1
|
Wen T, Chen M, Cryns VL, Anderson RA. Regulation of the poly(A) Polymerase Star-PAP by a Nuclear Phosphoinositide Signalosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601467. [PMID: 39005346 PMCID: PMC11244925 DOI: 10.1101/2024.07.01.601467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Star-PAP is a noncanonical poly(A) polymerase that controls gene expression. Star-PAP was previously reported to bind the phosphatidylinositol 4-phosphate 5-kinase PIPKI⍺ and its product phosphatidylinositol 4,5-bisphosphate, which regulate Star-PAP poly(A) polymerase activity and expression of specific genes. Recent studies have revealed a nuclear PI signaling pathway in which the PI transfer proteins PITP⍺/β, PI kinases and phosphatases bind p53 to sequentially modify protein-linked phosphatidylinositol phosphates and regulate its function. Here we demonstrate that multiple phosphoinositides, including phosphatidylinositol 4-monophosphate and phosphatidylinositol 3,4,5-trisphosphate are also coupled to Star-PAP in response to stress. This is initiated by PITP⍺/β binding to Star-PAP, while the Star-PAP-linked phosphoinositides are modified by PI4KII⍺, PIPKI⍺, IPMK, and PTEN recruited to Star- PAP. The phosphoinositide coupling enhances the association of the small heat shock proteins HSP27/⍺B-crystallin with Star-PAP. Knockdown of the PITPs, kinases, or HSP27 reduce the expression of Star-PAP targets. Our results demonstrate that the PITPs generate Star-PAP-PIPn complexes that are then modified by PI kinases/phosphatases and small heat shock proteins that regulate the linked phosphoinositide phosphorylation and Star-PAP activity in response to stress.
Collapse
|
2
|
Qu W, Sui L, Li Y. Vaccine escape challenges virus prevention: The example of two vaccine-preventable oncogenic viruses. J Med Virol 2023; 95:e29184. [PMID: 37943176 DOI: 10.1002/jmv.29184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]
Abstract
Over the years, the pace of developing vaccines for HBV and HPV has never stopped. After more than 30 years of application, the HBV vaccine has reduced 80% of hepatocellular carcinoma (HCC). However, vaccine escape variants occur under selective pressure induced by widespread vaccination and antiviral therapy, which results in fulminant infection and horizontal transmission. Several mechanisms have been studied to explain HBV vaccine escape, including vaccine escape mutations (VEMs) in the major hydrophilic region, which leads to a decrease in the binding ability to neutralize antibodies and is the primary escape mechanism, protein conformational and N-linked glycosylation sites changes caused by VEMs, differences in genotype distribution, gene recombination, and some temporarily unknown reasons. However, effective solutions are still being explored. The HPV vaccine has also been proven to prevent 70%-90% of cervical cancer worldwide. Cases of HPV infection after being vaccinated have been observed in clinical practice. However, few researchers have paid attention to the mechanism of HPV vaccine escape. Thus, we reviewed the literature on vaccine escape of both HBV and HPV to discuss the mechanism of the virus escaping from vaccine protection and possible solutions to this problem. We analyzed the gap between studies of HPV and HBV and made prospects for further research in HPV vaccine escape.
Collapse
Affiliation(s)
- Wenjie Qu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Long Sui
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yanyun Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Duan A, Kong L, An T, Zhou H, Yu C, Li Y. Star-PAP regulates tumor protein D52 through modulating miR-449a/34a in breast cancer. Biol Open 2019; 8:bio.045914. [PMID: 31649118 PMCID: PMC6899025 DOI: 10.1242/bio.045914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tumor protein D52 (TPD52) is an oncogene amplified and overexpressed in various cancers. Tumor-suppressive microRNA-449a and microRNA-34a (miR-449a/34a) were recently reported to inhibit breast cancer cell migration and invasion via targeting TPD52. However, the upstream events are not clearly defined. Star-PAP is a non-canonical poly (A) polymerase which could regulate the expression of many miRNAs and mRNAs, but its biological functions are not well elucidated. The present study aimed to explore the regulative roles of Star-PAP in miR-449a/34a and TPD52 expression in breast cancer. We observed a negative correlation between the expression of TPD52 and Star-PAP in breast cancer. Overexpression of Star-PAP inhibited TPD52 expression, while endogenous Star-PAP knockdown led to increased TPD52. Furthermore, RNA immunoprecipitation assay suggested that Star-PAP could not bind to TPD52, independent of the 3′-end processing. RNA pull-down assay showed that Star-PAP could bind to 3′region of miR-449a. In line with these results, blunted cell proliferation or cell apoptosis caused by Star-PAP was rescued by overexpression of TPD52 or downregulation of miR-449a/34a. Our findings identified that Star-PAP regulates TPD52 by modulating miR-449a/34a, which may be an important molecular mechanism underlying the tumorigenesis of breast cancer and provide a rational therapeutic target for breast cancer treatment. Summary: Star-PAP is an important regulator of miR-449a/34a and was first identified indirectly regulating TPD52 via modulating miR-449a/34a. Furthermore, Star-PAP-miR-449a/34a-TPD52 axis is involved in proliferation and apoptosis of breast cancer cells.
