1
|
Peake JD, Noguchi C, Lin B, Theriault A, O'Connor M, Sheth S, Tanaka K, Nakagawa H, Noguchi E. FANCD2 limits acetaldehyde-induced genomic instability during DNA replication in esophageal keratinocytes. Mol Oncol 2021; 15:3109-3124. [PMID: 34328261 PMCID: PMC8564632 DOI: 10.1002/1878-0261.13072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022] Open
Abstract
Individuals with Fanconi anemia (FA), a rare genetic bone marrow failure syndrome, have an increased risk of young-onset head and neck squamous cell carcinomas (SCCs) and esophageal SCC. The FA DNA repair pathway is activated upon DNA damage induced by acetaldehyde, a chief alcohol metabolite and one of the major carcinogens in humans. However, the molecular basis of acetaldehyde-induced genomic instability in SCCs of the head and neck and of the esophagus in FA remains elusive. Here, we report the effects of acetaldehyde on replication stress response in esophageal epithelial cells (keratinocytes). Acetaldehyde-exposed esophageal keratinocytes displayed accumulation of DNA damage foci consisting of 53BP1 and BRCA1. At physiologically relevant concentrations, acetaldehyde activated the ATR-Chk1 pathway, leading to S- and G2/M-phase delay with accumulation of the FA complementation group D2 protein (FANCD2) at the sites of DNA synthesis, suggesting that acetaldehyde impedes replication fork progression. Consistently, depletion of the replication fork protection protein Timeless led to elevated DNA damage upon acetaldehyde exposure. Furthermore, FANCD2 depletion exacerbated replication abnormalities, elevated DNA damage, and led to apoptotic cell death, indicating that FANCD2 prevents acetaldehyde-induced genomic instability in esophageal keratinocytes. These observations contribute to our understanding of the mechanisms that drive genomic instability in FA patients and alcohol-related carcinogenesis, thereby providing a translational implication in the development of more effective therapies for SCCs.
Collapse
Affiliation(s)
- Jasmine D. Peake
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Baicheng Lin
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Amber Theriault
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Margaret O'Connor
- Program in Molecular and Cellular Biology and GeneticsGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Shivani Sheth
- Program in Cancer BiologyGraduate School of Biomedical Sciences and Professional StudiesDrexel University College of MedicinePhiladelphiaPAUSA
| | - Koji Tanaka
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Present address:
Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hiroshi Nakagawa
- Gastroenterology DivisionDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Division of Digestive and Liver DiseasesDepartment of MedicineColumbia University Herbert Irving Comprehensive Cancer CenterNew YorkNYUSA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphiaPAUSA
| |
Collapse
|
2
|
Ho MW, Ryan MP, Gupta J, Triantafyllou A, Risk JM, Shaw RJ, Wilson JB. Loss of FANCD2 and related proteins may predict malignant transformation in oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 133:377-387. [PMID: 34493474 DOI: 10.1016/j.oooo.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Predicting malignant transformation (MT) in oral epithelial dysplasia (OED) is challenging. The higher rate of MT reported in nonsmokers suggests an endogenous etiology in oncogenesis. We hypothesize that loss of FANCD2 and associated proteins could influence genomic instability and MT in the absence of environmental carcinogens. STUDY DESIGN Longitudinal archival samples were obtained from 40 individuals with OED: from diagnosis to the most recent review in 23 patients with stable OED or until excision of the squamous cell carcinoma in 17 patients with unstable OED undergoing MT. Histopathological reassessment, immunohistochemistry for FANCD2, and Western blotting for phosphorylation/monoubiquitylation status of ATR, CHK1, FANCD2, and FANCG were undertaken on each tissue sample. RESULTS Decreased expression of FANCD2 was observed in the diagnostic biopsies of OED lesions that later underwent MT. Combining the FANCD2 expression scores with histologic grading more accurately predicted MT (P = .005) than histology alone, and it correctly predicted MT in 10 of 17 initial biopsies. Significantly reduced expression of total FANCD2, pFANCD2, pATR, pCHK-1, and pFANCG was observed in unstable OED. CONCLUSIONS There is preliminary evidence that defects in the DNA damage sensing/signaling/repair cascade are associated with MT in OED. Loss of expression of FANCD2 protein in association with a higher histologic grade of dysplasia offered better prediction of MT than clinicopathologic parameters alone.
Collapse
Affiliation(s)
- Michael W Ho
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Oral and Maxillofacial Surgery, Leeds Teaching Hospitals NHS Trust, Leeds Dental Institute, Leeds, United Kingdom.
| | - Mark P Ryan
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Juhi Gupta
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Asterios Triantafyllou
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Janet M Risk
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard J Shaw
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Regional Maxillofacial Unit, Aintree University Hospital, Liverpool, United Kingdom
| | - James B Wilson
- Mersey Head and Neck Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Increased Non-Homologous End Joining Makes DNA-PK a Promising Target for Therapeutic Intervention in Uveal Melanoma. Cancers (Basel) 2019; 11:cancers11091278. [PMID: 31480356 PMCID: PMC6769470 DOI: 10.3390/cancers11091278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumour in adults, with a mean survival of six months following metastasis. The survival rates have not improved in over 30 years. This study has shown that sister chromatid exchange (SCE) is low in UM which is likely due to a reduced expression of FANCD2. As FANCD2 can function to suppress non-homologous end joining (NHEJ), this study therefore investigated NHEJ in UM. The activation of the catalytic subunit of the NHEJ pathway protein DNA-dependent protein kinase (DNA-PK) was measured by analysing the foci formation and the ligation efficiency by NHEJ determined using a plasmid-based end-joining assay. Using small-interfering RNA (siRNA) knock-down, and chemical inhibitors of DNA-PK, the survival of primary UM cultures and two cell lines were determined. To assess the homologous recombination capacity in response to the inhibition of DNA-PK, a SCE analysis was performed. In addition, to support the findings, the messenger RNA (mRNA) expression of genes associated with NHEJ was analysed using the Cancer Genome Atlas (TCGA)-UM RNAseq data (n = 79). The NHEJ activity and DNA-PKcs activation was upregulated in UM and the inhibition of DNA-PK selectively induced apoptosis and sensitized to ionising radiation and inter-strand cross-linking agents. The inhibition of the NHEJ protein DNA-PK is lethal to UM, indicating a potentially effective therapeutic option, either alone or as a sensitizer for other treatments.
