However, many ALL patients eventually develop relapse and treating relapsed ALL has always been challenging. Therefore, exploring the resistance mechanism of chemotherapeutic drugs and proposing feasible intervention strategies are of great significance for ALL treatment. Here, we show that SENP8, whose coding protein is an important deNEDDylase targeting the substrate for deNEDDylation, is highly expressed in relapsed ALL specimens. Interestingly, overexpressing SENP8 specifically reduces the chemosensitivity of ALL cells to etoposide (VP-16) and significantly alleviates the proapoptotic effect of VP-16 on ALL cells. By contrast, NEDDylation inhibition reduces the chemosensitivity of ALL cells to VP-16. Furthermore, VP-16 induces SENP8 accumulation and the instability of MDM2 as well as the stabilization of p53 in ALL cells, and SENP8 knockdown can sensitize ALL cells to VP-16. Our study reveals a novel function of SENP8 in ALL and that VP-16-induced SENP8 confers a feed-back drug resistance on ALL cells, suggesting a possibility of overcoming the chemotherapeutic resistance to VP-16 via targeting SENP8.
Collapse
Affiliation(s)
- Shuzhang Sun
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixuan Cheng
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanxin Hou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinjie Yan
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Meng
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hegen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Xiao
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Kublanovsky M, Ulu GT, Weirich S, Levy N, Feldman M, Jeltsch A, Levy D. Methylation of the transcription factor E2F1 by SETD6 regulates SETD6 expression via a positive feedback mechanism. J Biol Chem 2023; 299:105236. [PMID: 37690684 PMCID: PMC10551896 DOI: 10.1016/j.jbc.2023.105236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
The protein lysine methyltransferase SET domain-containing protein 6 (SETD6) has been shown to influence different cellular activities and to be critically involved in the regulation of diverse developmental and pathological processes. However, the upstream signals that regulate the mRNA expression of SETD6 are not known. Bioinformatic analysis revealed that the SETD6 promoter has a binding site for the transcription factor E2F1. Using various experimental approaches, we show that E2F1 binds to the SETD6 promoter and regulates SETD6 mRNA expression. Our further observation that this phenomenon is SETD6 dependent suggested that SETD6 and E2F1 are linked. We next demonstrate that SETD6 monomethylates E2F1 specifically at K117 in vitro and in cells. Finally, we show that E2F1 methylation at K117 positively regulates the expression level of SETD6 mRNA. Depletion of SETD6 or overexpression of E2F1 K117R mutant, which cannot be methylated by SETD6, reverses the effect. Taken together, our data provide evidence for a positive feedback mechanism, which regulates the expression of SETD6 by E2F1 in a SETD6 methylation-dependent manner, and highlight the importance of protein lysine methyltransferases and lysine methylation signaling in the regulation of gene transcription.
Collapse
Affiliation(s)
- Margarita Kublanovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Gizem T Ulu
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Nurit Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Michal Feldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| | - Dan Levy
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
5
|
Gomarasca M, Lombardi G, Maroni P. SUMOylation and NEDDylation in Primary and Metastatic Cancers to Bone. Front Cell Dev Biol 2022; 10:889002. [PMID: 35465332 PMCID: PMC9020829 DOI: 10.3389/fcell.2022.889002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications comprise series of enzymatically-driven chemical modifications, virtually involving the entire cell proteome, that affect the fate of a target protein and, in turn, cell activity. Different classes of modifications can be established ranging from phosphorylation, glycosylation, ubiquitination, acetylation, methylation, lipidation and their inverse reactions. Among these, SUMOylation and NEDDylation are ubiquitin-like multi-enzymatic processes that determine the bound of SUMOs and NEDD8 labels, respectively, on defined amino acidic residues of a specific protein and regulate protein function. As fate-determinants of several effectors and mediators, SUMOylation and NEDDylation play relevant roles in many aspects of tumor cell biology. Bone represents a preferential site of metastasis for solid tumors (e.g., breast and prostate cancers) and the primary site of primitive tumors (e.g., osteosarcoma, chondrosarcoma). Deregulation of SUMOylation and NEDDylation affects different aspects of neoplastic transformation and evolution such as epithelial-mesenchymal transition, adaptation to hypoxia, expression and action of tumor suppressors and oncogenic mediators, and drug resistance. Thereby, they represent potential therapeutic targets. This narrative review aims at describing the involvement and regulation of SUMOylation and NEDDylation in tumor biology, with a specific focus on primary and secondary bone tumors, and to summarize and highlight their potentiality in diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Polska
- *Correspondence: Giovanni Lombardi,
| | - Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
6
|
Zhao M, Zhang Y, Yang X, Jin J, Shen Z, Feng X, Zou T, Deng L, Cheng D, Zhang X, Qin C, Niu C, Ye Z, Zhang X, He J, Hou C, Li G, Han G, Cheng Q, Wang Q, Wei L, Dong J, Zhang J. Myeloid neddylation targets IRF7 and promotes host innate immunity against RNA viruses. PLoS Pathog 2021; 17:e1009901. [PMID: 34506605 PMCID: PMC8432861 DOI: 10.1371/journal.ppat.1009901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Neddylation, an important type of post-translational modification, has been implicated in innate and adapted immunity. But the role of neddylation in innate immune response against RNA viruses remains elusive. Here we report that neddylation promotes RNA virus-induced type I IFN production, especially IFN-α. More importantly, myeloid deficiency of UBA3 or NEDD8 renders mice less resistant to RNA virus infection. Neddylation is essential for RNA virus-triggered activation of Ifna gene promoters. Further exploration has revealed that mammalian IRF7undergoes neddylation, which is enhanced after RNA virus infection. Even though neddylation blockade does not hinder RNA virus-triggered IRF7 expression, IRF7 mutant defective in neddylation exhibits reduced ability to activate Ifna gene promoters. Neddylation blockade impedes RNA virus-induced IRF7 nuclear translocation without hindering its phosphorylation and dimerization with IRF3. By contrast, IRF7 mutant defective in neddylation shows enhanced dimerization with IRF5, an Ifna repressor when interacting with IRF7. In conclusion, our data demonstrate that myeloid neddylation contributes to host anti-viral innate immunity through targeting IRF7 and promoting its transcriptional activity. With the features of high mutation rates and fast propagation, RNA viruses remain a great challenge for the control and prevention of epidemic. Better understanding of the molecular mechanisms involved in host innate immunity against RNA viruses will facilitate the development of anti-viral drugs and vaccines. Neddylation has been implicated in innate and adapted immunity. But the role of neddylation in RNA virus-triggered type I IFN production remains elusive. Here, using mouse models with myeloid deficiency of UBA3 or NEDD8, we report for the first time that neddylation contributes to innate immunity against RNA viruses in mammals. Neddylation is indispensable for RNA virus-induced IFN-α production although its role in IFN-β production is much blunted in macrophages. In mechanism, neddylation directly targets IRF7 and enhances its transcriptional activity through, at least partially, promoting its nuclear translocation and preventing its dimerization with IRF5, an Ifna repressor when interacting with IRF7. Our study provides insight into the regulation of IRF7 and innate immune signaling.
