1
|
Hoffmann M, Hennighausen L. Spotlight on amino acid changing mutations in the JAK-STAT pathway: from disease-specific mutation to general mutation databases. Sci Rep 2025; 15:6202. [PMID: 39979591 PMCID: PMC11842829 DOI: 10.1038/s41598-025-90788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
The JAK-STAT pathway is central to cytokine signaling and controls normal physiology and disease. Aberrant activation via mutations that change amino acids in proteins of the pathway can result in diseases. While disease-centric databases like COSMIC catalog mutations in cancer, their prevalence in healthy populations remains underexplored. We systematically studied such mutations in the JAK-STAT genes by comparing COSMIC and the population-focused All of Us database. Our analysis revealed frequent mutations in all JAK and STAT domains, particularly among white females. We further identified three categories: Mutations uniquely found in All of Us that were associated with cancer in the literature but could not be found in COSMIC, underscoring COSMIC's limitations. Mutations unique to COSMIC underline their potential as drivers of cancer due to their absence in the general population. Mutations present in both databases, e.g., JAK2Val617Phe/V617F - widely recognized as a cancer driver in hematopoietic cells, but without disease associations in All of Us, raising the possibility that combinatorial SNPs might be responsible for disease development. These findings illustrate the complementarity of both databases for understanding mutation impacts and underscore the need for multi-mutation analyses to uncover genetic factors underlying complex diseases and advance personalized medicine.
Collapse
Affiliation(s)
- Markus Hoffmann
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| |
Collapse
|
2
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
3
|
In vivo impact of JAK3 A573V mutation revealed using zebrafish. Cell Mol Life Sci 2022; 79:322. [PMID: 35622134 PMCID: PMC9142468 DOI: 10.1007/s00018-022-04361-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Background Janus kinase 3 (JAK3) acts downstream of the interleukin-2 (IL-2) receptor family to play a pivotal role in the regulation of lymphoid cell development. Activating JAK3 mutations are associated with a number of lymphoid and other malignancies, with mutations within the regulatory pseudokinase domain common. Methods The pseudokinase domain mutations A572V and A573V were separately introduced into the highly conserved zebrafish Jak3 and transiently expressed in cell lines and zebrafish embryos to examine their activity and impact on early T cells. Genome editing was subsequently used to introduce the A573V mutation into the zebrafish genome to study the effects of JAK3 activation on lymphoid cells in a physiologically relevant context throughout the life-course. Results Zebrafish Jak3 A573V produced the strongest activation of downstream STAT5 in vitro and elicited a significant increase in T cells in zebrafish embryos. Zebrafish carrying just a single copy of the Jak3 A573V allele displayed elevated embryonic T cells, which continued into adulthood. Hematopoietic precursors and NK cells were also increased, but not B cells. The lymphoproliferative effects of Jak3 A573V in embryos was shown to be dependent on zebrafish IL-2Rγc, JAK1 and STAT5B equivalents, and could be suppressed with the JAK3 inhibitor Tofacitinib. Conclusions This study demonstrates that a single JAK3 A573V allele expressed from the endogenous locus was able to enhance lymphopoiesis throughout the life-course, which was mediated via an IL-2Rγc/JAK1/JAK3/STAT5 signaling pathway and was sensitive to Tofacitinib. This extends our understanding of oncogenic JAK3 mutations and creates a novel model to underpin further translational investigations. Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04361-8.
Collapse
|
4
|
Si H, Wang J, He R, Yu X, Li S, Huang J, Li J, Tang X, Song X, Tu Z, Zhang Z, Ding K. Identification of U937 JAK3-M511I Acute Myeloid Leukemia Cells as a Sensitive Model to JAK3 Inhibitor. Front Oncol 2022; 11:807200. [PMID: 35111683 PMCID: PMC8802890 DOI: 10.3389/fonc.2021.807200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mutated JAK3 has been considered a promising target for cancer therapy. Activating mutations of JAK3 are observed in 3.9%-10% of acute myeloid leukemia (AML) patients, but it is unclear whether AML cells are sensitive to JAK3 inhibitors, and no disease-related human AML cell model has been reported. We have identified U937 as the first human AML cell line expressing the JAK3M511I activated mutation and confirmed that JAK3 inhibitors sensitively suppress the proliferation of U937 AML cells.
