1
|
Leng J, Yu J, Wu LY, Chen H. Flexible integration of spatial and expression information for precise spot embedding via ZINB-based graph-enhanced autoencoder. Commun Biol 2025; 8:556. [PMID: 40186054 PMCID: PMC11971412 DOI: 10.1038/s42003-025-07965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
Domain identification is a critical problem in spatially resolved transcriptomics data analysis, which aims to identify distinct spatial domains within a tissue that maintain both spatial continuity and expression consistency. The degree of coupling between expression data and spatial information in different datasets often varies significantly. Some regions have intact and clear boundaries, while others exhibit blurred boundaries with high intra-domain expression similarity. However, most domain identification methods do not adequately integrate expression and spatial information to flexibly identify different types of domains. To address these issues, we introduce Spot2vector, a computational framework that leverages a graph-enhanced autoencoder integrating zero-inflated negative binomial distribution modeling, combining both graph convolutional networks and graph attention networks to extract the latent embeddings of spots. Spot2vector encodes and integrates spatial and expression information, enabling effective identification of domains with diverse spatial patterns across spatially resolved transcriptomics data generated by different platforms. The decoders enable us to decipher the distribution and generation mechanisms of data while improving expression quality through denoising. Extensive validation and analyses demonstrate that Spot2vector excels in enhancing domain identification accuracy, effectively reducing data dimensionality, improving expression recovery and denoising, and precisely capturing spatial gene expression patterns.
Collapse
Affiliation(s)
| | - Jiating Yu
- School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Ling-Yun Wu
- IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | |
Collapse
|
2
|
Jiang R, Gao MZ, Chen M, Weatherspoon DJ, Watts TL, Osazuwa-Peters N. Genetic and Molecular Differences in Head and Neck Cancer Based on Smoking History. JAMA Otolaryngol Head Neck Surg 2025; 151:379-388. [PMID: 40048195 PMCID: PMC11886874 DOI: 10.1001/jamaoto.2024.5409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/19/2024] [Indexed: 03/09/2025]
Abstract
Importance Up to 80% of survivors of head and neck squamous cell carcinoma (HNSCC) currently or previously smoked. Thus, tobacco use is a major modifiable risk factor for HNSCC, even in the era of human papillomavirus (HPV)-associated disease. However, how smoking underlies chromosomal and epigenetic changes that are associated with HNSCC outcomes remains unclear. Objective To characterize genetic and molecular differences and associated biological pathways in patients with HNSCC based on smoking history. Design, Setting, and Participants This retrospective cohort study included patients with a confirmed diagnosis of HNSCC from the Cancer Genome Atlas via cBioPortal data independent of HPV status. Data were analyzed between April 2023 and May 2024. Main Outcomes and Measures Smoking history was defined as individuals who smoked (currently or previously) compared with nonsmokers (never smoked). Genetic and molecular differences of interest were single nucleotide variation, copy number alteration, DNA methylation, and messenger RNA (mRNA) expression. Accounting for multiple testing, we reported the false discovery rate (FDR), with a statistically significant FDR of 0.05 or less. Potential functions and pathways were investigated using the Panther classification system, and the Fisher exact test was used for overrepresentation, using the Reactome pathway dataset as a guide. Associations between smoking-related genetic alterations and overall survival were analyzed using log-rank tests. Results Of 511 participants, 135 (26.4%) were female, and the mean (SD) age was 60.8 (11.9) years. People who smoked (389 [76.1%]) demonstrated significantly enriched copy number alterations on 9 genes located on chromosome 11q13 compared with nonsmokers (122 [23.9%]; FDR, 0.044-0.046). Two genes, FADD and CTTN, were significantly highly methylated in nonsmokers. Also, PPFIA1, FGF19, CCND1 and LTO1 were highly expressed in mRNA in those who smoked, while FADD mRNA expression was negatively correlated with FADD DNA methylation in nonsmokers (Pearson r = -0.53; 95% CI, -0.59 to -0.49) and those who smoked (Pearson r = -0.57; 95% CI, -0.63 to -0.51). People who smoked with altered FADD had higher risk of dying than those with FADD unaltered (hazard ratio, 1.40; 95% CI, 1.004-1.96). Pathway analysis showed the significant genes were collectively associated with cellular processes and biological regulations, including olfactory signaling and the PI3K/AKT network. Conclusion and Relevance The results of this cohort study suggest that there may be patterned genetic and molecular differences in patients with HNSCC based on smoking history, especially genes located on chromosome 11q13. These genomic differences due to smoking make smoking a modifiable risk factor for HNSCC outcomes.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - May Z Gao
- Duke University School of Medicine, Durham, North Carolina
| | - Meng Chen
- Duke Global Health Institute, Duke University School of Medicine, Durham, North Carolina
| | - Darien J Weatherspoon
- Department of Dental Public Health, University of Maryland School of Dentistry, Baltimore
| | - Tammara L Watts
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina
- Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Nosayaba Osazuwa-Peters
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina
- Duke Cancer Institute, Duke University, Durham, North Carolina
- Duke Global Health Institute, Duke University School of Medicine, Durham, North Carolina
- Department of Population Health Sciences, School of Medicine, Duke University, Durham, North Carolina
- Deputy Editor, Diversity, Equity, and Inclusion, JAMA Otolaryngology-Head & Neck Surgery
| |
Collapse
|
3
|
Renaud EA, Maupin AJM, Berry L, Bals J, Bordat Y, Demolombe V, Rofidal V, Vignols F, Besteiro S. The HCF101 protein is an important component of the cytosolic iron-sulfur synthesis pathway in Toxoplasma gondii. PLoS Biol 2025; 23:e3003028. [PMID: 39913537 PMCID: PMC11838916 DOI: 10.1371/journal.pbio.3003028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/19/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Several key cellular functions depend on proteins harboring an iron-sulfur (Fe-S) cofactor. As these Fe-S proteins localize to several subcellular compartments, they require a dedicated machinery for cofactor assembly. For instance, in plants and algae there are Fe-S cluster synthesis pathways localizing to the cytosol, but also present in the mitochondrion and in the chloroplast, 2 organelles of endosymbiotic origin. Toxoplasma gondii is a plastid-bearing parasitic protist responsible for a pathology affecting humans and other warm-blooded vertebrates. We have characterized the Toxoplasma homolog of HCF101, originally identified in plants as a protein transferring Fe-S clusters to photosystem I subunits in the chloroplast. Contrarily to plants, we have shown that HCF101 does not localize to the plastid in parasites, but instead is an important component of the cytosolic Fe-S assembly (CIA) pathway which is vital for Toxoplasma. While the CIA pathway is widely conserved in eukaryotes, it is the first time the involvement of HCF101 in this pan-eukaryotic machinery is established. Moreover, as this protein is essential for parasite viability and absent from its mammalian hosts, it constitutes a novel and promising potential drug target.