Collapse
Affiliation(s)
- Min Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaolin Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiayang Jin
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuo Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoyao Feng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Daohai Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Cheng Qin
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhenjie Ye
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xueying Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jia He
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qingyang Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Wei
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
- * E-mail: (LW); (JD); (JZ)
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (LW); (JD); (JZ)
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- * E-mail: (LW); (JD); (JZ)
| |
Collapse
|
7
|
Qian Q, Ma Q, Wang B, Qian Q, Zhao C, Feng F, Dong X. MicroRNA-205-5p targets E2F1 to promote autophagy and inhibit pulmonary fibrosis in silicosis through impairing SKP2-mediated Beclin1 ubiquitination. J Cell Mol Med 2021; 25:9214-9227. [PMID: 34428336 PMCID: PMC8500965 DOI: 10.1111/jcmm.16825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Silicosis is an occupational disease characterized by extensive pulmonary fibrosis, and the underlying pathological process remains uncertain. Herein, we explored the molecular mechanism by which microRNA‐205‐5p (miR‐205‐5p) affects the autophagy of alveolar macrophages (AMs) and pulmonary fibrosis in mice with silicosis through the E2F transcription factor 1 (E2F1)/S‐phase kinase‐associated protein 2 (SKP2)/Beclin1 axis. Alveolar macrophages (MH‐S cells) were exposed to crystalline silica (CS) to develop an in vitro model, and mice were treated with CS to establish an in vivo model. Decreased Beclin1 and increased SKP2 and E2F1 were identified in mice with silicosis. We silenced or overexpressed miR‐205‐5p, E2F1, SKP2 and Beclin1 to investigate their potential roles in pulmonary fibrosis in vivo and autophagy in vitro. Recombinant adenovirus mRFP‐GFP‐LC3 was transduced into the MH‐S cells to assay autophagic flow. Knocking down Beclin1 promoted pulmonary fibrosis and suppressed the autophagy. Co‐immunoprecipitation and ubiquitination assays suggested that SKP2 induced K48‐linked ubiquitination of Beclin1. Furthermore, chromatin immunoprecipitation‐PCR revealed the site where E2F1 bound to the SKP2 promoter between 1638 bp and 1645 bp. As shown by dual‐luciferase reporter gene assay, the transfection with miR‐205‐5p mimic inhibited the luciferase activity of the wild‐type E2F1 3′untranslated region, suggesting that miR‐205‐5p targeted E2F1. Additionally, miR‐205‐5p overexpression increased autophagy and reduced the pulmonary fibrosis, while overexpression of E2F1 or SKP2 or inhibition of Beclin1 could annul this effect. The current study elucidated that miR‐205‐5p targeted E2F1, thereby inhibiting SKP2‐mediated Beclin1 ubiquitination to promote macrophage autophagy and inhibit pulmonary fibrosis in mice with silicosis.
Collapse
Affiliation(s)
- Qingzeng Qian
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Qinghua Ma
- Department of Preventive Health, The Third People's Hospital of Xiangcheng District in Suzhou, Suzhou, China
| | - Bin Wang
- Department of Pediatrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Qingqiang Qian
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Changsong Zhao
- Department of Emergency, Tangshan Hospital of Traditional Chinese Medicine, Tangshan, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaona Dong
- Department of Respiratory Medicine, Tangshan People's Hospital, Tangshan, China
| |
Collapse
|
8
|
Kim Y, Park JB, Fukuda J, Watanabe M, Chun YS. The Effect of Neddylation Blockade on Slug-Dependent Cancer Cell Migration Is Regulated by p53 Mutation Status. Cancers (Basel) 2021; 13:cancers13030531. [PMID: 33573293 PMCID: PMC7866814 DOI: 10.3390/cancers13030531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Neddylation is a process in which the small ubiquitin-like molecule NEDD8 is covalently conjugated to target proteins by sequential enzymatic reactions. Because neddylation plays critical roles in regulating cancer growth and migration, it is emerging as an effective therapeutic target. The major tumor suppressor protein p53 reduces cancer cell migration and is inhibited by neddylation. As p53 is lost or mutated in 50% of various cancer types, this study attempted to investigate how neddylation affects cancer cell migration according to p53 status. Neddylation blockade reduced or caused no change in migration of wild type or mutant p53 cancer cell lines. In contrast, neddylation blockade induced migration of p53-null cancer cell lines. These results were mediated by the differential effect of neddylation blockade on the epithelial–mesenchymal transition activator Slug according to p53 status. Thus, the p53 status of cancer cells should be considered when developing neddylation-targeted anticancer drugs. Abstract The tumor suppressor protein p53 is frequently inactivated in human malignancies, in which it is associated with cancer aggressiveness and metastasis. Because p53 is heavily involved in epithelial–mesenchymal transition (EMT), a primary step in cell migration, p53 regulation is important for preventing cancer metastasis. p53 function can be modulated by diverse post-translational modifications including neddylation, a reversible process that conjugates NEDD8 to target proteins and inhibits the transcriptional activity of p53. However, the role of p53 in cancer migration by neddylation has not been fully elucidated. In this study, we reported that neddylation blockade induces cell migration depending on p53 status, specifically via the EMT-promoting transcription factor Slug. In cancer cell lines expressing wild type p53, neddylation blockade increased the transcriptional activity of p53 and expression of its downstream genes p21 and MDM2, eventually promoting proteasomal degradation of Slug. In the absence of p53, neddylation blockade increased cell migration by activating the PI3K/Akt/mTOR/Slug signaling axis. Because mutant p53 was transcriptionally inactivated but maintained the ability to bind to Slug, neddylation blockade did not affect the migration of cells expressing mutant p53. Our findings highlight how the p53 expression status influences neddylation-mediated cell migration in multiple cancer cell lines via Slug.
Collapse
Affiliation(s)
- Yelee Kim
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.K.); (J.B.P.)
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun Bum Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.K.); (J.B.P.)
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan;
| | - Masatoshi Watanabe
- Oncologic Pathology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Yang-Sook Chun
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.K.); (J.B.P.)
