1
|
Orsat J, Guernec A, Le Maréchal C, Pichereau V, Guerrero F. Association between rat decompression sickness resistance, transthyretin single nucleotide polymorphism, and expression: A pilot study. Physiol Rep 2024; 12:e16160. [PMID: 39039431 PMCID: PMC11262998 DOI: 10.14814/phy2.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Decompression sickness (DCS) is a systemic syndrome that can occur after an environmental pressure reduction. Previously, we showed that the plasmatic tetrameric form of transthyretin (TTR) nearly disappeared in rats suffering DCS but not in asymptomatic ones. In this pilot study, we assessed whether the resistance to DCS could be associated with polymorphism of the gene of TTR. For this study, Sanger sequencing was performed on purified PCR products from the liver of 14-week-old male and female standard and DCS-resistant rats (n = 5 per group). Hepatic TTR mRNA expression was assessed by RT-qPCR in 18-19 week-old male and female standard and resistant rats (n = 6 per group). There is a synonymous single nucleotide polymorphism (SNP) on the third base of codon 46 (c.138 C > T). The thymine allele was present in 90% and 100% of males and females standard, respectively. However, this allele is present in only 30% of DCS-resistant males and females (p = 0.0002301). In the liver, there is a significant effect of the resistance to DCS (p = 0.043) and sex (p = 0.047) on TTR expression. Levels of TTR mRNA were lower in DCS-resistant animals. To conclude, DCS resistance might be associated with a SNP and a lower expression of TTR.
Collapse
Affiliation(s)
- J. Orsat
- Laboratoire ORPHY EA 4324Univ BrestBrestFrance
| | - A. Guernec
- Laboratoire ORPHY EA 4324Univ BrestBrestFrance
| | - C. Le Maréchal
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHRU Brest, UMR1078BrestFrance
| | - V. Pichereau
- LEMAR UMR 6539 CNRS/UBO/IRD/IfremerUniv BrestBrestFrance
| | - F. Guerrero
- Laboratoire ORPHY EA 4324Univ BrestBrestFrance
| |
Collapse
|
2
|
Fusée L, Salomao N, Ponnuswamy A, Wang L, López I, Chen S, Gu X, Polyzoidis S, Vadivel Gnanasundram S, Fahraeus R. The p53 endoplasmic reticulum stress-response pathway evolved in humans but not in mice via PERK-regulated p53 mRNA structures. Cell Death Differ 2023; 30:1072-1081. [PMID: 36813920 PMCID: PMC10070458 DOI: 10.1038/s41418-023-01127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular stress conditions activate p53-dependent pathways to counteract the inflicted damage. To achieve the required functional diversity, p53 is subjected to numerous post-translational modifications and the expression of isoforms. Little is yet known how p53 has evolved to respond to different stress pathways. The p53 isoform p53/47 (p47 or ΔNp53) is linked to aging and neural degeneration and is expressed in human cells via an alternative cap-independent translation initiation from the 2nd in-frame AUG at codon 40 (+118) during endoplasmic reticulum (ER) stress. Despite an AUG codon in the same location, the mouse p53 mRNA does not express the corresponding isoform in either human or mouse-derived cells. High-throughput in-cell RNA structure probing shows that p47 expression is attributed to PERK kinase-dependent structural alterations in the human p53 mRNA, independently of eIF2α. These structural changes do not take place in murine p53 mRNA. Surprisingly, PERK response elements required for the p47 expression are located downstream of the 2nd AUG. The data show that the human p53 mRNA has evolved to respond to PERK-mediated regulation of mRNA structures in order to control p47 expression. The findings highlight how p53 mRNA co-evolved with the function of the encoded protein to specify p53-activities under different cellular conditions.