Collapse
Affiliation(s)
- Eléa A. Renaud
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Laurence Berry
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Bals
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yann Bordat
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Demolombe
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Valérie Rofidal
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Florence Vignols
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
4
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
5
|
Fan X, He H, Wang T, Xu P, Zhang F, Hu S, Yun Y, Mei M, Zhang G, Yi L. Characterizing interactions of endoplasmic reticulum resident proteins in situ through the YST-PPI method. Biotechnol J 2024; 19:e2400346. [PMID: 39212204 DOI: 10.1002/biot.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The mutual interactions of endoplasmic reticulum (ER) resident proteins in the ER maintain its functions, prompting the protein folding, modification, and transportation. Here, a new method, named YST-PPI (YESS-based Split fast TEV protease system for Protein-Protein Interaction) was developed, targeting the characterization of protein interactions in ER. YST-PPI method integrated the YESS system, split-TEV technology, and endoplasmic reticulum retention signal peptide (ERS) to provide an effective strategy for studying ER in situ PPIs in a fast and quantitative manner. The interactions among 15 ER-resident proteins, most being identified molecular chaperones, of S. cerevisiae were explored using the YST-PPI system, and their interaction network map was constructed, in which more than 74 interacting resident protein pairs were identified. Our studies also showed that Lhs1p plays a critical role in regulating the interactions of most of the ER-resident proteins, except the Sil1p, indicating its potential role in controlling the ER molecular chaperones. Moreover, the mutual interaction revealed by our studies further confirmed that the ER-resident proteins perform their functions in a cooperative way and a multimer complex might be formed during the process.
Collapse
Affiliation(s)
- Xian Fan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Huahua He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ting Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Pan Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Faying Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shantong Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Meng Mei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative, Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
6
|
Elango R, Rashid S, Vishnubalaji R, Al-Sarraf R, Akhtar M, Ouararhni K, Decock J, Albagha OME, Alajez NM. Transcriptome profiling and network enrichment analyses identify subtype-specific therapeutic gene targets for breast cancer and their microRNA regulatory networks. Cell Death Dis 2023; 14:415. [PMID: 37438342 DOI: 10.1038/s41419-023-05908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Previous studies have suggested that breast cancer (BC) from the Middle East and North Africa (MENA) is presented at younger age with advanced tumor stage, indicating underlying biological differences. Given the scant transcriptomic data on BC from the MENA region and to better understand the biology of this disease, we performed mRNA and microRNA (miRNA) transcriptomic profiling on a local cohort of BC (n = 96) from Qatar. Our data revealed the differentially expressed genes and miRNAs as function of BC molecular subtypes (HR+, HER2+, HER2+HR+, and TNBC), tumor grade (GIII vs GI-II), patients' age (young (≤40) vs old (>40)), and ethnicity (MENA vs non-MENA). Our profiling data revealed close similarity between TNBC and HER2+, while the transcriptome of HER2+HR+ tumor was resemblant of that from HR+ tumors. Network analysis identified complex miRNA-mRNA regulatory networks in each BC molecular subtype, in high vs low grade tumors, in tumors from young vs old patients, and in tumors from MENA vs non-MENA, thus implicating miRNA-mediated gene regulation as an essential mechanism in shaping the transcriptome of BC. Integration of our transcriptomic data with CRISPR-Cas9 functional screen data and the OncoKB database identified numerous dependencies and therapeutic vulnerabilities in each BC molecular subtype, while CDC123 was functionally validated as potential therapeutic target for TNBC. Cox regression survival analyses identified mRNA and miRNA-based signatures predicative of worse and better relapse free survival (RFS), which were validated in larger BC cohorts. Our data provides comprehensive transcriptomic profiling and unraveled the miRNA-mRNA regulatory networks in BC patients from the region and identified novel actionable gene targets, employing integrated approach. Findings from the current study have potential implications to improve the current standard-of-care for BC from the MENA as well as patients from other ethnicities.
Collapse
Affiliation(s)
- Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Sameera Rashid
- Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
- The Christie NHS Foundation Trust, Manchester, UK
| | - Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Reem Al-Sarraf
- Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohammed Akhtar
- Department of Laboratory Medicine and Pathology (DLMP), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Omar M E Albagha
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Centre for Genomics and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
7
|
Navarro-Quiles C, Mateo-Bonmatí E, Candela H, Robles P, Martínez-Laborda A, Fernández Y, Šimura J, Ljung K, Rubio V, Ponce MR, Micol JL. The Arabidopsis ATP-Binding Cassette E protein ABCE2 is a conserved component of the translation machinery. FRONTIERS IN PLANT SCIENCE 2022; 13:1009895. [PMID: 36325553 PMCID: PMC9618717 DOI: 10.3389/fpls.2022.1009895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, Arabidopsis thaliana has two ABCE paralogs, of which ABCE2 seems to conserve the ancestral function. We isolated apiculata7-1 (api7-1), the first viable, hypomorphic allele of ABCE2, which has a pleiotropic morphological phenotype reminiscent of mutations affecting ribosome biogenesis factors and ribosomal proteins. We also studied api7-2, a null, recessive lethal allele of ABCE2. Co-immunoprecipitation experiments showed that ABCE2 physically interacts with components of the translation machinery. An RNA-seq study of the api7-1 mutant showed increased responses to iron and sulfur starvation. We also found increased transcript levels of genes related to auxin signaling and metabolism. Our results support for the first time a conserved role for ABCE proteins in translation in plants, as previously shown for the animal, fungal, and archaeal lineages. In Arabidopsis, the ABCE2 protein seems important for general growth and vascular development, likely due to an indirect effect through auxin metabolism.