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-740-8909
| |
Collapse
|
9
|
Li J, Zou J, Littlejohn R, Liu J, Su H. Neddylation, an Emerging Mechanism Regulating Cardiac Development and Function. Front Physiol 2020; 11:612927. [PMID: 33391028 PMCID: PMC7773599 DOI: 10.3389/fphys.2020.612927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in protein quality control have been increasingly recognized as pathogenic factors in the development of heart failure, a persistent devastating disease lacking efficacious therapies. Ubiquitin and ubiquitin-like proteins, a family of post-translational modifying polypeptides, play important roles in controlling protein quality by maintaining the stability and functional diversity of the proteome. NEDD8 (neural precursor cell expressed, developmentally downregulated 8), a small ubiquitin-like protein, was discovered two decades ago but until recently the biological significance of NEDD8 modifications (neddylation) in the heart has not been appreciated. In this review, we summarize the current knowledge of the biology of neddylation, highlighting several mechanisms by which neddylation regulates the function of its downstream targets, and discuss the expanding roles for neddylation in cardiac physiology and disease, with an emphasis on cardiac protein quality control. Finally, we outline challenges linked to the study of neddylation in health and disease.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rodney Littlejohn
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
10
|
Ertosun MG, DİlmaÇ S, Hapİl FZ, TanriÖver G, KÖksoy S, ÖzeŞ ON. Regulation of E2F1 activity via PKA-mediated phosphorylations. ACTA ACUST UNITED AC 2020; 44:215-229. [PMID: 33110360 PMCID: PMC7585165 DOI: 10.3906/biy-2003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/10/2020] [Indexed: 11/06/2022]
Abstract
E2F1 becomes activated during the G1 phase of the cell cycle, and posttranslational modifications modulate its activity. Activation of G-protein coupled receptors (GPCR) by many ligands induces the activation of adenylate cyclases and the production of cAMP, which activates the PKA enzyme. Activated PKA elicits its biological effect by phosphorylating the target proteins containing serine or threonine amino acids in the RxxS/T motif. Since PKA activation negatively regulates cell proliferation, we thought that activated PKA would negatively affect the activity of E2F1. In line with this, when we analyzed the amino acid sequence of E2F1, we found 3 hypothetical consensus PKA phosphorylation sites located at 127-130, 232-235, and 361-364 positions and RYET, RLLS, and RMGS sequences. After showing the binding and phosphorylation of E2F1 by PKA, we converted the codons of Threonine-130, Serine-235, and Serine-364 to Alanine and Glutamic acid codons on the eukaryotic E2F1 expression vector we had previously created. We confirmed the phosphorylation of T130, S235, and S364 by developing monoclonal antibodies against phospho-specific forms of these sites and showed that their phosphorylation is cell cycle-dependent. According to our results, PKA-mediated phosphorylation of E2F1 by PKA inhibits proliferation and glucose uptake and induces caspase-3 activation and senescence.
Collapse
Affiliation(s)
- Mustafa Gökhan Ertosun
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Sayra DİlmaÇ
- Department of Histology and Embriology, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Fatma Zehra Hapİl
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Gamze TanriÖver
- Department of Histology and Embriology, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | - Sadi KÖksoy
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz University, Antalya Turkey
| | | |
Collapse
|
11
|
Zou T, Zhang J. Diverse and pivotal roles of neddylation in metabolism and immunity. FEBS J 2020; 288:3884-3912. [PMID: 33025631 DOI: 10.1111/febs.15584] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Neddylation is one type of protein post-translational modification by conjugating a ubiquitin-like protein neural precursor cell-expressed developmentally downregulated protein 8 to substrate proteins via a cascade involving E1, E2, and E3 enzymes. The best-characterized substrates of neddylation are cullins, essential components of cullin-RING E3 ubiquitin-ligase complexes. The discovery of noncullin neddylation targets indicates that neddylation may have diverse biological functions. Indeed, neddylation has been implicated in various cellular processes including cell cycle progression, metabolism, immunity, and tumorigenesis. Here, we summarized the reported neddylation substrates and also discuss the functions of neddylation in the immune system and metabolism.
Collapse
Affiliation(s)
- Tao Zou
- Beijing Institute of Brain Sciences, China
| | | |
Collapse
|
12
|
Bailly AP, Perrin A, Serrano-Macia M, Maghames C, Leidecker O, Trauchessec H, Martinez-Chantar ML, Gartner A, Xirodimas DP. The Balance between Mono- and NEDD8-Chains Controlled by NEDP1 upon DNA Damage Is a Regulatory Module of the HSP70 ATPase Activity. Cell Rep 2020; 29:212-224.e8. [PMID: 31577950 PMCID: PMC6899524 DOI: 10.1016/j.celrep.2019.08.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/27/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin and ubiquitin-like chains are finely balanced by conjugating and de-conjugating enzymes. Alterations in this balance trigger the response to stress conditions and are often observed in pathologies. How such changes are detected is not well understood. We identify the HSP70 chaperone as a sensor of changes in the balance between mono- and poly-NEDDylation. Upon DNA damage, the induction of the de-NEDDylating enzyme NEDP1 restricts the formation of NEDD8 chains, mainly through lysines K11/K48. This promotes APAF1 oligomerization and apoptosis induction, a step that requires the HSP70 ATPase activity. HSP70 binds to NEDD8, and, in vitro, the conversion of NEDD8 chains into mono-NEDD8 stimulates HSP70 ATPase activity. This effect is independent of NEDD8 conjugation onto substrates. The study indicates that the NEDD8 cycle is a regulatory module of HSP70 function. These findings may be important in tumorigenesis, as we find decreased NEDP1 levels in hepatocellular carcinoma with concomitant accumulation of NEDD8 conjugates. Restriction of NEDD8 chains by NEDP1 is required for DNA damage-induced apoptosis The HSP70 chaperone is a sensor of the balance between mono- and NEDD8 chains Mono-NEDD8 stimulates HSP70 activity, which allows the formation of the apoptosome NEDP1 levels are downregulated in mouse hepatocellular carcinoma
Collapse
Affiliation(s)
- Aymeric P Bailly
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France.