Collapse
Affiliation(s)
- Leila Fusée
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France
| | - Norman Salomao
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France
| | | | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Sa Chen
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Xiaolian Gu
- Department of Medical Biosciences, Umea University, 90185, Umea, Sweden
| | - Stavros Polyzoidis
- Department of Neurosurgery, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Robin Fahraeus
- Inserm U1131, 27 Rue Juliette Dodu, 75010, Paris, France. .,Department of Medical Biosciences, Umea University, 90185, Umea, Sweden. .,RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653, Brno, Czech Republic.
| |
Collapse
|
3
|
Baek IK, Cheong HS, Namgoong S, Kim JH, Kang SG, Yoon SJ, Kim SH, Chang JH, Kim LH, Shin HD. Two independent variants of epidermal growth factor receptor associated with risk of glioma in a Korean population. Sci Rep 2022; 12:19014. [PMID: 36347915 PMCID: PMC9643523 DOI: 10.1038/s41598-022-23217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Gliomas are the most common primary tumors in the brain and spinal cord. In previous GWASs, SNPs in epidermal growth factor receptor (EGFR) have been reported as risk loci for gliomas. However, EGFR variants associated with gliomas in the Korean population remain unstudied. This study explored the association of EGFR SNPs with the risk of glioma. We genotyped 13 EGFR exon SNPs in a case-control study that included 324 Korean patients diagnosed with glioma and 480 population-based controls. Statistical analyses of the association between EGFR SNPs and glioma risk were conducted using logistic regression. Both stepwise analysis and conditional logistic analysis were performed to identify independent associations among genotyped variants. We confirmed that two SNPs (rs2227983, rs1050171) were significantly associated with glioma (rs2227983: odds ratio = 1.42, Pcorr = 0.009; rs1050171: odds ratio = 1.68, Pcorr = 0.005). Additionally, the stepwise analysis and conditional logistic analysis indicated that both SNPs created variants with independent genetic effects. This study is the first to show evidence that functional variants of EGFR, namely, rs2227983 (K521R) and rs1050171 (Q787Q), are associated with an increased risk of glioma in the Korean population. Future work should confirm the functional association between EGFR variants and glioma.
Collapse
Affiliation(s)
- In Ki Baek
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, Seoul, 04107 Republic of Korea
| | - Hyun Sub Cheong
- Research Institute for Life Science, GW Vitek, Inc., Seoul, Republic of Korea
| | - Seok Namgoong
- Research Institute for Life Science, GW Vitek, Inc., Seoul, Republic of Korea
| | - Jeong-Hyun Kim
- grid.267370.70000 0004 0533 4667Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seok-Gu Kang
- grid.15444.300000 0004 0470 5454Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seon-Jin Yoon
- grid.15444.300000 0004 0470 5454Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea ,grid.15444.300000 0004 0470 5454Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Se Hoon Kim
- grid.15444.300000 0004 0470 5454Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- grid.15444.300000 0004 0470 5454Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lyoung Hyo Kim
- Research Institute for Life Science, GW Vitek, Inc., Seoul, Republic of Korea
| | - Hyoung Doo Shin
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, Seoul, 04107 Republic of Korea ,grid.263736.50000 0001 0286 5954Research Institute for Basic Science, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Brunet MA, Leblanc S, Roucou X. OpenVar: functional annotation of variants in non-canonical open reading frames. Cell Biosci 2022; 12:130. [PMID: 35965322 PMCID: PMC9375913 DOI: 10.1186/s13578-022-00871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Background Recent technological advances have revealed thousands of functional open reading frames (ORF) that have eluded reference genome annotations. These overlooked ORFs are found throughout the genome, in any reading frame of transcripts, mature or non-coding, and can overlap annotated ORFs in a different reading frame. The exploration of these novel ORFs in genomic datasets and of their role in genetic traits is hindered by a lack of software. Results Here, we present OpenVar, a genomic variant annotator that mends that gap and fosters meaningful discoveries. To illustrate the potential of OpenVar, we analysed all variants within SynMicDB, a database of cancer-associated synonymous mutations. By including non-canonical ORFs in the analysis, OpenVar yields a 33.6-fold, 13.8-fold and 8.3-fold increase in high impact variants over Annovar, SnpEff and VEP respectively. We highlighted an overlapping non-canonical ORF in the HEY2 gene where variants significantly clustered. Conclusions OpenVar integrates non-canonical ORFs in the analysis of genomic variants, unveiling new research avenues to better understand the genotype–phenotype relationships.