Collapse
Affiliation(s)
- Hongfei Si
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jie Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuwen Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Shan Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jing Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jie Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xia Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojuan Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhengchao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Zhang C, Dang D, Cong L, Sun H, Cong X. Pivotal factors associated with the immunosuppressive tumor microenvironment and melanoma metastasis. Cancer Med 2021; 10:4710-4720. [PMID: 34159752 PMCID: PMC8290234 DOI: 10.1002/cam4.3963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Considering melanoma is the deadliest malignancy among dermatoma and presently lacks effective therapies, there is an urgent need to investigate the potential mechanisms underlying melanoma metastasis and determine prospective therapeutic targets for precise treatment of melanoma. METHOD Hub genes in melanoma metastasis were identified by analyzing RNA-seq data (mRNA, miRNA, and lncRNA) obtained from TCGA database. Then the identified hub genes were validated in human tissues with qRT-PCR, followed by survival analysis. Competing endogenous RNAs of the hub genes were defined to clarify potential molecular mechanism of melanoma progression. Then central gene-related signaling pathways were analyzed, followed by immune cell abundance analysis in tumor microenvironment with CYTERSORTx. RESULT A tetrad of IL2RA, IL2RG, IFNG, and IL7R genes were determined as hub genes and verified by qRT-PCR, which were significantly associated with unfavorable prognosis in melanoma. LINC02446, LINC01857, and LINC02384 may act as competing endogenous lncRNAs of IL2RA and IL7R through absorbing their shared miR.891a.5p and miR.203b.3p. JAK-STAT signaling pathway identified as the most relevant pathway in melanoma metastasis, as well as a wealthy of genes including TNFRSF 13B, TNFRSF17, TNFRSF9, TNFRSF8, TNFRSF13C, TNFRSF11B, LAG3, NRP1, ENTPD1, NT5E, CCL21, and CCR7, may induce tumor autoimmune suppression through enhancing regulatory T-cell abundance and performance in the tumor microenvironment. And regulatory T-cell proportion was indeed critically elevated in metastatic melanoma relative to primary melanoma, as well as in highly expressed IL2RA, IL2RG, IL7R, and IFNG group than their respective counterparts. CONCLUSION Elevated IL2RA, IL2RG, IL7R, and IFNG expression may play a central role in promoting melanoma metastasis through up regulation of intratumoral regulatory T-cell proportion mainly by activation of JAK-STAT signaling pathway. LINC02446, LINC01857, and LINC02384 may stimulate melanoma progression by reducing tumor-protecting miR.891a.5p and miR.203b.3p. A number of identified molecules including TNFRSF13B, LAG3, NRP1, ENTPD1, NT5E, CCL21, and CCR7 can serve as future therapeutic targets in melanoma treatment.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of DermatologyChina‐Japan Union Hospital of Jilin UniversityChangchunPeople’s Republic of China
- Department of Pediatric SurgeryFirst Hospital of Jilin UniversityChangchunPeople’s Republic of China
| | - Dan Dang
- Department of NeonatologyFirst Hospital of Jilin UniversityChangchunPeople’s Republic of China
| | - Lele Cong
- Department of DermatologyChina‐Japan Union Hospital of Jilin UniversityChangchunPeople’s Republic of China
| | - Hongyan Sun
- Department of BiobankChina‐Japan Union Hospital of Jilin UniversityChangchunPeople’s Republic of China
| | - Xianling Cong
- Department of DermatologyChina‐Japan Union Hospital of Jilin UniversityChangchunPeople’s Republic of China
| |
Collapse
|
6
|
Davare MA, Henderson JJ, Agarwal A, Wagner JP, Iyer SR, Shah N, Woltjer R, Somwar R, Gilheeney SW, DeCarvalo A, Mikkelson T, Van Meir EG, Ladanyi M, Druker BJ. Rare but Recurrent ROS1 Fusions Resulting From Chromosome 6q22 Microdeletions are Targetable Oncogenes in Glioma. Clin Cancer Res 2018; 24:6471-6482. [PMID: 30171048 DOI: 10.1158/1078-0432.ccr-18-1052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 02/03/2023]
Abstract