| | - Aurelien Perrin
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Marina Serrano-Macia
- Liver Disease Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Chantal Maghames
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Orsolya Leidecker
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Helene Trauchessec
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - M L Martinez-Chantar
- Liver Disease Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
13
|
Zhao H, Iqbal NJ, Sukrithan V, Nicholas C, Xue Y, Yu C, Locker J, Zou J, Schwartz EL, Zhu L. Targeted Inhibition of the E3 Ligase SCF Skp2/Cks1 Has Antitumor Activity in RB1-Deficient Human and Mouse Small-Cell Lung Cancer. Cancer Res 2020; 80:2355-2367. [PMID: 32265224 DOI: 10.1158/0008-5472.can-19-2400] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 01/13/2023]
Abstract
The RB1 tumor suppressor gene is mutated in highly aggressive tumors including small-cell lung cancer (SCLC), where its loss, along with TP53, is required and sufficient for tumorigenesis. While RB1-mutant cells fail to arrest at G1-S in response to cell-cycle restriction point signals, this information has not led to effective strategies to treat RB1-deficient tumors, as it is challenging to develop targeted drugs for tumors that are driven by the loss of gene function. Our group previously identified Skp2, a substrate recruiting subunit of the SCF-Skp2 E3 ubiquitin ligase, as an early repression target of pRb whose knockout blocked tumorigenesis in Rb1-deficient prostate and pituitary tumors. Here we used genetic mouse models to demonstrate that deletion of Skp2 completely blocked the formation of SCLC in Rb1/Trp53-knockout mice (RP mice). Skp2 KO caused an increased accumulation of the Skp2-degradation target p27, a cyclin-dependent kinase inhibitor, which was confirmed as the mechanism of protection by using knock-in of a mutant p27 that was unable to bind to Skp2. Building on the observed synthetic lethality between Rb1 and Skp2, we found that small molecules that bind/inhibit Skp2 have in vivo antitumor activity in mouse tumors and human patient-derived xenograft models of SCLC. Using genetic and pharmacologic approaches, antitumor activity was seen with Skp2 loss or inhibition in established SCLC primary lung tumors, in liver metastases, and in chemotherapy-resistant tumors. Our data highlight a downstream actionable target in RB1-deficient cancers, for which there are currently no targeted therapies available. SIGNIFICANCE: There are no effective therapies for SCLC. The identification of an actionable target downstream of RB1, inactivated in SCLC and other advanced tumors, could have a broad impact on its treatment.
Collapse
Affiliation(s)
- Hongling Zhao
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Niloy J Iqbal
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Vineeth Sukrithan
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, New York
| | - Cari Nicholas
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Yingjiao Xue
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Cindy Yu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juntao Zou
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Edward L Schwartz
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, New York. .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Liang Zhu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York. .,Department of Ophthalmology & Visual Sciences, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
14
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
15
|
Xiang JW, Zhang L, Tang X, Xiao Y, Liu Y, Wang L, Liu F, Gong XD, Fu JL, Yang L, Luo Z, Li DWC. Differential Expression of Seven De-sumoylation Enzymes (SENPs) in Major Ocular Tissues of Mouse Eye. Curr Mol Med 2019; 18:533-541. [PMID: 30636607 DOI: 10.2174/1566524019666190112132103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE Protein Sumoylation is one of the most important and prevalent posttranscriptional modification. Increasing evidence have shown that the SENPs (sentrin/SUMOspecific proteases) are critical for steady-state levels of SUMO modification of target proteins, and protein de-sumoylation modulates a great diversity of biological processes including transcription, development, differentiation, neuroprotection, as well as pathogenesis. In the vertebrate eye, we and others have previously shown that sumoylation participated in the differentiation of major ocular tissues including retina and lens. However, the biological significance of seven SENP enzymes: SENP1 to 3 and SENP5 to 8 have not be fully investigated in the ocular tissues. METHODS The 5 major ocular cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) containing fetal bovine serum (FBS) or rabbit serum (RBS) and 1% Penicillin- Streptomycin. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS At the mRNA level, all SENPs were highly expressed in retina, and much reduced expression patterns in cornea, lens epithelium and lens fiber. At the protein level, SENP1 to -3, and SENP6 were highly abundant in cornea, while SENP5, SENP7 and SENP8 were enriched in retina, and these SENPs were relatively less abundant in lens tissues. CONCLUSION Our results for the first time established the differentiation expression patterns of the 7 de-sumoylation enzymes (SENPs), which provides a basis for further investigation of protein desumoylation functions in vertebrate eye.
Collapse
Affiliation(s)
- Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiangcheng Tang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yunfei Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Fangyuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhongwen Luo
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| |
Collapse
|
16
|
Chen JJ, Schmucker LN, Visco DP. Identifying de-NEDDylation inhibitors: Virtual high-throughput screens targeting SENP8. Chem Biol Drug Des 2019; 93:590-604. [PMID: 30560590 DOI: 10.1111/cbdd.13457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/16/2022]
Abstract
Protein modification can have far-reaching effects. NEDDylation, a protein modification process with the protein NEDD8, stabilizes and modifies how the targeted protein interacts with other proteins. Its role in system regulation makes it a prime therapeutic target, and virtual high-throughput screening has already identified new NEDD8 inhibitors. SENP8 matures the NEDD8 proenzyme into the active form and regulates NEDDylation by removing NEDD8 from over-NEDDylated proteins. In this work, SENP8 inhibitor candidates were identified in two rounds of virtual high-throughput screening. Of the ten candidates identified in the first round of screening, four were active in validation experiments to yield an experimental hit rate of 40%. Of the five candidates identified in the second round of screening, one was active in validation experiments to yield an experimental hit rate of 20%. Results indicate virtual high-throughput screening improved hit rates over traditional high-throughput screening. The SENP8 inhibitor candidates can be used to interrogate the NEDDylation regulation mechanism.
Collapse
Affiliation(s)
| | - Lyndsey N Schmucker
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH
| | - Donald P Visco
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH
| |
Collapse
|
17
|
The E3 ligase C-CBL inhibits cancer cell migration by neddylating the proto-oncogene c-Src. Oncogene 2018; 37:5552-5568. [DOI: 10.1038/s41388-018-0354-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 04/13/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
|
18
|
Inhibition of neddylation facilitates cell migration through enhanced phosphorylation of caveolin-1 in PC3 and U373MG cells. BMC Cancer 2018; 18:30. [PMID: 29301501 PMCID: PMC5755266 DOI: 10.1186/s12885-017-3942-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 12/19/2017] [Indexed: 11/26/2022] Open
Abstract
Background Protein neddylation is a post-translational modification by a covalent conjugation with the neural precursor cell expressed, developmentally downregulated 8 (NEDD8). Although this process has been reported to participate in diverse cellular signaling, little is known about its role in cancer cell migration. Given a recent proteomics report showing that NEDD8 is downregulated in prostate cancer tissues versus normal prostate tissues, we tested the possibility that neddylation plays a role in cancer evolution, and then tried to identify target proteins of the neddylation. Methods The neddylation process was inhibited by transfecting cancer cells with NEDD8-targeting siRNAs or by treating the cells with a NAE1 inhibitor MLN4924. Cell migration was evaluated by an in vitro wound-healing assay and a Transwell migration assay. His/NEDD8-conjugated proteins were pulled down with nickel-affinity beads under a denaturing condition, and identified by Western blotting. All data were processed using the Microsoft Excel program and analyzed statistically by two-sided, unpaired Student’s t-test. Results Caveolin-1, which plays a critical role in cell migration, was identified to be conjugated with NEDD8. When the neddylation was inhibited, the phosphorylation of caveolin-1 at Tyr14 was augmented in PC3 and U373MG cells, thereby leading to increased cell migration. Such consequences by neddylation inhibition were abolished in the presence of a Src family kinase inhibitor PP2. Conclusions NEDD8 seems to inhibit the Src-mediated phosphorylation of caveolin-1 by modifying the structure of caveolin-1 protein, which blocks the migration of cancer cells. Although the neddylation process is currently regarded as an emerging target for cancer therapy, our results suggest the possibility that the inhibition of neddylation could facilitate cancer invasion or metastasis at least in some types of cancers. Electronic supplementary material The online version of this article (doi: 10.1186/s12885-017-3942-9) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Dubrez L. Regulation of E2F1 Transcription Factor by Ubiquitin Conjugation. Int J Mol Sci 2017; 18:ijms18102188. [PMID: 29048367 PMCID: PMC5666869 DOI: 10.3390/ijms18102188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
Ubiquitination is a post-translational modification that defines the cellular fate of intracellular proteins. It can modify their stability, their activity, their subcellular location, and even their interacting pattern. This modification is a reversible event whose implementation is easy and fast. It contributes to the rapid adaptation of the cells to physiological intracellular variations and to intracellular or environmental stresses. E2F1 (E2 promoter binding factor 1) transcription factor is a potent cell cycle regulator. It displays contradictory functions able to regulate both cell proliferation and cell death. Its expression and activity are tightly regulated over the course of the cell cycle progression and in response to genotoxic stress. I discuss here the most recent evidence demonstrating the role of ubiquitination in E2F1’s regulation.