Collapse
|
5
|
The Mitochondrial Genome in Aging and Disease and the Future of Mitochondrial Therapeutics. Biomedicines 2022; 10:biomedicines10020490. [PMID: 35203698 PMCID: PMC8962324 DOI: 10.3390/biomedicines10020490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are intracellular organelles that utilize nutrients to generate energy in the form of ATP by oxidative phosphorylation. Mitochondrial DNA (mtDNA) in humans is a 16,569 base pair double-stranded circular DNA that encodes for 13 vital proteins of the electron transport chain. Our understanding of the mitochondrial genome’s transcription, translation, and maintenance is still emerging, and human pathologies caused by mtDNA dysfunction are widely observed. Additionally, a correlation between declining mitochondrial DNA quality and copy number with organelle dysfunction in aging is well-documented in the literature. Despite tremendous advancements in nuclear gene-editing technologies and their value in translational avenues, our ability to edit mitochondrial DNA is still limited. In this review, we discuss the current therapeutic landscape in addressing the various pathologies that result from mtDNA mutations. We further evaluate existing gene therapy efforts, particularly allotopic expression and its potential to become an indispensable tool for restoring mitochondrial health in disease and aging.
Collapse
|
6
|
Olech M, Ropka-Molik K, Szmatoła T, Piórkowska K, Kuźmak J. Single Nucleotide Polymorphisms in Genes Encoding Toll-Like Receptors 7 and 8 and Their Association with Proviral Load of SRLVs in Goats of Polish Carpathian Breed. Animals (Basel) 2021; 11:ani11071908. [PMID: 34206971 PMCID: PMC8300119 DOI: 10.3390/ani11071908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) 7 and 8 are important in single-stranded viral RNA recognition, so genetic variation of these genes may play a role in SRLVs infection and disease progression. Present study aimed to identify SNPs in genes encoding TLR7 and TLR8 in goats of Carpathian breed and analyze their association with the SRLVs provirus concentration as index of disease progression. A total of 14 SNPs were detected, 6 SNPs in the TLR7 gene locus and 8 SNPs in the TLR8 gene. Nine of the 14 identified polymorphisms, 4 in the TLR7 gene and 5 in TLR8 gene, were significantly associated with the SRLVs proviral concentration. These SNPs were located in 3'UTR, 5'UTR and intron sequences as well as in the coding sequences, but they led to silent changes. Homozygous genotypes of three TLR7 SNPs (synonymous variant 1:50703293, 3'UTR variant 1:50701297 and 5'UTR variant 1:50718645) were observed in goats with lower provirus copy number as well as in seronegative animals. The results obtained in this study suggest that SNPs of TLR7/TLR8 genes may induce differential innate immune response towards SRLVs affecting proviral concentration and thereby disease pathogenesis and progression. These findings support a role for genetic variations of TLR7 and TLR8 in SRLVs infection and warrants further studies on the effect of TLR7/TLR8 polymorphisms on SRLVs infection in different populations.
Collapse
Affiliation(s)
- Monika Olech
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
- Correspondence: ; Tel.: +48-8188-9300; Fax: +48-818-862-595
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.R.-M.); (T.S.); (K.P.)
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.R.-M.); (T.S.); (K.P.)
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Krakow, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (K.R.-M.); (T.S.); (K.P.)