Collapse
|
4
|
Sister Chromatid Exchange and Genomic Instability in Soft Tissue Sarcomas: Potential Implications for Response to DNA-Damaging Treatments. Sarcoma 2018; 2018:3082526. [PMID: 29853780 PMCID: PMC5964616 DOI: 10.1155/2018/3082526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/07/2018] [Indexed: 12/30/2022] Open
Abstract
Sarcomas are rare heterogeneous malignancies of mesenchymal origin characterised by complex karyotypes but no specific abnormalities. Recurrence is common, and metastatic disease carries poor survival despite standard DNA-damaging radiotherapy or chemotherapy. DNA double-strand breaks (DSBs) are either repaired by mechanisms such as homologous recombination (HR) or result in cell death by apoptosis. Endogenous γH2AX formation and SCE formation are early and late events, respectively, and their levels are considered surrogate measures of genomic instability. Combined γH2AX and SCE analysis was used to evaluate endogenous DNA DSB levels (and their subsequent repair) in 9 primary sarcoma cell lines and compared with well-established commercial lines. All the sarcoma cell lines had elevated γH2AX and SCE levels, but there was no correlation between the DNA DSB frequency and subsequent SCE. Typically, radioresistant osteosarcoma cells had relatively low γH2AX frequency but high SCE counts suggestive of efficient DNA repair. Conversely, liposarcoma cells derived from a radiosensitive tumour had high H2AX but relatively lower SCE levels that may imply inefficient DNA DSB repair. To our knowledge, this is the first report that correlates H2AX and SCE levels in primary sarcoma cell lines and may provide insight into potential response to DNA-damaging treatments.
Collapse
|
5
|
Federico MB, Vallerga MB, Radl A, Paviolo NS, Bocco JL, Di Giorgio M, Soria G, Gottifredi V. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks. PLoS Genet 2016; 12:e1005792. [PMID: 26765540 PMCID: PMC4712966 DOI: 10.1371/journal.pgen.1005792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/17/2015] [Indexed: 12/29/2022] Open
Abstract
Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.
Collapse
Affiliation(s)
- María Belén Federico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - María Belén Vallerga
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - Analía Radl
- Laboratorio de Dosimetría Biológica, Autoridad Regulatoria Nuclear, Buenos Aires, Argentina
| | - Natalia Soledad Paviolo
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología/ CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marina Di Giorgio
- Laboratorio de Dosimetría Biológica, Autoridad Regulatoria Nuclear, Buenos Aires, Argentina
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología/ CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Owen N, Hejna J, Rennie S, Mitchell A, Newell AH, Ziaie N, Moses RE, Olson SB. Bloom syndrome radials are predominantly non-homologous and are suppressed by phosphorylated BLM. Cytogenet Genome Res 2015; 144:255-263. [PMID: 25766002 DOI: 10.1159/000375247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2014] [Indexed: 01/01/2023] Open
Abstract
Biallelic mutations in BLM cause Bloom syndrome (BS), a genome instability disorder characterized by growth retardation, sun sensitivity and a predisposition to cancer. As evidence of decreased genome stability, BS cells demonstrate not only elevated levels of spontaneous sister chromatid exchanges (SCEs), but also exhibit chromosomal radial formation. The molecular nature and mechanism of radial formation is not known, but radials have been thought to be DNA recombination intermediates between homologs that failed to resolve. However, we find that radials in BS cells occur over 95% between non-homologous chromosomes, and occur non-randomly throughout the genome. BLM must be phosphorylated at T99 and T122 for certain cell cycle checkpoints, but it is not known whether these modifications are necessary to suppress radial formation. We find that exogenous BLM constructs preventing phosphorylation at T99 and T122 are not able to suppress radial formation in BS cells, but are able to inhibit SCE formation. These findings indicate that BLM functions in 2 distinct pathways requiring different modifications. In one pathway, for which the phosphorylation marks appear dispensable, BLM functions to suppress SCE formation. In a second pathway, T99 and T122 phosphorylations are essential for suppression of chromosomal radial formation, both those formed spontaneously and those formed following interstrand crosslink damage.
Collapse
Affiliation(s)
- Nichole Owen
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - James Hejna
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501 Japan
| | - Scott Rennie
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Asia Mitchell
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Amy Hanlon Newell
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Navid Ziaie
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, TX 77030
| | - Susan B Olson
- Department of Molecular and Medical Genetics Oregon Health & Science University, 3181 SW Sam Jackson Park, Portland, OR 97239
| |
Collapse
|
7
|
Bhatia V, Barroso SI, García-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 2014; 511:362-5. [DOI: 10.1038/nature13374] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/08/2014] [Indexed: 12/23/2022]
|