Collapse
Affiliation(s)
- Laurence Dubrez
- Université de Bourgogne Franche-Comté, LNC UMR1231, 21000 Dijon, France.
- Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, 21000 Dijon, France.
| |
Collapse
|
20
|
Guan J, Yu S, Zheng X. NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage. Protein Cell 2017; 9:365-379. [PMID: 28831681 PMCID: PMC5876183 DOI: 10.1007/s13238-017-0455-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/21/2017] [Indexed: 01/27/2023] Open
Abstract
NEDDylation has been shown to participate in the DNA damage pathway, but the substrates of neural precursor cell expressed developmentally downregulated 8 (NEDD8) and the roles of NEDDylation involved in the DNA damage response (DDR) are largely unknown. Translesion synthesis (TLS) is a damage-tolerance mechanism, in which RAD18/RAD6-mediated monoubiquitinated proliferating cell nuclear antigen (PCNA) promotes recruitment of polymerase η (polη) to bypass lesions. Here we identify PCNA as a substrate of NEDD8, and show that E3 ligase RAD18-catalyzed PCNA NEDDylation antagonizes its ubiquitination. In addition, NEDP1 acts as the deNEDDylase of PCNA, and NEDP1 deletion enhances PCNA NEDDylation but reduces its ubiquitination. In response to H2O2 stimulation, NEDP1 disassociates from PCNA and RAD18-dependent PCNA NEDDylation increases markedly after its ubiquitination. Impairment of NEDDylation by Ubc12 knockout enhances PCNA ubiquitination and promotes PCNA-polη interaction, while up-regulation of NEDDylation by NEDD8 overexpression or NEDP1 deletion reduces the excessive accumulation of ubiquitinated PCNA, thus inhibits PCNA-polη interaction and blocks polη foci formation. Moreover, Ubc12 knockout decreases cell sensitivity to H2O2-induced oxidative stress, but NEDP1 deletion aggravates this sensitivity. Collectively, our study elucidates the important role of NEDDylation in the DDR as a modulator of PCNA monoubiquitination and polη recruitment.
Collapse
Affiliation(s)
- Junhong Guan
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuyu Yu
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Glorian V, Allègre J, Berthelet J, Dumetier B, Boutanquoi PM, Droin N, Kayaci C, Cartier J, Gemble S, Marcion G, Gonzalez D, Boidot R, Garrido C, Michaud O, Solary E, Dubrez L. DNA damage and S phase-dependent E2F1 stabilization requires the cIAP1 E3-ubiquitin ligase and is associated with K63-poly-ubiquitination on lysine 161/164 residues. Cell Death Dis 2017; 8:e2816. [PMID: 28542143 PMCID: PMC5520736 DOI: 10.1038/cddis.2017.222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
The E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control. Importantly, E2F1 stabilization in response to etoposide-induced DNA damage or during the S phase of cell cycle, as revealed by cyclin A silencing, is associated with K63-poly-ubiquitinylation of E2F1 on lysine 161/164 residues and involves cIAP1. Our results reveal an additional level of regulation of the stability and the activity of E2F1 by a non-degradative K63-poly-ubiquitination and uncover a novel function for the E3-ubiquitin ligase cIAP1.
Collapse
Affiliation(s)
- Valérie Glorian
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Jennifer Allègre
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Jean Berthelet
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Baptiste Dumetier
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Pierre-Marie Boutanquoi
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | | | - Cémile Kayaci
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Jessy Cartier
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Simon Gemble
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Guillaume Marcion
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Daniel Gonzalez
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France.,Centre Georges-François Leclerc, Dijon, France
| | - Romain Boidot
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France.,Centre Georges-François Leclerc, Dijon, France
| | - Carmen Garrido
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Olivier Michaud
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| | - Eric Solary
- Inserm U1170, Gustave Roussy, Villejuif, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Laurence Dubrez
- Université de Bourgogne Franche-Comté, LNC UMR1231, Dijon, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), LNC UMR1231, Dijon, France
| |
Collapse
|
22
|
Coleman KE, Békés M, Chapman JR, Crist SB, Jones MJK, Ueberheide BM, Huang TT. SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function. eLife 2017; 6:e24325. [PMID: 28475037 PMCID: PMC5419743 DOI: 10.7554/elife.24325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 01/02/2023] Open
Abstract
NEDD8 is a ubiquitin-like modifier most well-studied for its role in activating the largest family of ubiquitin E3 ligases, the cullin-RING ligases (CRLs). While many non-cullin neddylation substrates have been proposed over the years, validation of true NEDD8 targets has been challenging, as overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery. Here, we developed a deconjugation-resistant form of NEDD8 to stabilize the neddylated form of cullins and other non-cullin substrates. Using this strategy, we identified Ubc12, a NEDD8-specific E2 conjugating enzyme, as a substrate for auto-neddylation. Furthermore, we characterized SENP8/DEN1 as the protease that counteracts Ubc12 auto-neddylation, and observed aberrant neddylation of Ubc12 and other NEDD8 conjugation pathway components in SENP8-deficient cells. Importantly, loss of SENP8 function contributes to accumulation of CRL substrates and defective cell cycle progression. Thus, our study highlights the importance of SENP8 in maintaining proper neddylation levels for CRL-dependent proteostasis.