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Pulawy, Poland;
| |
Collapse
|
7
|
Gil-Gil T, Ochoa-Sánchez LE, Baquero F, Martínez JL. Antibiotic resistance: Time of synthesis in a post-genomic age. Comput Struct Biotechnol J 2021; 19:3110-3124. [PMID: 34141134 PMCID: PMC8181582 DOI: 10.1016/j.csbj.2021.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
Antibiotic resistance has been highlighted by international organizations, including World Health Organization, World Bank and United Nations, as one of the most relevant global health problems. Classical approaches to study this problem have focused in infected humans, mainly at hospitals. Nevertheless, antibiotic resistance can expand through different ecosystems and geographical allocations, hence constituting a One-Health, Global-Health problem, requiring specific integrative analytic tools. Antibiotic resistance evolution and transmission are multilayer, hierarchically organized processes with several elements (from genes to the whole microbiome) involved. However, their study has been traditionally gene-centric, each element independently studied. The development of robust-economically affordable whole genome sequencing approaches, as well as other -omic techniques as transcriptomics and proteomics, is changing this panorama. These technologies allow the description of a system, either a cell or a microbiome as a whole, overcoming the problems associated with gene-centric approaches. We are currently at the time of combining the information derived from -omic studies to have a more holistic view of the evolution and spread of antibiotic resistance. This synthesis process requires the accurate integration of -omic information into computational models that serve to analyse the causes and the consequences of acquiring AR, fed by curated databases capable of identifying the elements involved in the acquisition of resistance. In this review, we analyse the capacities and drawbacks of the tools that are currently in use for the global analysis of AR, aiming to identify the more useful targets for effective corrective interventions.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain
| | | | - Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
- CIBER en Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | | |
Collapse
|
8
|
Role of Synonymous Mutations in the Evolution of TEM β-Lactamase Genes. Antimicrob Agents Chemother 2021; 65:AAC.00018-21. [PMID: 33820762 DOI: 10.1128/aac.00018-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023] Open
Abstract
Nonsynonymous mutations are well documented in TEM β-lactamases. The resulting amino acid changes often alter the conferred phenotype from broad spectrum (2b) conferred by TEM-1 to extended spectrum (2be), inhibitor resistant (2br), or both extended spectrum and inhibitor resistant (2ber). The encoding bla TEM genes also deviate in numerous synonymous mutations, which are not well understood. bla TEM-3 (2be), bla TEM-33 (2br), and bla TEM-109 (2ber) were studied in comparison to bla TEM-1 bla TEM-33 was chosen for more detailed studies because it deviates from bla TEM-1 by a single nonsynonymous mutation and three additional synonymous mutations. Genes encoding the enzymes with only nonsynonymous or all (including synonymous) mutations plus all permutations between bla TEM-1 and bla TEM-33 were expressed in Escherichia coli cells. In disc diffusion assays, genes encoding TEM-3, TEM-33, and TEM-109 with all synonymous mutations resulted in higher resistance levels than genes without synonymous mutations. Disc diffusion assays with the 16 genes carrying all possible nucleotide change combinations between bla TEM-1 and bla TEM-33 indicated different susceptibilities for different variants. Nucleotide BLAST searches did not identify genes without synonymous mutations but did identify some without nonsynonymous mutations. Energies of possible secondary mRNA structures calculated with mfold are generally higher with synonymous mutations, suggesting that their role could be to destabilize the mRNA and facilitate its unfolding for efficient translation. In summary, our data indicate that transition from bla TEM-1 to other variant genes by simply acquiring the nonsynonymous mutations is not favored. Instead, synonymous mutations seem to support the transition to other variant genes with nonsynonymous mutations leading to different phenotypes.
Collapse
|
9
|
Gaither JBS, Lammi GE, Li JL, Gordon DM, Kuck HC, Kelly BJ, Fitch JR, White P. Synonymous variants that disrupt messenger RNA structure are significantly constrained in the human population. Gigascience 2021; 10:giab023. [PMID: 33822938 PMCID: PMC8023685 DOI: 10.1093/gigascience/giab023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The role of synonymous single-nucleotide variants in human health and disease is poorly understood, yet evidence suggests that this class of "silent" genetic variation plays multiple regulatory roles in both transcription and translation. One mechanism by which synonymous codons direct and modulate the translational process is through alteration of the elaborate structure formed by single-stranded mRNA molecules. While tools to computationally predict the effect of non-synonymous variants on protein structure are plentiful, analogous tools to systematically assess how synonymous variants might disrupt mRNA structure are lacking. RESULTS We developed novel software using a parallel processing framework for large-scale generation of secondary RNA structures and folding statistics for the transcriptome of any species. Focusing our analysis on the human transcriptome, we calculated 5 billion RNA-folding statistics for 469 million single-nucleotide variants in 45,800 transcripts. By considering the impact of all possible synonymous variants globally, we discover that synonymous variants predicted to disrupt mRNA structure have significantly lower rates of incidence in the human population. CONCLUSIONS These findings support the hypothesis that synonymous variants may play a role in genetic disorders due to their effects on mRNA structure. To evaluate the potential pathogenic impact of synonymous variants, we provide RNA stability, edge distance, and diversity metrics for every nucleotide in the human transcriptome and introduce a "Structural Predictivity Index" (SPI) to quantify structural constraint operating on any synonymous variant. Because no single RNA-folding metric can capture the diversity of mechanisms by which a variant could alter secondary mRNA structure, we generated a SUmmarized RNA Folding (SURF) metric to provide a single measurement to predict the impact of secondary structure altering variants in human genetic studies.