Collapse
Affiliation(s)
| | | | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | | | | | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
8
|
Wei YP, Chen JS, Liu XP, Mao CJ, Jin BK. ORAOV 1 Detection Made with Metal Organic Frameworks Based on Ti 3C 2T x MXene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23726-23733. [PMID: 35537183 DOI: 10.1021/acsami.2c00497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a two-dimensional (2D) MOF sheet with electrochemiluminescence (ECL) activity is prepared with Ti3C2Tx MXene as the metal precursor and the meso-tetra(4-carboxyl-phenyl) porphyrin (H2TCPP) as the organic ligand. The atomically thin 2D Ti3C2Tx MXene is utilized as the metal precursor and soft template to produce the MOF with a 2D nanosheet morphology (Ti3C2Tx-PMOF). Ti3C2Tx MXene is a kind of strong electron acceptor, which can deprotonate H2TCPP due to the high electronegativity and low work function of its terminal atoms. The deprotonated H2TCPP continues to bind with Ti atoms to form the 2D MOF sheet. The ECL activity is inherited from H2TCPP and stabilized by introducing Ag NPs. Then, we construct an ECL biosensor based on the Ag NPs/Ti3C2Tx-PMOF to detect the oral cancer overexpressed 1 (ORAOV 1). A bipedal three-dimensional DNA walker strategy is adopted to further improve the biosensor sensitivity. As expected, the biosensor exhibits sterling sensitivity and selectivity. The ECL biosensor responds linearly to ORAOV 1 concentrations in the range of 10 fM-1 nM, and the detection limit is as low as 3.3 fM (S/N = 3). It means that Ag NPs/Ti3C2Tx-PMOF is a potential material to design and construct the high-performance ECL biosensors.
Collapse
Affiliation(s)
- Yu-Ping Wei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jing-Shuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Bao-Kang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
9
|
Prusty NR, Camponeschi F, Ciofi-Baffoni S, Banci L. The human YAE1-ORAOV1 complex of the cytosolic iron-sulfur protein assembly machinery binds a [4Fe-4S] cluster. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Ha SY, Yeo SY, Lee KW, Kim SH. Validation of ORAOV1 as a new treatment target in hepatocellular carcinoma. J Cancer Res Clin Oncol 2020; 147:423-433. [PMID: 33161447 DOI: 10.1007/s00432-020-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Chromosome 11q13.2, which contains genes cyclin D1 (CCND1), fibroblast growth factor 19 (FGF19), and Oral Cancer Overexpressed 1 (ORAOV1), is the most highly amplified peak in hepatocellular carcinoma (HCC). CCND1 and FGF19 have been already suggested as therapeutic targets of HCC, but the role of ORAOV1 in carcinogenesis of HCCs has not been reported. METHODS This retrospective study investigated ORAOV1 expression using immunohistochemistry performed on tissue microarray blocks obtained from 259 HCC patients with curative resection, between 2000 and 2006. We assessed the prognostic significance of ORAOV1 expression by Kaplan-Meier method with log-rank test and Cox proportional hazards model. Also, we performed invasion, migration, apoptosis, and cell cycle assays in HCC cell lines, and evaluated the tumorigenicity of HCC xenografts in nude mice, after knockdown of ORAOV1. RESULTS High expression of ORAOV1 protein was observed in 80% of HCC tissues. The ORAOV1 high expression group showed shorter recurrence free survival (RFS) (p < 0.001) and shorter disease-specific survival (DSS) than the low expression group. It was an independent prognostic factor for predicting early recurrence [Odds ratio 2.74 (95% confidence interval (CI) 1.27-5.93), p = 0.01] as well as short RFS [hazard ratio 2.23 (95% CI 1.40-3.54), p = 0.001] and DSS [hazard ratio 2.30 (95% CI 1.27-4.17), p = 0.006]. Knockdown of ORAOV1 induced significant decreases in migration, invasion, and tumorigenicity of HCC cells in in-vitro model, and inhibited the growth of HCC xenografts in nude mice. CONCLUSION We demonstrated unfavorable prognostic effect of ORAOV1 expression with supporting experimental data in HCC. ORAOV1 may be used as a biomarker for predicting HCC prognosis and is a potential candidate for targeted therapy.