Collapse
Affiliation(s)
- Kate E Coleman
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Miklós Békés
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Jessica R Chapman
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, United States
| | - Sarah B Crist
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Mathew JK Jones
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, Unites States
| | - Beatrix M Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, United States
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| |
Collapse
|
23
|
Li H, Zhu H, Liu Y, He F, Xie P, Zhang L. Itch promotes the neddylation of JunB and regulates JunB-dependent transcription. Cell Signal 2016; 28:1186-1195. [PMID: 27245101 DOI: 10.1016/j.cellsig.2016.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Protein neddylation is essential for the viability of most organisms and is widely involved in the regulation of immunity, DNA damage and repair, cell signaling and cell cycle. Unlike RING-type neddylation ligases, HECT-type neddylation ligase remains less defined. Here, we show that Itch is a novel HECT-type neddylation E3 ligase and we identify JunB as a substrate of Nedd8 modification by Itch. JunB neddylation attenuates its transcriptional activity. In addition, JunB neddylation mediated by Itch promotes its ubiquitination-dependent degradation. Therefore, these findings define a new HECT-type neddylation ligase and its neddylation substrate.
Collapse
Affiliation(s)
- Haiwen Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Heng Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yang Liu
- The First Hospital Attached to Guiyang College of Traditional Chinese Medicine, Guiyang 550001, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Ping Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
24
|
Zechel S, Zajac P, Lönnerberg P, Ibáñez CF, Linnarsson S. Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq. Genome Biol 2015; 15:486. [PMID: 25344199 PMCID: PMC4234883 DOI: 10.1186/s13059-014-0486-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cortical interneurons originating from the medial ganglionic eminence, MGE, are among the most diverse cells within the CNS. Different pools of proliferating progenitor cells are thought to exist in the ventricular zone of the MGE, but whether the underlying subventricular and mantle regions of the MGE are spatially patterned has not yet been addressed. Here, we combined laser-capture microdissection and multiplex RNA-sequencing to map the transcriptome of MGE cells at a spatial resolution of 50 μm. RESULTS Distinct groups of progenitor cells showing different stages of interneuron maturation are identified and topographically mapped based on their genome-wide transcriptional pattern. Although proliferating potential decreased rather abruptly outside the ventricular zone, a ventro-lateral gradient of increasing migratory capacity was identified, revealing heterogeneous cell populations within this neurogenic structure. CONCLUSIONS We demonstrate that spatially resolved RNA-seq is ideally suited for high resolution topographical mapping of genome-wide gene expression in heterogeneous anatomical structures such as the mammalian central nervous system.
Collapse
Affiliation(s)
- Sabrina Zechel
- Department of Neuroscience, Karolinska Institute, Stockholm SE-171 77, Sweden
| | | | | | | | | |
Collapse
|
25
|
Carr SM, Poppy Roworth A, Chan C, La Thangue NB. Post-translational control of transcription factors: methylation ranks highly. FEBS J 2015; 282:4450-65. [PMID: 26402372 DOI: 10.1111/febs.13524] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/04/2015] [Accepted: 09/21/2015] [Indexed: 01/31/2023]
Abstract
Methylation of lysine and arginine residues on histones has long been known to determine both chromatin structure and gene expression. In recent years, the methylation of non-histone proteins has emerged as a prevalent modification which impacts on diverse processes such as cell cycle control, DNA repair, senescence, differentiation, apoptosis and tumourigenesis. Many of these non-histone targets represent transcription factors, cell signalling molecules and tumour suppressor proteins. Evidence now suggests that the dysregulation of methyltransferases, demethylases and reader proteins is involved in the development of many diseases, including cancer, and several of these proteins represent potential therapeutic targets for small molecule compounds, fuelling a recent surge in chemical inhibitor design. Such molecules will greatly help us to understand the role of methylation in both health and disease.
Collapse
Affiliation(s)
- Simon M Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - A Poppy Roworth
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Cheryl Chan
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | | |
Collapse
|
26
|
Zhu T, Wang J, Pei Y, Wang Q, Wu Y, Qiu G, Zhang D, Lv M, Li W, Zhang J. Neddylation controls basal MKK7 kinase activity in breast cancer cells. Oncogene 2015; 35:2624-33. [PMID: 26364603 DOI: 10.1038/onc.2015.323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 06/26/2015] [Accepted: 07/24/2015] [Indexed: 12/18/2022]
Abstract
The c-Jun NH2-terminal protein kinase (JNK) pathway has been implicated in mammary tumor development. However, the molecular mechanisms regulating JNK activity in breast cancer cells remain unclear. Here, we report that the inhibition of ubiquitination-like post-translational modification neddylation through different strategies results in enhanced basal JNK phosphorylation in human breast cancer cells. The upregulation of basal JNK phosphorylation upon neddylation inhibition is independent of the deneddylation of Cullins, the well-characterized neddylation substrates. Since augmented basal JNK phosphorylation via ectopic MKK7 expression impedes proliferation and the epithelial-to-mesenchymal transition (EMT) phenotype, the neddylation system might contribute to mammary tumor development partially through limiting basal JNK phosphorylation. Further exploration reveals that MKK7, a JNK-specific MAP2K, undergoes neddylation in human breast cancer cells. MKK7 co-precipitates with a fragment of Ran-binding protein 2 (RanBP2), a large multimodular and pleiotropic protein that has been recognized as a SUMO E3 ligase. Knockdown of RanBP2 attenuates MKK7 neddylation and augments basal JNK phosphorylation without affecting the neddylation of Cullins, whereas ectopic expression of a RanBP2 fragment possessing SUMO E3 activity (RanBP2ΔFG) manifests the opposite effects. In vitro neddylation assays confirm that RanBP2ΔFG works as the neddylation E3 ligase for MKK7. The basal kinase activity of endogenous MKK7 increases upon RanBP2 knockdown but decreases upon the ectopic expression of RanBP2ΔFG. Furthermore, purified MKK7 shows reduced basal kinase activity after in vitro neddylation by RanBP2ΔFG. Consistently, RanBP2 knockdown leads to reduced proliferation and impaired EMT phenotype in human breast cancer cells and the effects of RanBP2 knockdown are reversed by simultaneous MKK7 knockdown. Taken together, our data suggest that MKK7 undergoes neddylation in human breast cancer cells, which limits its basal kinase activity.
Collapse
Affiliation(s)
- T Zhu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| | - J Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| | - Y Pei
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| | - Q Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| | - Y Wu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| | - G Qiu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| | - D Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| | - M Lv
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| | - W Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| | - J Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, PR China
| |
Collapse
|
27
|
Huang CJ, Wu D, Khan FA, Huo LJ. DeSUMOylation: An Important Therapeutic Target and Protein Regulatory Event. DNA Cell Biol 2015; 34:652-60. [PMID: 26309017 DOI: 10.1089/dna.2015.2933] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of the process of small ubiquitin-like modifier (SUMO)-mediated post-translational modification of targets (SUMOylation) in early 1990s proved to be a significant step ahead in understanding mechanistic regulation of proteins and their functions in diverse life processes at the cellular level. The critical step in reversing the SUMOylation pathway is its ability to be dynamically deSUMOylated by SUMO/sentrin-specific protease (SENP). This review is intended to give a brief introduction about the process of SUMOylation, different mammalian deSUMOylating enzymes with special emphasis on their regulation of ribosome biogenesis at the molecular level, and its emerging roles in mitochondrial dynamics that might reveal usefulness of SENPs for therapeutic applications.