Collapse
Affiliation(s)
- Jeffrey B S Gaither
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Grant E Lammi
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - James L Li
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - David M Gordon
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Harkness C Kuck
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Benjamin J Kelly
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - James R Fitch
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Peter White
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Karakostis K, Vadivel Gnanasundram S, López I, Thermou A, Wang L, Nylander K, Olivares-Illana V, Fåhraeus R. A single synonymous mutation determines the phosphorylation and stability of the nascent protein. J Mol Cell Biol 2020; 11:187-199. [PMID: 30252118 DOI: 10.1093/jmcb/mjy049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 01/06/2023] Open
Abstract
p53 is an intrinsically disordered protein with a large number of post-translational modifications and interacting partners. The hierarchical order and subcellular location of these events are still poorly understood. The activation of p53 during the DNA damage response (DDR) requires a switch in the activity of the E3 ubiquitin ligase MDM2 from a negative to a positive regulator of p53. This is mediated by the ATM kinase that regulates the binding of MDM2 to the p53 mRNA facilitating an increase in p53 synthesis. Here we show that the binding of MDM2 to the p53 mRNA brings ATM to the p53 polysome where it phosphorylates the nascent p53 at serine 15 and prevents MDM2-mediated degradation of p53. A single synonymous mutation in p53 codon 22 (L22L) prevents the phosphorylation of the nascent p53 protein and the stabilization of p53 following genotoxic stress. The ATM trafficking from the nucleus to the p53 polysome is mediated by MDM2, which requires its interaction with the ribosomal proteins RPL5 and RPL11. These results show how the ATM kinase phosphorylates the p53 protein while it is being synthesized and offer a novel mechanism whereby a single synonymous mutation controls the stability and activity of the encoded protein.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 Rue Juliette Dodu, Paris, France
| | | | - Ignacio López
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 Rue Juliette Dodu, Paris, France
| | - Aikaterini Thermou
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 Rue Juliette Dodu, Paris, France
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Robin Fåhraeus
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 Rue Juliette Dodu, Paris, France.,Department of Medical Biosciences, Umeå University, Umeå, Sweden.,RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, Czech Republic
| |
Collapse
|
11
|
Kim BW, Kim SK, Heo KW, Bae KB, Jeong KH, Lee SH, Kim TH, Kim YH, Kang SW. Association between epidermal growth factor (EGF) and EGF receptor gene polymorphisms and end-stage renal disease and acute renal allograft rejection in a Korean population. Ren Fail 2020; 42:98-106. [PMID: 31906817 PMCID: PMC6968622 DOI: 10.1080/0886022x.2019.1710535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Epidermal growth factor (EGF) has been found to be associated with the development and repair mechanisms of several renal diseases. In this study, we hypothesized that single nucleotide polymorphisms (SNPs) in EGF or its receptor genes might have an association with end-stage renal disease (ESRD) or acute renal allograft rejection (AR) in a Korean population. Methods Three-hundred and forty seven recipients of the first renal transplants for ESRD, including 63 AR patients along with 289 healthy adults were included in the study. Five EGF gene SNPs (rs11568835, rs11568943, rs2237051, rs11569017, and rs3756261) and four EGFR gene SNPs (rs1140475, rs2293347, rs1050171, and rs6965469) were analyzed. The genotypes of these SNPs were analyzed using the AxiomTM genome-wide human assay. Statistical analysis was performed using SNPStats and Haploview version 4.2 software. Multiple logistic regression models (codominant, dominant, recessive, and Log-additive) were used to estimate the odds ratio (OR), 95% confidence interval (CI), and P value. Results One SNP (rs11569017) in the EGF gene showed significant association with ESRD but not with AR. Another SNP (rs11568835) in the EGF gene showed significant association with susceptibility to AR but not with ESRD. One SNP (rs1050171) in the EGFR gene showed significant association with susceptibility to AR but not with ESRD. Conclusion Our findings suggest that SNPs in the EGF and EGFR gene may be associated with the risk of ESRD and AR development in the Korean population.