Collapse
Affiliation(s)
- Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - So-Young Yeo
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Keun-Woo Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea. .,Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Young DJ, Guydosh NR. Hcr1/eIF3j Is a 60S Ribosomal Subunit Recycling Accessory Factor In Vivo. Cell Rep 2020; 28:39-50.e4. [PMID: 31269449 DOI: 10.1016/j.celrep.2019.05.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/26/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Hcr1/eIF3j is a sub-stoichiometric subunit of eukaryotic initiation factor 3 (eIF3) that can dissociate the post-termination 40S ribosomal subunit from mRNA in vitro. We examine this ribosome recycling role in vivo by ribosome profiling and reporter assays and find that loss of Hcr1 leads to reinitiation of translation in 3' UTRs, consistent with a defect in recycling. However, the defect appears to be in the recycling of the 60S subunit, rather than the 40S subunit, because reinitiation does not require an AUG codon and is suppressed by overexpression of the 60S dissociation factor Rli1/ABCE1. Consistent with a 60S recycling role, overexpression of Hcr1 cannot compensate for loss of 40S recycling factors Tma64/eIF2D and Tma20/MCT-1. Intriguingly, loss of Hcr1 triggers greater expression of RLI1 via an apparent feedback loop. These findings suggest Hcr1/eIF3j is recruited to ribosomes at stop codons and may coordinate the transition to a new round of translation.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Sci Rep 2019; 9:16904. [PMID: 31729402 PMCID: PMC6858347 DOI: 10.1038/s41598-019-52886-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
The emergence of large-scale multi-omics data warrants method development for data integration. Genomic studies from cancer patients have identified epigenetic and genetic regulators - such as methylation marks, somatic mutations, and somatic copy number alterations (SCNAs), among others - as predictive features of cancer outcome. However, identification of "driver genes" associated with a given alteration remains a challenge. To this end, we developed a computational tool, iEDGE, to model cis and trans effects of (epi-)DNA alterations and identify potential cis driver genes, where cis and trans genes denote those genes falling within and outside the genomic boundaries of a given (epi-)genetic alteration, respectively. iEDGE first identifies the cis and trans gene expression signatures associated with the presence/absence of a particular epi-DNA alteration across samples. It then applies tests of statistical mediation to determine the cis genes predictive of the trans gene expression. Finally, cis and trans effects are annotated by pathway enrichment analysis to gain insights into the underlying regulatory networks. We used iEDGE to perform integrative analysis of SCNAs and gene expression data from breast cancer and 18 additional cancer types included in The Cancer Genome Atlas (TCGA). Notably, cis gene drivers identified by iEDGE were found to be significantly enriched for known driver genes from multiple compendia of validated oncogenes and tumor suppressors, suggesting that the remainder are of equal importance. Furthermore, predicted drivers were enriched for functionally relevant cancer genes with amplification-driven dependencies, which are of potential prognostic and therapeutic value. All the analyses results are accessible at https://montilab.bu.edu/iEDGE. In summary, integrative analysis of SCNAs and gene expression using iEDGE successfully identified known cancer driver genes and putative cancer therapeutic targets across 19 cancer types in the TCGA. The proposed method can easily be applied to the integration of gene expression profiles with other epi-DNA assays in a variety of disease contexts.
Collapse
|
13
|
Labib PL, Goodchild G, Pereira SP. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer 2019; 19:185. [PMID: 30819129 PMCID: PMC6394015 DOI: 10.1186/s12885-019-5391-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cholangiocarcinomas are a heterogeneous group of malignancies arising from a number of cells of origin along the biliary tree. Although most cases in Western countries are sporadic, large population-based studies have identified a number of risk factors. This review summarises the evidence behind reported risk factors and current understanding of the molecular pathogenesis of cholangiocarcinoma, with a focus on inflammation and cholestasis as the driving forces in cholangiocarcinoma development. RISK FACTORS FOR CHOLANGIOCARCINOGENESIS Cholestatic liver diseases (e.g. primary sclerosing cholangitis and fibropolycystic liver diseases), liver cirrhosis, and biliary stone disease all increase the risk of cholangiocarcinoma. Certain bacterial, viral or parasitic infections such as hepatitis B and C and liver flukes also increase cholangiocarcinoma risk. Other risk factors include inflammatory disorders (such as inflammatory bowel disease and chronic pancreatitis), toxins (e.g. alcohol and tobacco), metabolic conditions (diabetes, obesity and non-alcoholic fatty liver disease) and a number of genetic disorders. MOLECULAR PATHOGENESIS OF CHOLANGIOCARCINOMA Regardless of aetiology, most risk factors cause chronic inflammation or cholestasis. Chronic inflammation leads to increased exposure of cholangiocytes to the inflammatory mediators interleukin-6, Tumour Necrosis Factor-ɑ, Cyclo-oxygenase-2 and Wnt, resulting in progressive mutations in tumour suppressor genes, proto-oncogenes and DNA mismatch-repair genes. Accumulating bile acids from cholestasis lead to reduced pH, increased apoptosis and activation of ERK1/2, Akt and NF-κB pathways that encourage cell proliferation, migration and survival. Other mediators upregulated in cholangiocarcinoma include Transforming Growth Factor-β, Vascular Endothelial Growth Factor, Hepatocyte Growth Factor and several microRNAs. Increased expression of the cell surface receptor c-Met, the glucose transporter GLUT-1 and the sodium iodide symporter lead to tumour growth, angiogenesis and cell migration. Stromal changes are also observed, resulting in alterations to the extracellular matrix composition and recruitment of fibroblasts and macrophages that create a microenvironment promoting cell survival, invasion and metastasis. CONCLUSION Regardless of aetiology, most risk factors for cholangiocarcinoma cause chronic inflammation and/or cholestasis, leading to the activation of common intracellular pathways that result in reactive cell proliferation, genetic/epigenetic mutations and cholangiocarcinogenesis. An understanding of the molecular pathogenesis of cholangiocarcinoma is vital when developing new diagnostic biomarkers and targeted therapies for this disease.