Collapse
Affiliation(s)
- Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| |
Collapse
|
28
|
Lv H, Liu R, Fu J, Yang Q, Shi J, Chen P, Ji M, Shi B, Hou P. Epithelial cell-derived periostin functions as a tumor suppressor in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14ARF/Mdm2 signaling pathway. Cell Cycle 2015; 13:2962-74. [PMID: 25486483 DOI: 10.4161/15384101.2014.947203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Periostin is usually considered as an oncogene in diverse human cancers, including breast, prostate, colon, esophagus, and pancreas cancers, whereas it acts as a tumor suppressor in bladder cancer. In gastric cancer, it has been demonstrated that periglandular periostin expression is decreased whereas stromal periostin expression is significantly increased as compared with normal gastric tissues. Moreover, periostin produced by stromal myofibroblasts markedly promotes gastric cancer cell growth. These observations suggest that periostin derived from different types of cells may play distinct biological roles in gastric tumorigenesis. The aim of this study was to explore the biological functions and related molecular mechanisms of epithelial cell-derived periostin in gastric cancer. Our data showed that periglandular periostin was significantly down-regulated in gastric cancer tissues as compared with matched normal gastric mucosa. In addition, its expression in metastatic lymph nodes was significantly lower than that in their primary cancer tissues. Our data also demonstrated that periglandular periostin expression was negatively associated with tumor stage. More importantly, restoration of periostin expression in gastric cancer cells dramatically suppressed cell growth and invasiveness. Elucidation of the mechanisms involved revealed that periostin restoration enhanced Rb phosphorylation and sequentially activated the transcription of E2F1 target gene p14(ARF), leading to Mdm2 inactivation and the stabilization of p53 and E-cadherin proteins. Strikingly, these effects of periostin were abolished upon Rb deletion. Collectively, we have for the first time demonstrated that epithelial cell-derived periostin exerts tumor-suppressor activities in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14(ARF)/Mdm2 signaling pathway.
Collapse
Affiliation(s)
- Hongjun Lv
- a Department of Endocrinology ; The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine ; Xi'an , The People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
CACUL1/CAC1 Regulates the Antioxidant Response by Stabilizing Nrf2. Sci Rep 2015; 5:12857. [PMID: 26238671 PMCID: PMC4523873 DOI: 10.1038/srep12857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/01/2015] [Indexed: 11/08/2022] Open
Abstract
Nrf2 is the pre-dominant transcription activator responsible for coordinated up-regulation of ARE-driven antioxidant and detoxification genes. The activity of Nrf2 is tightly regulated at basal levels through its ubiquitination by Cul3-Keap1 and consequential degradation. Upon exposure to stress, the Cul3-Keap1 ligase is inhibited, leading to Nrf2 stabilization and activation. Here we describe CACUL1/CAC1 as a positive regulator of the Nrf2 pathway. We found that CACUL1 is up-regulated by Nrf2-activating oxidative stresses in cells and in mice. The association of CACUL1 with the Cul3-Keap1 complex led to a decrease in Nrf2 ubiquitination levels at non-stressed as well as stressed conditions, and sensitized cells for higher Nrf2 activation. Furthermore, CACUL1 knock-down led to a decrease in Nrf2 activity and cell viability under stress. Our results show that CACUL1 is a regulator of Nrf2 ubiquitination, adding another regulatory layer to the Nrf2 antioxidant stress response.
Collapse
|
30
|
Zhang L, Wu J, Ling MT, Zhao L, Zhao KN. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer 2015; 14:87. [PMID: 26022660 PMCID: PMC4498560 DOI: 10.1186/s12943-015-0361-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/06/2015] [Indexed: 01/08/2023] Open
Abstract
Infection with Human papillomaviruses (HPVs) leads to the development of a wide-range of cancers, accounting for 5% of all human cancers. A prominent example is cervical cancer, one of the leading causes of cancer death in women worldwide. It has been well established that tumor development and progression induced by HPV infection is driven by the sustained expression of two oncogenes E6 and E7. The expression of E6 and E7 not only inhibits the tumor suppressors p53 and Rb, but also alters additional signalling pathways that may be equally important for transformation. Among these pathways, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signalling cascade plays a very important role in HPV-induced carcinogenesis by acting through multiple cellular and molecular events. In this review, we summarize the frequent amplification of PI3K/Akt/mTOR signals in HPV-induced cancers and discuss how HPV oncogenes E6/E7/E5 activate the PI3K/Akt/mTOR signalling pathway to modulate tumor initiation and progression and affect patient outcome. Improvement of our understanding of the mechanism by which the PI3K/Akt/mTOR signalling pathway contributes to the immortalization and carcinogenesis of HPV-transduced cells will assist in devising novel strategies for preventing and treating HPV-induced cancers.
Collapse
Affiliation(s)
- Lifang Zhang
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, 325035 , Zhejiang, PR China.
| | - Jianhong Wu
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
- Current address: Department of Gastric Cancer and Soft Tissue Sarcomas Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
| | - Ming Tat Ling
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
| | - Liang Zhao
- The University of Queensland, Brisbane, 4072, QLD, Australia.
| | - Kong-Nan Zhao
- Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, 325035 , Zhejiang, PR China.
- Centre for Kidney Disease Research-Venomics Research, The University of Queensland School of Medicine, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
31
|
Abstract
NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is a ubiquitin-like protein that activates the largest ubiquitin E3 ligase family, the cullin-RING ligases. Many non-cullin neddylation targets have been proposed in recent years. However, overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery, which makes validating potential NEDD8 targets challenging. Here, we re-evaluate studies of non-cullin targets of NEDD8 in light of the current understanding of the neddylation pathway, and suggest criteria for identifying genuine neddylation substrates under homeostatic conditions. We describe the biological processes that might be regulated by non-cullin neddylation, and the utility of neddylation inhibitors for research and as potential therapies. Understanding the biological significance of non-cullin neddylation is an exciting research prospect primed to reveal fundamental insights.
Collapse
|
32
|
Abidi N, Xirodimas DP. Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. Endocr Relat Cancer 2015; 22:T55-70. [PMID: 25504797 DOI: 10.1530/erc-14-0315] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) controls a vast if not every biological process in the cell. It is not surprising that deregulation in ubiquitin and UBL signalling has been implicated in the pathogenesis of many diseases and that these pathways are considered as major targets for therapeutic intervention. In this review, we summarise recent advances in our understanding of the role of the UBL neural precursor cell expressed developmentally downregulated-8 (NEDD8) in cancer-related processes and potential strategies for the use of NEDD8 inhibitors as chemotherapeutics.