Collapse
Affiliation(s)
- Byeong Woo Kim
- Department of Internal Medicine, Haeundae Bumin Hospital, Busan, Korea
| | - Su Kang Kim
- Kohwang Medical Research Institute, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Wook Heo
- Department of Otolaryngology, Inje University, Busan, Korea
| | - Ki Beom Bae
- Department of General Surgery, Inje University, Busan, Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Hee Kim
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| | - Yeong Hoon Kim
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| | - Sun Woo Kang
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| |
Collapse
|
12
|
Haronikova L, Olivares-Illana V, Wang L, Karakostis K, Chen S, Fåhraeus R. The p53 mRNA: an integral part of the cellular stress response. Nucleic Acids Res 2019; 47:3257-3271. [PMID: 30828720 PMCID: PMC6468297 DOI: 10.1093/nar/gkz124] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
A large number of signalling pathways converge on p53 to induce different cellular stress responses that aim to promote cell cycle arrest and repair or, if the damage is too severe, to induce irreversible senescence or apoptosis. The differentiation of p53 activity towards specific cellular outcomes is tightly regulated via a hierarchical order of post-translational modifications and regulated protein-protein interactions. The mechanisms governing these processes provide a model for how cells optimize the genetic information for maximal diversity. The p53 mRNA also plays a role in this process and this review aims to illustrate how protein and RNA interactions throughout the p53 mRNA in response to different signalling pathways control RNA stability, translation efficiency or alternative initiation of translation. We also describe how a p53 mRNA platform shows riboswitch-like features and controls the rate of p53 synthesis, protein stability and modifications of the nascent p53 protein. A single cancer-derived synonymous mutation disrupts the folding of this platform and prevents p53 activation following DNA damage. The role of the p53 mRNA as a target for signalling pathways illustrates how mRNA sequences have co-evolved with the function of the encoded protein and sheds new light on the information hidden within mRNAs.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y cáncer. Instituto de Física Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona universitaria, 78290 SLP, México
| | - Lixiao Wang
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.,Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden.,Inserm U1162, 27 rue Juliette Dodu, 75010 Paris, France.,ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
13
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
14
|
mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Mol Ther 2019; 27:757-772. [PMID: 30803823 DOI: 10.1016/j.ymthe.2019.01.020] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
In the last two decades, there has been growing interest in mRNA-based technology for the development of prophylactic vaccines against infectious diseases. Technological advancements in RNA biology, chemistry, stability, and delivery systems have accelerated the development of fully synthetic mRNA vaccines. Potent, long-lasting, and safe immune responses observed in animal models, as well as encouraging data from early human clinical trials, make mRNA-based vaccination an attractive alternative to conventional vaccine approaches. Thanks to these data, together with the potential for generic, low-cost manufacturing processes and the completely synthetic nature, the prospects for mRNA vaccines are very promising. In addition, mRNA vaccines have the potential to streamline vaccine discovery and development, and facilitate a rapid response to emerging infectious diseases. In this review, we overview the unique attributes of mRNA vaccine approaches, review the data of mRNA vaccines against infectious diseases, discuss the current challenges, and highlight perspectives about the future of this promising technology.
Collapse
|
15
|
Mauro VP. Codon Optimization in the Production of Recombinant Biotherapeutics: Potential Risks and Considerations. BioDrugs 2018; 32:69-81. [PMID: 29392566 DOI: 10.1007/s40259-018-0261-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotherapeutics are increasingly becoming the mainstay in the treatment of a variety of human conditions, particularly in oncology and hematology. The production of therapeutic antibodies, cytokines, and fusion proteins have markedly accelerated these fields over the past decade and are probably the major contributor to improved patient outcomes. Today, most protein therapeutics are expressed as recombinant proteins in mammalian cell lines. An expression technology commonly used to increase protein levels involves codon optimization. This approach is possible because degeneracy of the genetic code enables most amino acids to be encoded by more than one synonymous codon and because codon usage can have a pronounced influence on levels of protein expression. Indeed, codon optimization has been reported to increase protein expression by > 1000-fold. The primary tactic of codon optimization is to increase the rate of translation elongation by overcoming limitations associated with species-specific differences in codon usage and transfer RNA (tRNA) abundance. However, in mammalian cells, assumptions underlying codon optimization appear to be poorly supported or unfounded. Moreover, because not all synonymous codon mutations are neutral, codon optimization can lead to alterations in protein conformation and function. This review discusses codon optimization for therapeutic protein production in mammalian cells.
