1
|
Epigenetic Perspective of Immunotherapy for Cancers. Cells 2023; 12:cells12030365. [PMID: 36766706 PMCID: PMC9913322 DOI: 10.3390/cells12030365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Immunotherapy has brought new hope for cancer patients in recent times. However, despite the promising success of immunotherapy, there is still a need to address major challenges including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs (immune-related adverse effects). The first critical step towards solving these issues is understanding the epigenomic events that play a significant role in the regulation of specific biomolecules in the context of the immune population present in the tumor immune microenvironment (TIME) during various treatments and responses. A prominent advantage of this step is that it would enable researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore, we reviewed the crucial studies in which varying epigenomic events were captured with immuno-oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment of immunotherapy in terms of diagnosis, progression, and cure for cancer patients.
Collapse
|
2
|
More MH, Varankar SS, Naik RR, Dhake RD, Ray P, Bankar RM, Mali AM, Subbalakshmi AR, Chakraborty P, Jolly MK, Bapat SA. A Multistep Tumor Growth Model of High-Grade Serous Ovarian Carcinoma Identifies Hypoxia-Associated Signatures. Cells Tissues Organs 2022; 213:79-95. [PMID: 35970135 DOI: 10.1159/000526432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSC) is associated with late-stage disease presentation and poor prognosis, with a limited understanding of early transformation events. Our study analyzes HGSC tumor progression and organ-specific metastatic dissemination to identify hypoxia-associated molecular, cellular, and histological alterations. Clinical characteristics of the HGSC were replicated in orthotopic xenografts, which involve metastatic dissemination and the prevalence of group B tumors (volume: >0.0625 ≤ 0.5 cm3). Enhanced hyaluronic acid (HA) deposition, expanded tumor vasculature, and increased necrosis contributed to the remodeling of tumor tissue architecture. The proliferative potential of tumor cells and the ability to form glands were also altered during tumor growth. Flow cytometry and label chase-based molecular profiling across the tumor regenerative hierarchy identified the hypoxia-vasculogenic niche and the hybrid epithelial-mesenchymal tumor-cell state as determinants of self-renewal capabilities of progenitors and cancer stem cells. A regulatory network and mathematical model based on tumor histology and molecular signatures predicted hypoxia-inducible factor 1-alpha (HIF1A) as a central node connecting HA synthesis, epithelial-mesenchymal transition, metabolic, vasculogenic, inflammatory, and necrotic pathways in HGSC tumors. Thus, our findings provide a temporal resolution of hypoxia-associated events that sculpt HGSC tumor growth; an in-depth understanding of it may aid in the early detection and treatment of HGSC.
Collapse
Affiliation(s)
- Madhuri H More
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Sagar S Varankar
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Rutika R Naik
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Rahul D Dhake
- Department of Histopathology, Inlaks and Budhrani Hospital, Morbai Naraindas Cancer Institute, Pune, India
| | - Pritha Ray
- Advance Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Rahul M Bankar
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Avinash M Mali
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | | | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Sharmila A Bapat
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
3
|
Kalra RS, Soman GS, Parab PB, Mali AM, Varankar SS, Naik RR, Kamble SC, Dhanjal JK, Bapat SA. A monoclonal antibody against annexin A2 targets stem and progenitor cell fractions in tumors. Transl Oncol 2021; 15:101257. [PMID: 34715620 PMCID: PMC8564672 DOI: 10.1016/j.tranon.2021.101257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Development of a novel antibody (termed as mAb150) developed in our lab which targets annexin A2. Although there are earlier reports of another monoclonal antibody with the same target, the epitope recognized by mAb150 is novel. mAb150 is specifically recognized to target the achilles heel of cancer viz. cancer stem cells and progenitors that persist after treatments and potentially give rise to minimal residual disease.
The involvement of cancer stem cells (CSCs) in driving tumor dormancy and drug resistance is well established. Most therapeutic regimens however are ineffective in targeting these regenerative populations. We report the development and evaluation of a monoclonal antibody, mAb150, which targets the metastasis associated antigen, Annexin A2 (AnxA2) through recognition of a N-terminal epitope. Treatment with mAb150 potentiated re-entry of CSCs into the cell cycle that perturbed tumor dormancy and facilitated targeting of CSCs as was validated by in vitro and in vivo assays. Epigenetic potentiation further improved mAb150 efficacy in achieving total tumor regression by targeting regenerative populations to achieve tumor regression, specifically in high-grade serous ovarian adenocarcinoma.