PURPOSE Gliomas, a genetically heterogeneous group of primary central nervous system tumors, continue to pose a significant clinical challenge. Discovery of chromosomal rearrangements involving kinase genes has enabled precision therapy, and improved outcomes in several malignancies. EXPERIMENTAL DESIGN Positing that similar benefit could be accomplished for patients with brain cancer, we evaluated The Cancer Genome Atlas (TCGA) glioblastoma dataset. Functional validation of the oncogenic potential and inhibitory sensitivity of discovered ROS1 fusions was performed using three independent cell-based model systems, and an in vivo murine xenograft study. RESULTS In silico analysis revealed previously unreported intrachromosomal 6q22 microdeletions that generate ROS1-fusions from TCGA glioblastoma dataset. ROS1 fusions in primary glioma and ependymoma were independently corroborated from MSK-IMPACT and Foundation Medicine clinical datasets. GOPC-ROS1 is a recurrent ROS1 fusion in primary central nervous system (CNS) tumors. CEP85L-ROS1 and GOPC-ROS1 are transforming oncogenes in cells of astrocytic lineage, and amenable to pharmacologic inhibition with several ROS1 inhibitors even when occurring concurrently with other cancer hotspot aberrations frequently associated with glioblastoma. Oral monotherapy with a brain-permeable ROS1 inhibitor, lorlatinib, significantly prolonged survival in an intracranially xenografted tumor model generated from a ROS1 fusion-positive glioblastoma cell line. CONCLUSIONS Our findings highlight that CNS tumors should be specifically interrogated for these rare intrachromosomal 6q22 microdeletion events that generate actionable ROS1 fusions. ROS1 fusions in primary brain cancer may be amenable for clinical intervention with kinase inhibitors, and this holds the potential of novel treatment paradigms in these treatment-refractory cancer types, particularly in glioblastoma.
Collapse
Affiliation(s)
- Monika A Davare
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Pediatric Research Institute, Oregon Health and Sciences University, Portland, Oregon.
| | - Jacob J Henderson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Pediatric Research Institute, Oregon Health and Sciences University, Portland, Oregon
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon
| | - Jacob P Wagner
- Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon
| | - Sudarshan R Iyer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Papé Pediatric Research Institute, Oregon Health and Sciences University, Portland, Oregon
| | - Nameeta Shah
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle Washington
| | - Randy Woltjer
- Department of Pathology, Oregon Health and Sciences University, Portland, Oregon
| | - Romel Somwar
- Department of Pathology, Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen W Gilheeney
- Departments of Neurology and Neurosurgery, Henry Ford Hospital, Detroit, Michigan
| | - Ana DeCarvalo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tom Mikkelson
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Erwin G Van Meir
- Departments of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute Emory University, Atlanta, Georgia
| | - Marc Ladanyi
- Department of Pathology, Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon.,Howard Hughes Medical Institute, Portland, Oregon
| |
Collapse
|
7
|
Wu P, Liu JL, Pei SM, Wu CP, Yang K, Wang SP, Wu S. Integrated genomic analysis identifies clinically relevant subtypes of renal clear cell carcinoma. BMC Cancer 2018. [PMID: 29534679 PMCID: PMC5851245 DOI: 10.1186/s12885-018-4176-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Renal cell carcinoma (RCC) account for over 80% of renal malignancies. The most common type of RCC can be classified into three subtypes including clear cell, papillary and chromophobe. ccRCC (the Clear Cell Renal Cell Carcinoma) is the most frequent form and shows variations in genetics and behavior. To improve accuracy and personalized care and increase the cure rate of cancer, molecular typing for individuals is necessary. Methods We adopted the genome, transcriptome and methylation HMK450 data of ccRCC in The Cancer Genome Atlas Network in this research. Consensus Clustering algorithm was used to cluster the expression data and three subtypes were found. To further validate our results, we analyzed an independent data set and arrived at a consistent conclusion. Next, we characterized the subtype by unifying genomic and clinical dimensions of ccRCC molecular stratification. We also implemented GSEA between the malignant subtype and the other subtypes to explore latent pathway varieties and WGCNA to discover intratumoral gene interaction network. Moreover, the epigenetic state changes between subgroups on methylation data are discovered and Kaplan-Meier survival analysis was performed to delve the relation between specific genes and prognosis. Results We found a subtype of poor prognosis in clear cell renal cell carcinoma, which is abnormally upregulated in focal adhesions and cytoskeleton related pathways, and the expression of core genes in the pathways are negatively correlated with patient outcomes. Conclusions Our work of classification schema could provide an applicable framework of molecular typing to ccRCC patients which has implications to influence treatment decisions, judge biological mechanisms involved in ccRCC tumor progression, and potential future drug discovery. Electronic supplementary material The online version of this article (10.1186/s12885-018-4176-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Wu