Collapse
|
16
|
Masson JJR, Cherry CL, Murphy NM, Sada-Ovalle I, Hussain T, Palchaudhuri R, Martinson J, Landay AL, Billah B, Crowe SM, Palmer CS. Polymorphism rs1385129 Within Glut1 Gene SLC2A1 Is Linked to Poor CD4+ T Cell Recovery in Antiretroviral-Treated HIV+ Individuals. Front Immunol 2018; 9:900. [PMID: 29867928 PMCID: PMC5966582 DOI: 10.3389/fimmu.2018.00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023] Open
Abstract
Untreated HIV infection is associated with progressive CD4+ T cell depletion, which is generally recovered with combination antiretroviral therapy (cART). However, a significant proportion of cART-treated individuals have poor CD4+ T cell reconstitution. We investigated associations between HIV disease progression and CD4+ T cell glucose transporter-1 (Glut1) expression. We also investigated the association between these variables and specific single nucleotide polymorphisms (SNPs) within the Glut1 regulatory gene AKT (rs1130214, rs2494732, rs1130233, and rs3730358) and in the Glut1-expressing gene SLC2A1 (rs1385129 and rs841853) and antisense RNA 1 region SLC2A1-AS1 (rs710218). High CD4+Glut1+ T cell percentage is associated with rapid CD4+ T cell decline in HIV-positive treatment-naïve individuals and poor T cell recovery in HIV-positive individuals on cART. Evidence suggests that poor CD4+ T cell recovery in treated HIV-positive individuals is linked to the homozygous genotype (GG) associated with SLC2A1 SNP rs1385129 when compared to those with a recessive allele (GA/AA) (odds ratio = 4.67; P = 0.04). Furthermore, poor response to therapy is less likely among Australian participants when compared against American participants (odds ratio: 0.12; P = 0.01) despite there being no difference in prevalence of a specific genotype for any of the SNPs analyzed between nationalities. Finally, CD4+Glut1+ T cell percentage is elevated among those with a homozygous dominant genotype for SNPs rs1385129 (GG) and rs710218 (AA) when compared to those with a recessive allele (GA/AA and AT/TT respectively) (P < 0.04). The heterozygous genotype associated with AKT SNP 1130214 (GT) had a higher CD4+Glut1+ T cell percentage when compared to the dominant homozygous genotype (GG) (P = 0.0068). The frequency of circulating CD4+Glut1+ T cells and the rs1385129 SLC2A1 SNP may predict the rate of HIV disease progression and CD4+ T cell recovery in untreated and treated infection, respectively.