Collapse
Affiliation(s)
- Aizhu Duan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P.R. China
| | - Tao An
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P.R. China
| | - Hongyu Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P.R. China
| | - Chunlei Yu
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637100, P.R. China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P.R. China
| |
Collapse
|
4
|
Snoek BC, Babion I, Koppers-Lalic D, Pegtel DM, Steenbergen RD. Altered microRNA processing proteins in HPV-induced cancers. Curr Opin Virol 2019; 39:23-32. [PMID: 31408800 DOI: 10.1016/j.coviro.2019.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
Abstract
High-risk human papilloma virus (hrHPV) infections are associated with the development of anogenital cancers, in particular cervical cancer, and a subset of head and neck cancers. Previous studies have shown that microRNAs (miRNAs) contribute to the development and progression of HPV-induced malignancies. miRNAs are small non-coding RNAs that exist as multiple length and sequence variants, termed isomiRs. Efficient processing of miRNAs and generation of isomiRs is accomplished by several processing proteins. Deregulation of Drosha, AGO2, and TENT2, among others, has been observed in HPV-induced cancers and was even found at the precancerous stage. This suggests that miRNA processing proteins may be involved during early cancer development and that the generated isomiRs could provide promising biomarkers for early cancer diagnosis.
Collapse
Affiliation(s)
- Barbara C Snoek
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Iris Babion
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Danijela Koppers-Lalic
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurosurgery, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Dirk M Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| | - Renske Dm Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands.
| |
Collapse
|
5
|
Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion. Mol Cell Biol 2018; 38:MCB.00457-17. [PMID: 29203642 PMCID: PMC5809686 DOI: 10.1128/mcb.00457-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3′-end processing and expression of pre-mRNAs encoding key anti-invasive factors (KISS1R, CDH1, NME1, CDH13, FEZ1, and WIF1) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP–PIPKIα-mediated 3′-end processing as a key anti-invasive mechanism in breast cancer.
Collapse
|
6
|
Han F, Li Y, Lu Q, Ma L, Wang H, Jiang J, Li Z, Li Y. 3-(2-Chloropropyl amide)-4-methoxy-N-phenylbenzamide inhibits expression of HPV oncogenes in human cervical cancer cell. Virol J 2017; 14:145. [PMID: 28754129 PMCID: PMC5534069 DOI: 10.1186/s12985-017-0806-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human papillomaviruses (HPVs) are the primary causative agents for cervical cancer, and HPV oncoproteins E6 and E7 are known to be the main reason for the onset and maintenance of the malignancies. Therefore, inhibition of viral E6 and E7 oncoproteins expression represents a viable strategy to cervical cancer therapies. This study is to evaluate the antiviral effect of a novel N-Phenylbenzamide derivative, 3-(2-Chloropropyl amide)-4-methoxy-N-phenylbenzamide (L17), against HPV16 in vitro and identify its associated mechanism of action in cervical cancer cells. METHODS The cytotoxic effect of L17 was assessed by MTT assay. The mRNA and protein levels of E6 and E7 oncogenes were analyzed by quantitative real-time reverse transcription PCR (qRT-PCR) and Western blot, respectively. p53 and Rb protein levels were also detected by Western blot. The effect of L17 on cell cycle was analyzed by flow cytometry. RESULTS The cytotoxic effect of L17 was greater in cervical carcinoma cells than in normal cells. L17 significantly reduced the expression of HPV16 E6 and E7 mRNA and protein, at least partly by enhancing degradation of HPV16 E6 and E7 mRNA. Moreover, reduced expression of E6 and E7 induced by L17 resulted in the up-regulation of p53 and Rb expression, which subsequently induced CaSki cells arrest at G0/G1 phase. CONCLUSIONS L17 has antiviral activity through suppressing E6 and E7 oncogene expression and could inhibit CaSki cell proliferating by inducing cells arrest at G0/G1 phase at nontoxic concentration, implying that L17 might be exploited as a candidate agent for HPV-associated cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Fang Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, No 1, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Yanping Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, No 1, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Qiaoni Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, No 1, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Linlin Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, No 1, Tiantan Xili, Beijing, 100050, People's Republic of China.,Key Laboratory of Molecular Imaging of Shanghai Education Commission, Shanghai University of Medicine & Health Sciences, No 279, Zhouzhugong Road, Shanghai, 201318, People's Republic of China
| | - Huiqiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, No 1, Tiantan Xili, Beijing, 100050, People's Republic of China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, No 1, Tiantan Xili, Beijing, 100050, People's Republic of China.,Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No 1, Tiantan Xili, Beijing, 100050, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, No 1, Tiantan Xili, Beijing, 100050, People's Republic of China.