Collapse
Affiliation(s)
- Rajkumar S Kalra
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India; Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Gaurav S Soman
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Pradeep B Parab
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Avinash M Mali
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India
| | - Sagar S Varankar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India; Wellcome-MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge, CB2 0AW
| | - Rutika R Naik
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Swapnil C Kamble
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India; Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Jaspreet K Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
4
|
Varankar SS, More M, Abraham A, Pansare K, Kumar B, Narayanan NJ, Jolly MK, Mali AM, Bapat SA. Functional balance between Tcf21-Slug defines cellular plasticity and migratory modalities in high grade serous ovarian cancer cell lines. Carcinogenesis 2020; 41:515-526. [PMID: 31241128 DOI: 10.1093/carcin/bgz119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cellular plasticity and transitional phenotypes add to complexities of cancer metastasis that can be initiated by single cell epithelial to mesenchymal transition (EMT) or cooperative cell migration (CCM). Our study identifies novel regulatory cross-talks between Tcf21 and Slug in mediating phenotypic and migration plasticity in high-grade serous ovarian adenocarcinoma (HGSC). Differential expression and subcellular localization associate Tcf21, Slug with epithelial, mesenchymal phenotypes, respectively; however, gene manipulation approaches identify their association with additional intermediate phenotypic states, implying the existence of a multistep epithelial-mesenchymal transition program. Live imaging further associated distinct migratory modalities with the Tcf21/Slug status of cell systems and discerned proliferative/passive CCM, active CCM and EMT modes of migration. Tcf21-Slug balance identified across a phenotypic spectrum in HGSC cell lines, associated with microenvironment-induced transitions and the emergence of an epithelial phenotype following drug exposure. Phenotypic transitions and associated functionalities following drug exposure were affirmed to ensue from occupancy of Slug promoter E-box sequences by Tcf21. Our study effectively provides a framework for understanding the relevance of ovarian cancer plasticity as a function of two transcription factors.
Collapse
Affiliation(s)
- Sagar S Varankar
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Madhuri More
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Ancy Abraham
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Kshama Pansare
- Institute for Plasma Research & Tata Memorial Centre, Kharghar, Navi-Mumbai, India
| | - Brijesh Kumar
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Nivedhitha J Narayanan
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Avinash M Mali
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Sharmila A Bapat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| |
Collapse
|
5
|
Bioluminescence Microscopy as a Method to Measure Single Cell Androgen Receptor Activity Heterogeneous Responses to Antiandrogens. Sci Rep 2016; 6:33968. [PMID: 27678181 PMCID: PMC5039635 DOI: 10.1038/srep33968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer cell heterogeneity is well-documented. Therefore, techniques to monitor single cell heterogeneous responses to treatment are needed. We developed a highly translational and quantitative bioluminescence microscopy method to measure single cell androgen receptor (AR) activity modulation by antiandrogens from fluid biopsies. We showed that this assay can detect heterogeneous cellular response to drug treatment and that the sum of single cell AR activity can mirror the response in the whole cell population. This method may thus be used to monitor heterogeneous dynamic treatment responses in cancer cells.
Collapse
|
6
|
Tumor deconstruction as a tool for advanced drug screening and repositioning. Pharmacol Res 2016; 111:815-819. [DOI: 10.1016/j.phrs.2016.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022]
|
7
|
Elucidation of molecular and functional heterogeneity through differential expression network analyses of discrete tumor subsets. Sci Rep 2016; 6:25261. [PMID: 27140846 PMCID: PMC4853737 DOI: 10.1038/srep25261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Intratumor heterogeneity presents a major hurdle in cancer therapy. Most current research studies consider tumors as single entities and overlook molecular diversity between heterogeneous state(s) of different cells assumed to be homogenous. The present approach was designed for fluorescence-activated cell sorting-based resolution of heterogeneity arising from cancer stem cell (CSC) hierarchies and genetic instability in ovarian tumors, followed by microarray-based expression profiling of sorted fractions. Through weighted gene correlation network analyses, we could assign enriched modules of co-regulated genes to each fraction. Such gene modules often correlate with biological functions; one such specific association was the enrichment of CD53 expression in CSCs, functional validation indicated CD53 to be a tumor-initiating cell- rather than quiescent CSC-marker. Another association defined a state of poise for stress-induced metastases in aneuploid cells. Our results thus emphasize the need for studying cell-specific functionalities relevant to regeneration, drug resistance and disease progression in discrete tumor cell fractions.
Collapse
|