Collapse
Affiliation(s)
- Peter L. Labib
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| | - George Goodchild
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, University College London (Royal Free Hospital Campus), Royal Free Hospital, Pond Street, London, NW3 2QG UK
| |
Collapse
|
14
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
15
|
Alblooshi H, Al Safar H, Fisher HF, Cordell HJ, El Kashef A, Al Ghaferi H, Shawky M, Reece S, Hulse GK, Tay GK. A case-control genome wide association study of substance use disorder (SUD) identifies novel variants on chromosome 7p14.1 in patients from the United Arab Emirates (UAE). Am J Med Genet B Neuropsychiatr Genet 2019; 180:68-79. [PMID: 30556296 DOI: 10.1002/ajmg.b.32708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/17/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
Genome wide association studies (GWASs) have provided insights into the molecular basis of the disorder in different population. This study presents the first GWAS of substance use disorder (SUD) in patients from the United Arab Emirates (UAE). The aim was to identify genetic association(s) that may provide insights into the molecular basis of the disorder. The GWAS discovery cohort consisted of 512 (250 cases and 262 controls) male participants from the UAE. Controls with no prior history of SUD were available from the Emirates family registry. The replication cohort consisted of 520 (415 cases and 105 controls) Australian male Caucasian participants. The GWAS discovery samples were genotyped for 4.6 million single nucleotide polymorphism (SNP). The replication cohort was genotyped using TaqMan assay. The GWAS association analysis identified three potential SNPs rs118129027 (p-value = 6.24 × 10-8 ), rs74477937 (p-value = 8.56 × 10-8 ) and rs78707086 (p-value = 8.55 × 10-8 ) on ch7p14.1, that did not meet the GWAS significance threshold but were highly suggestive. In the replication cohort, the association of the three top SNPs did not reach statistical significance. In a meta-analysis of the discovery and the replication cohorts, there were no strengthen evidence for association of the three SNPs. The top identified rs118129027 overlaps with a regulatory factor (enhancer) region that targets three neighboring genes LOC105375237, LOC105375240, and YAE1D1. The YAE1D1, which represents a potential locus that is involved in regulating translation initiation pathway. Novel associations that require further confirmation were identified, suggesting a new insight to the genetic basis of SUD.
Collapse
Affiliation(s)
- Hiba Alblooshi
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia.,School of Human Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Habiba Al Safar
- Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holly F Fisher
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ahmed El Kashef
- National Rehabilitation Center, Abu Dhabi, United Arab Emirates
| | | | - Mansour Shawky
- National Rehabilitation Center, Abu Dhabi, United Arab Emirates
| | - Stuart Reece
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gary K Hulse
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia.,School of Medical Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Guan K Tay
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, Western Australia, Australia.,Center of Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,School of Medical Science, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
16
|
Control of mRNA Translation by Versatile ATP-Driven Machines. Trends Biochem Sci 2018; 44:167-180. [PMID: 30527974 DOI: 10.1016/j.tibs.2018.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Translation is organized in a cycle that requires ribosomal subunits, mRNA, aminoacylated transfer RNAs, and myriad regulatory factors. As soon as translation reaches a stop codon or stall, a termination or surveillance process is launched via the release factors eRF1 or Pelota, respectively. The ATP-binding cassette (ABC) protein ABCE1 interacts with release factors and coordinates the recycling process in Eukarya and Archaea. After splitting, ABCE1 stays with the small ribosomal subunit and emerges as an integral part of translation initiation complexes. In addition, eEF3 and ABCF proteins control translation by binding at the E-site. In this review, we highlight advances in the fundamental role of ABC systems in mRNA translation in view of their collective inner mechanics.
Collapse
|
17
|
Abstract
Abstract
Metal ions are essential cofactors required by the proteome of organisms from any kingdom of life to correctly exert their functions. Dedicated cellular import, transport and homeostasis systems assure that the needed metal ion is correctly delivered and inserted into the target proteins and avoid the presence of free metal ions in the cell, preventing oxidative damaging. Among metal ions, in eukaryotic organisms copper and iron are required by proteins involved in absolutely essential functions, such as respiration, oxidative stress protection, catalysis, gene expression regulation. Copper and iron binding proteins are localized in essentially all cellular compartments. Copper is physiologically present mainly as individual metal ion. Iron can be present both as individual metal ion or as part of cofactors, such as hemes and iron-sulfur (Fe-S) clusters. Both metal ions are characterized by the ability to cycle between different oxidation states, which enable them to catalyze redox reactions and to participate in electron transfer processes. Here we describe in detail the main processes responsible for the trafficking of copper and iron sulfur clusters, with particular interest for the structural aspects of the maturation of copper and iron-sulfur-binding proteins.
Collapse
|
18
|
Barros-Filho M, Reis-Rosa L, Hatakeyama M, Marchi F, Chulam T, Scapulatempo-Neto C, Nicolau U, Carvalho A, Pinto C, Drigo S, Kowalski L, Rogatto S. Oncogenic drivers in 11q13 associated with prognosis and response to therapy in advanced oropharyngeal carcinomas. Oral Oncol 2018; 83:81-90. [DOI: 10.1016/j.oraloncology.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
|
19
|
Abstract
With the development of radiotherapeutic oncology, computer technology and medical imaging technology, radiation therapy has made great progress. Research on the impact and the specific mechanism of radiation on tumors has become a central topic in cancer therapy. According to the traditional view, radiation can directly affect the structure of the DNA double helix, which in turn activates DNA damage sensors to induce apoptosis, necrosis, and aging or affects normal mitosis events and ultimately rewires various biological characteristics of neoplasm cells. In addition, irradiation damages subcellular structures, such as the cytoplasmic membrane, endoplasmic reticulum, ribosome, mitochondria, and lysosome of cancer cells to regulate various biological activities of tumor cells. Recent studies have shown that radiation can also change the tumor cell phenotype, immunogenicity and microenvironment, thereby globally altering the biological behavior of cancer cells. In this review, we focus on the effects of therapeutic radiation on the biological features of tumor cells to provide a theoretical basis for combinational therapy and inaugurate a new era in oncology.
Collapse
Affiliation(s)
- Jin-Song Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, RM6102, New Research Building, 17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China
| | - Hai-Juan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, RM6102, New Research Building, 17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China.