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, No 1, Tiantan Xili, Beijing, 100050, People's Republic of China.
| |
Collapse
|
7
|
Hamann BL, Blind RD. Nuclear phosphoinositide regulation of chromatin. J Cell Physiol 2017; 233:107-123. [PMID: 28256711 DOI: 10.1002/jcp.25886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear-driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology.
Collapse
Affiliation(s)
- Bree L Hamann
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Raymond D Blind
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Medicine, Biochemistry and Pharmacology, Division of Diabetes Endocrinology and Metabolism, The Vanderbilt Diabetes Research and Training Center and the Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
8
|
Star-PAP, a poly(A) polymerase, functions as a tumor suppressor in an orthotopic human breast cancer model. Cell Death Dis 2017; 8:e2582. [PMID: 28151486 PMCID: PMC5386448 DOI: 10.1038/cddis.2016.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Star-PAP is a noncanonical poly(A) polymerase and required for the expression of a select set of mRNAs. However, the pathological role of Star-PAP in cancer largely remains unknown. In this study, we observed decreased expression of Star-PAP in breast cancer cell lines and tissues. Ectopic Star-PAP expression inhibited proliferation as well as colony-forming ability of breast cancer cells. In breast cancer patients, high levels of Star-PAP correlated with an improved prognosis. Moreover, by regulating the expression of BIK (BCL2-interacting killer), Star-PAP induced apoptosis of breast cancer cells through the mitochondrial pathway. The growth of breast cancer xenografts in NOD/SCID mice was also inhibited by the doxycycline-induced Star-PAP overexpression. Furthermore, Star-PAP sensitized breast cancer cells to chemotherapy drugs both in vitro and in vivo. In mammary epithelial cells, Star-PAP knockdown partially transformed these cells and induced them to undergo epithelial-mesenchymal transition (EMT). These findings suggested that Star-PAP possesses tumor-suppressing activity and can be a valuable target for developing new cancer therapeutic strategies.
Collapse
|
9
|
Choi S, Anderson RA. IQGAP1 is a phosphoinositide effector and kinase scaffold. Adv Biol Regul 2015; 60:29-35. [PMID: 26554303 DOI: 10.1016/j.jbior.2015.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/16/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is a lipid messenger that regulates a wide variety of cellular functions. The majority of cellular PI4,5P2 is generated by isoforms of the type I phosphatidylinositol phosphate kinases (PIPKI) that are generated from three genes, and each PIPKI isoform has a unique distribution and function in cells. It has been shown that the signaling specificity of PI4,5P2 can be determined by a physical association of PIPKs with PI4,5P2 effectors. IQGAP1 is newly identified as an interactor of multiple isoforms of PIPKs. Considering the versatile roles of IQGAP1 in cellular signaling pathways, IQGAP1 may confer isoform-specific roles of PIPKs in distinct cellular locations. In this mini review, the emerging roles of PIPKs that are regulated by an association with IQGAP1 will be summarized. Focuses will be on cell migration, vesicle trafficking, cell signaling, and nuclear events.
Collapse
Affiliation(s)
- Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Sadaie M, Dillon C, Narita M, Young ARJ, Cairney CJ, Godwin LS, Torrance CJ, Bennett DC, Keith WN, Narita M. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol Biol Cell 2015; 26:2971-85. [PMID: 26133385 PMCID: PMC4551313 DOI: 10.1091/mbc.e15-01-0003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.