Collapse
Affiliation(s)
- Naima Abidi
- Centre de Recherche de Biochimie MacromoléculaireUMR5235, 1919 Route de Mende, Montpellier 34293, France
| | - Dimitris P Xirodimas
- Centre de Recherche de Biochimie MacromoléculaireUMR5235, 1919 Route de Mende, Montpellier 34293, France
| |
Collapse
|
33
|
Mergner J, Schwechheimer C. The NEDD8 modification pathway in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:103. [PMID: 24711811 PMCID: PMC3968751 DOI: 10.3389/fpls.2014.00103] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/03/2014] [Indexed: 05/19/2023]
Abstract
NEDD8, in plants and yeasts also known as RELATED TO UBIQUITIN (RUB), is an evolutionarily conserved 76 amino acid protein highly related to ubiquitin. Like ubiquitin, NEDD8 can be conjugated to and deconjugated from target proteins, but unlike ubiquitin, NEDD8 has not been reported to form chains similar to the different polymeric ubiquitin chains that have a role in a diverse set of cellular processes. NEDD8-modification is best known as a post-translational modification of the cullin subunits of cullin-RING E3 ubiquitin ligases. In this context, structural analyses have revealed that neddylation induces a conformation change of the cullin that brings the ubiquitylation substrates into proximity of the interacting E2 conjugating enzyme. In turn, NEDD8 deconjugation destabilizes the cullin RING ligase complex allowing for the exchange of substrate recognition subunits via the exchange factor CAND1. In plants, components of the neddylation and deneddylation pathway were identified based on mutants with defects in auxin and light responses and the characterization of these mutants has been instrumental for the elucidation of the neddylation pathway. More recently, there has been evidence from animal and plant systems that NEDD8 conjugation may also regulate the behavior or fate of non-cullin substrates in a number of ways. Here, the current knowledge on NEDD8 processing, conjugation and deconjugation is presented, where applicable, in the context of specific signaling pathways from plants.
Collapse
Affiliation(s)
| | - Claus Schwechheimer
- *Correspondence: Claus Schwechheimer, Plant Systems Biology, Technische Universität München, Emil-Ramann-Straße 4, 85354 Freising, Germany e-mail:
| |
Collapse
|
34
|
Di Fiore R, D'Anneo A, Tesoriere G, Vento R. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol 2013; 228:1676-87. [PMID: 23359405 DOI: 10.1002/jcp.24329] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/15/2013] [Indexed: 12/14/2022]
Abstract
Loss of RB1 gene is considered either a causal or an accelerating event in retinoblastoma. A variety of mechanisms inactivates RB1 gene, including intragenic mutations, loss of expression by methylation and chromosomal deletions, with effects which are species-and cell type-specific. RB1 deletion can even lead to aneuploidy thus greatly increasing cancer risk. The RB1gene is part of a larger gene family that includes RBL1 and RBL2, each of the three encoding structurally related proteins indicated as pRb, p107, and p130, respectively. The great interest in these genes and proteins springs from their ability to slow down neoplastic growth. pRb can associate with various proteins by which it can regulate a great number of cellular activities. In particular, its association with the E2F transcription factor family allows the control of the main pRb functions, while the loss of these interactions greatly enhances cancer development. As RB1 gene, also pRb can be functionally inactivated through disparate mechanisms which are often tissue specific and dependent on the scenario of the involved tumor suppressors and oncogenes. The critical role of the context is complicated by the different functions played by the RB proteins and the E2F family members. In this review, we want to emphasize the importance of the mechanisms of RB1/pRb inactivation in inducing cancer cell development. The review is divided in three chapters describing in succession the mechanisms of RB1 inactivation in cancer cells, the alterations of pRb pathway in tumorigenesis and the RB protein and E2F family in cancer.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Polyclinic, University of Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
35
|
Ebina M, Tsuruta F, Katoh MC, Kigoshi Y, Someya A, Chiba T. Myeloma overexpressed 2 (Myeov2) regulates L11 subnuclear localization through Nedd8 modification. PLoS One 2013; 8:e65285. [PMID: 23776465 PMCID: PMC3680436 DOI: 10.1371/journal.pone.0065285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022] Open
Abstract
Nucleolus is a dynamic structure that controls biogenesis of ribosomal RNA and senses cellular stresses. Nucleolus contains a number of proteins including ribosomal proteins that conduct cellular stresses to downstream signaling such as p53 pathway. Recently, it has been reported that modification by a ubiquitin-like molecule, Nedd8, regulates subnuclear localization of ribosomal protein L11. Most of L11 is normally localized and neddylated in nucleolus. However, cellular stress triggers deneddylation and redistribution of L11, and subsequent activation of p53. Although Nedd8 modification is thought to be important for L11 localization, the mechanism of how neddylation of L11 is regulated remains largely unknown. Here, we show that Myeloma overexpressed 2 (Myeov2) controls L11 localization through down-regulation of Nedd8 modification. Expression of Myeov2 reduced neddylation of proteins including L11. We also found that Myeov2 associates with L11 and withholds L11 in nucleoplasm. Although Myeov2 interacted with a Nedd8 deconjugation enzyme COP9 signalosome, L11 deneddylation was mediated by another deneddylase Nedp1, independently of Myeov2. Finally, p53 transcriptional activity is upregulated by Myeov2 expression. These data demonstrate that Myeov2 hampers L11 neddylation through their interactions and confines L11 to nucleoplasm to modulate nucleolar integrity. Our findings provide a novel link between oncogenic stress and p53 pathway and may shed light on the protective mechanism against cancer.
Collapse
Affiliation(s)
- Manato Ebina
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fuminori Tsuruta
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (FT); (TC)
| | - Megumi C. Katoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yu Kigoshi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akie Someya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomoki Chiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (FT); (TC)
| |
Collapse
|
36
|
Xu F, You X, Liu F, Shen X, Yao Y, Ye L, Zhang X. The oncoprotein HBXIP up-regulates Skp2 via activating transcription factor E2F1 to promote proliferation of breast cancer cells. Cancer Lett 2013; 333:124-32. [PMID: 23352642 DOI: 10.1016/j.canlet.2013.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 02/08/2023]
Abstract
Hepatitis B X-interacting protein (HBXIP) is a novel oncoprotein. In this study, we found that the expression levels of HBXIP were positively associated with those of S-phase kinase-associated protein 2 (Skp2) in clinical breast cancer tissues and cell lines. Moreover, we found that HBXIP was able to stimulate the promoter of Skp2 through binding to the -640/-443 region in Skp2 promoter involving activating E2F transcription factor 1 (E2F1). Skp2 plays crucial roles in HBXIP-enhanced proliferation of breast cancer cells in vitro and in vivo. We conclude that HBXIP up-regulates Skp2 via activating E2F1 to promote proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Fuqiang Xu
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | |
Collapse
|