- The Affiliated Luohu Hospital of Shenzhen University, Department of Urological Surgery, Shenzhen University, Shenzhen, 518000, China.,Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China
| | - Jia-Li Liu
- Shenzhen Second People'Hospital, 1st affiliated hospital of ShenZhen University, Shenzhen, 518037, China
| | - Shi-Mei Pei
- Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China.,College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chang-Peng Wu
- Shenzhen Second People'Hospital, 1st affiliated hospital of ShenZhen University, Shenzhen, 518037, China
| | - Kai Yang
- The Affiliated Luohu Hospital of Shenzhen University, Department of Urological Surgery, Shenzhen University, Shenzhen, 518000, China.,Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China
| | - Shu-Peng Wang
- The Affiliated Luohu Hospital of Shenzhen University, Department of Urological Surgery, Shenzhen University, Shenzhen, 518000, China.,Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China
| | - Song Wu
- The Affiliated Luohu Hospital of Shenzhen University, Department of Urological Surgery, Shenzhen University, Shenzhen, 518000, China. .,Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Carey A, Edwards DK, Eide CA, Newell L, Traer E, Medeiros BC, Pollyea DA, Deininger MW, Collins RH, Tyner JW, Druker BJ, Bagby GC, McWeeney SK, Agarwal A. Identification of Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease Progression in Acute Myeloid Leukemia. Cell Rep 2017; 18:3204-3218. [PMID: 28355571 PMCID: PMC5437102 DOI: 10.1016/j.celrep.2017.03.018] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/29/2016] [Accepted: 03/02/2017] [Indexed: 12/22/2022] Open
Abstract
Secreted proteins in the bone marrow microenvironment play critical roles in acute myeloid leukemia (AML). Through an ex vivo functional screen of 94 cytokines, we identified that the pro-inflammatory cytokine interleukin-1 (IL-1) elicited profound expansion of myeloid progenitors in ∼67% of AML patients while suppressing the growth of normal progenitors. Levels of IL-1β and IL-1 receptors were increased in AML patients, and silencing of the IL-1 receptor led to significant suppression of clonogenicity and in vivo disease progression. IL-1 promoted AML cell growth by enhancing p38MAPK phosphorylation and promoting secretion of various other growth factors and inflammatory cytokines. Treatment with p38MAPK inhibitors reversed these effects and recovered normal CD34+ cells from IL-1-mediated growth suppression. These results highlight the importance of ex vivo functional screening to identify common and actionable extrinsic pathways in genetically heterogeneous malignancies and provide impetus for clinical development of IL-1/IL1R1/p38MAPK pathway-targeted therapies in AML.
Collapse
Affiliation(s)
- Alyssa Carey
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - David K Edwards
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Laura Newell
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Daniel A Pollyea
- University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Robert H Collins
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA
| | - Grover C Bagby
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
9
|
Abstract
RNAi-mediated screening has been an integral tool for biological discovery for the past 15 years. A variety of approaches have been employed for implementation of this technique, including pooled, depletion/enrichment screening with lentiviral shRNAs, and segregated screening of panels of individual siRNAs. The latter approach of siRNA panel screening requires efficient methods for transfection of siRNAs into the target cells. In the case of suspension leukemia cell lines and primary cells, many of the conventional transfection techniques using liposomal or calcium phosphate-mediated transfection provide very low efficiency. In this case, electroporation is the only transfection technique offering high efficiency transfection of siRNAs into the target leukemia cells. Here, we describe methods for optimization and implementation of siRNA electroporation into leukemia cell lines and primary patient specimens, and we further offer suggested electroporation settings for some commonly used leukemia cell lines.
Collapse
|
10
|
Concurrent Mutations in ATM and Genes Associated with Common γ Chain Signaling in Peripheral T Cell Lymphoma. PLoS One 2015; 10:e0141906. [PMID: 26536348 PMCID: PMC4633051 DOI: 10.1371/journal.pone.0141906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022] Open
Abstract
Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (γc) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between γc signaling and ATM in T cell malignancy.
Collapse
|