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, RM6102, New Research Building, 17 Panjiayuan Nanli, Chaoyang District, 100021, Beijing, China.
| |
Collapse
|
20
|
Celińska-Janowicz K, Zaręba I, Lazarek U, Teul J, Tomczyk M, Pałka J, Miltyk W. Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27). Front Pharmacol 2018; 9:336. [PMID: 29681859 PMCID: PMC5897514 DOI: 10.3389/fphar.2018.00336] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Propolis evokes several therapeutic properties, including anticancer activity. These activities are attributed to the action of polyphenols. Previously it has been demonstrated, that one of the most abundant polyphenolic compounds in ethanolic extracts of propolis are chrysin, caffeic acid, p-coumaric acid, and ferulic acid. Although their pro-apoptotic activity on human tongue squamous cell carcinoma cells (CAL-27) was established previously, the detailed mechanism of this process remains unclear. Considering the crucial role of proline metabolism and proline dehydrogenase/proline oxidase (PRODH/POX) in the regulation of cancer cell survival/apoptosis, we studied these processes in polyphenol-treated CAL-27 cells. All studied polyphenols evoked anti-proliferative activity, accompanied by increased PRODH/POX, P53, active caspases-3 and -9 expressions and decreased collagen biosynthesis, prolidase activity and proline concentration in CAL-27 cells. These data suggest that polyphenols of propolis induce PRODH/POX-dependent apoptosis through up-regulation of mitochondrial proline degradation and down-regulation of proline utilization for collagen biosynthesis.
Collapse
Affiliation(s)
- Katarzyna Celińska-Janowicz
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Ilona Zaręba
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Urszula Lazarek
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Joanna Teul
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Jerzy Pałka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
21
|
Mei M, Zhai C, Li X, Zhou Y, Peng W, Ma L, Wang Q, Iverson BL, Zhang G, Yi L. Characterization of aromatic residue-controlled protein retention in the endoplasmic reticulum of Saccharomyces cerevisiae. J Biol Chem 2017; 292:20707-20719. [PMID: 29038295 DOI: 10.1074/jbc.m117.812107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/11/2017] [Indexed: 01/05/2023] Open
Abstract
An endoplasmic reticulum (ER) retention sequence (ERS) is a characteristic short sequence that mediates protein retention in the ER of eukaryotic cells. However, little is known about the detailed molecular mechanism involved in ERS-mediated protein ER retention. Using a new surface display-based fluorescence technique that effectively quantifies ERS-promoted protein ER retention within Saccharomyces cerevisiae cells, we performed comprehensive ERS analyses. We found that the length, type of amino acid residue, and additional residues at positions -5 and -6 of the C-terminal HDEL motif all determined the retention of ERS in the yeast ER. Moreover, the biochemical results guided by structure simulation revealed that aromatic residues (Phe-54, Trp-56, and other aromatic residues facing the ER lumen) in both the ERS (at positions -6 and -4) and its receptor, Erd2, jointly determined their interaction with each other. Our studies also revealed that this aromatic residue interaction might lead to the discriminative recognition of HDEL or KDEL as ERS in yeast or human cells, respectively. Our findings expand the understanding of ERS-mediated residence of proteins in the ER and may guide future research into protein folding, modification, and translocation affected by ER retention.
Collapse
Affiliation(s)
- Meng Mei
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Chao Zhai
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Xinzhi Li
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Yu Zhou
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Wenfang Peng
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Lixin Ma
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China
| | - Qinhong Wang
- the Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China, and
| | - Brent L Iverson
- the Department of Chemistry, University of Texas, Austin, Texas 78712
| | - Guimin Zhang
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China,
| | - Li Yi
- From the Hubei Collaborative Innovation Center for Green Transformation of Bioresources, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, China,
| |
Collapse
|
22
|
Qin Y, Xu Z, Wang Y, Li X, Cao H, Zheng SJ. VP2 of Infectious Bursal Disease Virus Induces Apoptosis via Triggering Oral Cancer Overexpressed 1 (ORAOV1) Protein Degradation. Front Microbiol 2017; 8:1351. [PMID: 28769911 PMCID: PMC5515827 DOI: 10.3389/fmicb.2017.01351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/04/2017] [Indexed: 01/30/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by IBD virus (IBDV). Cell apoptosis triggered by IBDV contributes to the dysfunction of immune system in host. VP2 of IBDV is known to induce cell death but the underlying mechanism remains unclear. Here we demonstrate that VP2 interacts with the oral cancer overexpressed 1 (ORAOV1), a potential oncoprotein. Infection by IBDV or ectopic expression of VP2 causes a reduction of cellular ORAOV1 and induction of apoptosis, so does knockdown of ORAOV1. In contrast, over-expression of ORAOV1 leads to the inhibition of VP2- or IBDV-induced apoptosis, accompanied with the decreased viral release (p < 0.05). Thus, VP2-induced apoptosis during IBDV infection is mediated by interacting with and reducing ORAOV1, a protein that appears to act as an antiapoptotic molecule and restricts viral release early during IBDV infection.
Collapse
Affiliation(s)
- Yao Qin
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Zhichao Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| |
Collapse
|
23
|
Qin Y, Zheng SJ. Infectious Bursal Disease Virus-Host Interactions: Multifunctional Viral Proteins that Perform Multiple and Differing Jobs. Int J Mol Sci 2017; 18:E161. [PMID: 28098808 PMCID: PMC5297794 DOI: 10.3390/ijms18010161] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/24/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive poultry disease caused by IBD virus (IBDV). The consequent immunosuppression increases susceptibility to other infectious diseases and the risk of subsequent vaccination failure as well. Since the genome of IBDV is relatively small, it has a limited number of proteins inhibiting the cellular antiviral responses and acting as destroyers to the host defense system. Thus, these virulence factors must be multifunctional in order to complete the viral replication cycle in a host cell. Insights into the roles of these viral proteins along with their multiple cellular targets in different pathways will give rise to a rational design for safer and effective vaccines. Here we summarize the recent findings that focus on the virus-cell interactions during IBDV infection at the protein level.
Collapse
Affiliation(s)
- Yao Qin
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China.