Collapse
Affiliation(s)
- Mahito Sadaie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Christian Dillon
- Cancer Research Technology Discovery Laboratories, Wolfson Institute for Biomedical Research, London WC1E 6BT, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Andrew R. J. Young
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Claire J. Cairney
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lauren S. Godwin
- St. George's, University of London, London SW17 0RE, United Kingdom
| | | | | | - W. Nicol Keith
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
11
|
Choi S, Thapa N, Tan X, Hedman AC, Anderson RA. PIP kinases define PI4,5P₂signaling specificity by association with effectors. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:711-23. [PMID: 25617736 PMCID: PMC4380618 DOI: 10.1016/j.bbalip.2015.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI4,5P₂) is an essential lipid messenger with roles in all eukaryotes and most aspects of human physiology. By controlling the targeting and activity of its effectors, PI4,5P₂modulates processes, such as cell migration, vesicular trafficking, cellular morphogenesis, signaling and gene expression. In cells, PI4,5P₂has a much higher concentration than other phosphoinositide species and its total content is largely unchanged in response to extracellular stimuli. The discovery of a vast array of PI4,5P₂ binding proteins is consistent with data showing that the majority of cellular PI4,5P₂is sequestered. This supports a mechanism where PI4,5P₂functions as a localized and highly specific messenger. Further support of this mechanism comes from the de novo synthesis of PI4,5P₂which is often linked with PIP kinase interaction with PI4,5P₂effectors and is a mechanism to define specificity of PI4,5P₂signaling. The association of PI4,5P₂-generating enzymes with PI4,5P₂effectors regulate effector function both temporally and spatially in cells. In this review, the PI4,5P₂effectors whose functions are tightly regulated by associations with PI4,5P₂-generating enzymes will be discussed. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Suyong Choi
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaojun Tan
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Andrew C Hedman
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Cotugno R, Basile A, Romano E, Gallotta D, Belisario MA. BAG3 down-modulation sensitizes HPV18(+) HeLa cells to PEITC-induced apoptosis and restores p53. Cancer Lett 2014; 354:263-71. [PMID: 25175321 PMCID: PMC7116956 DOI: 10.1016/j.canlet.2014.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 12/19/2022]
Abstract
BAG3 is a multi-functional component of tumor cell pro-survival machinery, and its biological functions have been largely associated to proteasome system. Here, we show that BAG3 down-modulation resulted in reduced cell viability and enhanced PEITC-induced apoptosis largely more extensively in HeLa (HPV18(+)) rather than in C33A (HPV(-)) cervical carcinoma cell lines. Moreover, we demonstrate that BAG3 suppression led to a decrease of viral E6 oncoprotein and a concomitant recovery of p53 tumor suppressor, the best recognized target of E6 for proteasome degradation. E6 and p53 expression were modulated at protein level, since their respective mRNAs were unaffected. Taken together our findings reveal a novel role for BAG3 as host protein contributing to HPV18 E6-activated pro-survival strategies, and suggest a possible relevance of its expression levels in drug/radiotherapy-resistance of HPV18-bearing cervical carcinomas.
Collapse
Affiliation(s)
- Roberta Cotugno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II n.132, Fisciano, 84084, Salerno, Italy
| | - Anna Basile
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II n.132, Fisciano, 84084, Salerno, Italy
| | - Elena Romano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II n.132, Fisciano, 84084, Salerno, Italy
| | - Dario Gallotta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II n.132, Fisciano, 84084, Salerno, Italy
| | - Maria Antonietta Belisario
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II n.132, Fisciano, 84084, Salerno, Italy.
| |
Collapse
|
13
|
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2014; 19:1423-37. [PMID: 24202395 DOI: 10.1038/nm.3394] [Citation(s) in RCA: 5672] [Impact Index Per Article: 515.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/09/2013] [Indexed: 02/07/2023]
Abstract
Cancers develop in complex tissue environments, which they depend on for sustained growth, invasion and metastasis. Unlike tumor cells, stromal cell types within the tumor microenvironment (TME) are genetically stable and thus represent an attractive therapeutic target with reduced risk of resistance and tumor recurrence. However, specifically disrupting the pro-tumorigenic TME is a challenging undertaking, as the TME has diverse capacities to induce both beneficial and adverse consequences for tumorigenesis. Furthermore, many studies have shown that the microenvironment is capable of normalizing tumor cells, suggesting that re-education of stromal cells, rather than targeted ablation per se, may be an effective strategy for treating cancer. Here we discuss the paradoxical roles of the TME during specific stages of cancer progression and metastasis, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.
Collapse
Affiliation(s)
- Daniela F Quail
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|