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, Beijing 100193, China.
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing 100193, China.
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Kwon Y, Cha J, Chiang J, Tran G, Giaever G, Nislow C, Hur JS, Kwak YS. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J Appl Microbiol 2016; 121:1580-1591. [DOI: 10.1111/jam.13300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Y. Kwon
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | - J. Cha
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| | - J. Chiang
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Tran
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Giaever
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - C. Nislow
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - J.-S. Hur
- Korean Lichen Research Institute; Suncheon National University; Suncheon Korea
| | - Y.-S. Kwak
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| |
Collapse
|
25
|
Tian Y, Tian X, Han X, Chen Y, Song CY, Zhang YB, Tian DL. Expression of ATP binding cassette E1 enhances viability and invasiveness of lung adenocarcinoma cells in vitro. Mol Med Rep 2016; 14:1345-50. [DOI: 10.3892/mmr.2016.5388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 02/17/2016] [Indexed: 11/06/2022] Open
|
26
|
Histone deacetylase inhibitor abexinostat affects chromatin organization and gene transcription in normal B cells and in mantle cell lymphoma. Gene 2016; 580:134-143. [DOI: 10.1016/j.gene.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/26/2022]
|
27
|
Wang Q, Bai J, Abliz A, Liu Y, Gong K, Li J, Shi W, Pan Y, Liu F, Lai S, Yang H, Lu C, Zhang L, Chen W, Xu R, Cai H, Ke Y, Zeng C. An Old Story Retold: Loss of G1 Control Defines A Distinct Genomic Subtype of Esophageal Squamous Cell Carcinoma. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:258-70. [PMID: 26386145 PMCID: PMC4610972 DOI: 10.1016/j.gpb.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/03/2015] [Accepted: 06/19/2015] [Indexed: 01/12/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) has a high mortality rate. To determine the molecular basis of ESCC development, this study sought to identify characteristic genome-wide alterations in ESCC, including exonic mutations and structural alterations. The clinical implications of these genetic alterations were also analyzed. Exome sequencing and verification were performed for nine pairs of ESCC and the matched blood samples, followed by validation with additional samples using Sanger sequencing. Whole-genome SNP arrays were employed to detect copy number alteration (CNA) and loss of heterozygosity (LOH) in 55 cases, including the nine ESCC samples subjected to exome sequencing. A total of 108 non-synonymous somatic mutations (NSSMs) in 102 genes were verified in nine patients. The chromatin modification process was found to be enriched in our gene ontology (GO) analysis. Tumor genomes with TP53 mutations were significantly more unstable than those without TP53 mutations. In terms of the landscape of genomic alterations, deletion of 9p21.3 covering CDKN2A/2B (30.9%), amplification of 11q13.3 covering CCND1 (30.9%), and TP53 point mutation (50.9%) occurred in two-thirds of the cases. These results suggest that the deregulation of the G1 phase during the cell cycle is a key event in ESCC. Furthermore, six minimal common regions were found to be significantly altered in ESCC samples and three of them, 9p21.3, 7p11.2, and 3p12.1, were associated with lymph node metastasis. With the high correlation of TP53 mutation and genomic instability in ESCC, the amplification of CCND1, the deletion of CDKN2A/2B, and the somatic mutation of TP53 appear to play pivotal roles via G1 deregulation and therefore helps to classify this cancer into different genomic subtypes. These findings provide clinical significance that could be useful in future molecular diagnoses and therapeutic targeting.
Collapse
Affiliation(s)
- Qiyan Wang
- MOE Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Genetics, Peking University, Cancer Hospital & Institute, Beijing 100142, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Bai
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Amir Abliz
- MOE Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Genetics, Peking University, Cancer Hospital & Institute, Beijing 100142, China
| | - Ying Liu
- MOE Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Genetics, Peking University, Cancer Hospital & Institute, Beijing 100142, China
| | - Kenan Gong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Li
- MOE Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Genetics, Peking University, Cancer Hospital & Institute, Beijing 100142, China
| | - Wenjie Shi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaqi Pan
- MOE Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Genetics, Peking University, Cancer Hospital & Institute, Beijing 100142, China
| | - Fangfang Liu
- MOE Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Genetics, Peking University, Cancer Hospital & Institute, Beijing 100142, China
| | - Shujuan Lai
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haijun Yang
- Anyang Cancer Hospital, Anyang 455000, China
| | | | - Lixin Zhang
- Anyang Cancer Hospital, Anyang 455000, China
| | - Wei Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruiping Xu
- Anyang Cancer Hospital, Anyang 455000, China
| | - Hong Cai
- MOE Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Genetics, Peking University, Cancer Hospital & Institute, Beijing 100142, China.
| | - Yang Ke
- MOE Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Genetics, Peking University, Cancer Hospital & Institute, Beijing 100142, China.
| | - Changqing Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Abstract
The cellular machinery that incorporates iron-sulfur clusters into proteins is directed to particular targets by adaptor proteins.
Collapse
Affiliation(s)
- Erin L McCarthy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Squire J Booker
- Departments of Biochemistry and Molecular Biology and of Chemistry, Pennsylvania State University, University Park, United States
| |
Collapse
|
29
|
Paul VD, Mühlenhoff U, Stümpfig M, Seebacher J, Kugler KG, Renicke C, Taxis C, Gavin AC, Pierik AJ, Lill R. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. eLife 2015; 4:e08231. [PMID: 26182403 PMCID: PMC4523923 DOI: 10.7554/elife.08231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/15/2015] [Indexed: 11/13/2022] Open
Abstract
Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI:http://dx.doi.org/10.7554/eLife.08231.001 Many proteins depend on small molecules called cofactors to be able to perform their roles in cells. One class of proteins—the iron-sulfur proteins—contain cofactors that are made of clusters of iron and sulfide ions. In yeast, humans and other eukaryotes, the clusters are assembled and incorporated into their target proteins by a group of assembly factors called the CIA machinery. Several components of the CIA machinery have previously been identified and most of them appear to be core components that are needed to assemble many different proteins in cells. Since these iron-sulfur proteins are involved in important processes such as the production of proteins and the maintenance of DNA, losing of any of these CIA proteins tends to be lethal to the organism. Paul et al. used several ‘proteomic’ techniques to study the assembly of iron-sulfur proteins in yeast and identified two new proteins called Yae1 and Lto1 that are involved in this process. Unlike other CIA proteins, Yae1 and Lto1 are only required for the assembly of just one particular iron-sulfur protein called Rli1, which is essential for the production of proteins. Most newly made iron-sulfur proteins can bind directly to a group of CIA proteins called the CIA targeting complex, but Rli1 cannot. The experiments show that Lto1 binds to both the CIA targeting complex and to Yae1, which in turn recruits the Rli1 to the CIA complex. Paul et al. also show that humans have proteins that are very similar to Yae1 and Lto1. Inserting the human counterparts of Yae1 and Lto1 into yeast lacking these proteins could fully restore the assembly of iron-sulfur clusters into Rli1. This suggests that Yae1 and Lto1 proteins evolved in the common ancestors of fungi and humans and have changed little since. Taken together, Paul et al.'s findings reveal that Yae1 and Lto1 act as adaptors that link the rest of the CIA machinery to their specific target protein Rli1 in yeast and humans. A future challenge is to find out the three-dimensional structures of Yae1 and Lto1 to better understand how these proteins work and interact. DOI:http://dx.doi.org/10.7554/eLife.08231.002
Collapse
Affiliation(s)
- Viktoria Désirée Paul
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Jan Seebacher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karl G Kugler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Renicke
- Fachbereich Biologie/Genetik, Philipps-Universität Marburg, Marburg, Germany
| | - Christof Taxis
- Fachbereich Biologie/Genetik, Philipps-Universität Marburg, Marburg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio J Pierik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
30
|
Togashi Y, Arao T, Kato H, Matsumoto K, Terashima M, Hayashi H, de Velasco MA, Fujita Y, Kimura H, Yasuda T, Shiozaki H, Nishio K. Frequent amplification of ORAOV1 gene in esophageal squamous cell cancer promotes an aggressive phenotype via proline metabolism and ROS production. Oncotarget 2015; 5:2962-73. [PMID: 24930674 PMCID: PMC4102783 DOI: 10.18632/oncotarget.1561] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromosomal band 11q13 seems to be one of the most frequently amplified lesions in human cancer, including esophageal squamous cell cancer (ESCC). The oral cancer overexpressed 1 (ORAOV1) gene has been identified within this region, but its detailed biological function in human ESCC remains largely unclear. In our clinical samples of stage III ESCC, ORAOV1 amplification was observed in 49 of 94 cases (53%). ORAOV1 amplification was significantly associated with a poorly differentiated histology and tumors located in the upper or middle esophagus. Patients with ORAOV1 amplification tended to have a shorter survival period, although the difference was not significant. To investigate the function of ORAOV1, we created ORAOV1-overexpressed ESCC cell lines that exhibited increased cellular proliferation and colony formation, compared with in vitro controls. In vivo, ORAOV1-overexpressed cells exhibited a significantly increased tumorigenicity and a significantly larger tumor volume and poorer differentiation than controls. The peptide mass fingerprinting technique demonstrated that ORAOV1 bound to pyrroline-5-carboxylate reductase (PYCR), which is associated with proline metabolism and reactive oxygen species (ROS) production. Then, ORAOV1-overexpressed cell lines were resistant to stress treatment, which was cancelled by PYCR-knockdown. In addition, the ORAOV1-overexpressed cell line had a higher intracellular proline concentration and a lower ROS level. Our findings indicate that the ORAOV1 gene is frequently amplified in ESCC, enhances tumorigenicity and tumor growth, and is associated with a poorly differentiated tumor histology via proline metabolism and ROS production. ORAOV1 could be a novel target for the treatment of ESCC.
Collapse
Affiliation(s)
- Yosuke Togashi
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Garai-Ibabe G, Möller M, Saa L, Grinyte R, Pavlov V. Peroxidase-mimicking DNAzyme modulated growth of CdS nanocrystalline structures in situ through redox reaction: application to development of genosensors and aptasensors. Anal Chem 2014; 86:10059-64. [PMID: 25227690 DOI: 10.1021/ac502360y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work demonstrates the use of the peroxidase-mimicking DNAzyme (peroxidase-DNAzyme) as general and inexpensive platform for development of fluorogenic assays that do not require organic fluorophores. The system is based on the affinity interaction between the peroxidase-DNAzyme bearing hairpin sequence and the analyte (DNA or low molecular weight molecule), which changes the folding of the hairpin structure and consequently the activity of peroxidase-DNAzyme. Hence, in the presence of the analyte the peroxidase-DNAzyme structure is disrupted and does not catalyze the aerobic oxidation of l-cysteine to cystine. Thus, l-cysteine is not removed from the system and the fluorescence of the assay increases due to the in situ formation of fluorescent CdS nanocrystals. The capability of the system as a platform for fluorogenic assays was demonstrated through designing model geno- and aptasensor for the detection of a tumor marker DNA and a low molecular weight analyte, adenosine 5'triphosphate (ATP), respectively.
Collapse
Affiliation(s)
- Gaizka Garai-Ibabe
- Biofunctional Nanomaterials Unit, CIC BiomaGUNE , Parque Tecnológico de San Sebastian, Paseo Miramón 182, Donostia-San Sebastián, 20009, Spain
| | | | | | | | | |
Collapse
|
32
|
Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53:972-90. [PMID: 25183546 DOI: 10.1002/gcc.22214] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.
Collapse
Affiliation(s)
- Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; Departments of Otolaryngology and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|