Collapse
Affiliation(s)
- Jesse J R Masson
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Catherine L Cherry
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicholas M Murphy
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Preimplantation Genetic Diagnosis, Monash IVF, Melbourne, VIC, Australia
| | - Isabel Sada-Ovalle
- Unidad de Investigación Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Tabinda Hussain
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Riya Palchaudhuri
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Jeffrey Martinson
- Department of Immunology-Microbiology, Rush University Medical Centre, Chicago, IL, United States
| | - Alan L Landay
- Department of Immunology-Microbiology, Rush University Medical Centre, Chicago, IL, United States
| | - Baki Billah
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Brunet MA, Levesque SA, Hunting DJ, Cohen AA, Roucou X. Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Res 2018; 28:609-624. [PMID: 29626081 PMCID: PMC5932603 DOI: 10.1101/gr.230938.117] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Technological advances promise unprecedented opportunities for whole exome sequencing and proteomic analyses of populations. Currently, data from genome and exome sequencing or proteomic studies are searched against reference genome annotations. This provides the foundation for research and clinical screening for genetic causes of pathologies. However, current genome annotations substantially underestimate the proteomic information encoded within a gene. Numerous studies have now demonstrated the expression and function of alternative (mainly small, sometimes overlapping) ORFs within mature gene transcripts. This has important consequences for the correlation of phenotypes and genotypes. Most alternative ORFs are not yet annotated because of a lack of evidence, and this absence from databases precludes their detection by standard proteomic methods, such as mass spectrometry. Here, we demonstrate how current approaches tend to overlook alternative ORFs, hindering the discovery of new genetic drivers and fundamental research. We discuss available tools and techniques to improve identification of proteins from alternative ORFs and finally suggest a novel annotation system to permit a more complete representation of the transcriptomic and proteomic information contained within a gene. Given the crucial challenge of distinguishing functional ORFs from random ones, the suggested pipeline emphasizes both experimental data and conservation signatures. The addition of alternative ORFs in databases will render identification less serendipitous and advance the pace of research and genomic knowledge. This review highlights the urgent medical and research need to incorporate alternative ORFs in current genome annotations and thus permit their inclusion in hypotheses and models, which relate phenotypes and genotypes.
Collapse
Affiliation(s)
- Marie A Brunet
- Biochemistry Department, Université de Sherbrooke, Quebec J1E 4K8, Canada.,Groupe de recherche PRIMUS, Department of Family and Emergency Medicine, Quebec J1H 5N4, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Quebec G1V 0A6, Canada
| | - Sébastien A Levesque
- Pediatric Department, Centre Hospitalier de l'Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Darel J Hunting
- Department of Nuclear Medicine & Radiobiology, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Alan A Cohen
- Groupe de recherche PRIMUS, Department of Family and Emergency Medicine, Quebec J1H 5N4, Canada
| | - Xavier Roucou
- Biochemistry Department, Université de Sherbrooke, Quebec J1E 4K8, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Quebec G1V 0A6, Canada
| |
Collapse
|
18
|
Mauro VP, Chappell SA. Considerations in the Use of Codon Optimization for Recombinant Protein Expression. Methods Mol Biol 2018; 1850:275-288. [PMID: 30242693 DOI: 10.1007/978-1-4939-8730-6_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Codon optimization is a gene engineering approach that is commonly used for enhancing recombinant protein expression. This approach is possible because (1) degeneracy of the genetic code enables most amino acids to be encoded by multiple codons and (2) different mRNAs encoding the same protein can vary dramatically in the amount of protein expressed. However, because codon optimization potentially disrupts overlapping information encoded in mRNA coding regions, protein structure and function may be altered. This chapter discusses the use of codon optimization for various applications in mammalian cells as well as potential consequences, so that informed decisions can be made on the appropriateness of using this approach in each case.
Collapse
|
19
|
Marín M, Fernández-Calero T, Ehrlich R. Protein folding and tRNA biology. Biophys Rev 2017; 9:573-588. [PMID: 28944442 PMCID: PMC5662057 DOI: 10.1007/s12551-017-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Polypeptides can fold into tertiary structures while they are synthesized by the ribosome. In addition to the amino acid sequence, protein folding is determined by several factors within the cell. Among others, the folding pathway of a nascent polypeptide can be affected by transient interactions with other proteins, ligands, or the ribosome, as well as by the translocation through membrane pores. Particularly, the translation machinery and the population of tRNA under different physiological or adaptive responses can dramatically affect protein folding. This review summarizes the scientific evidence describing the role of translation kinetics and tRNA populations on protein folding and addresses current efforts to better understand tRNA biology. It is organized into three main parts, which are focused on: (i) protein folding in the cellular context; (ii) tRNA biology and the complexity of the tRNA population; and (iii) available methods and technical challenges in the characterization of tRNA pools. In this manner, this work illustrates the ways by which functional properties of proteins may be modulated by cellular tRNA populations.
Collapse
Affiliation(s)
- Mónica Marín
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Tamara Fernández-Calero
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Ricardo Ehrlich
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
20
|
Silent Polymorphisms: Can the tRNA Population Explain Changes in Protein Properties? Life (Basel) 2016; 6:life6010009. [PMID: 26901226 PMCID: PMC4810240 DOI: 10.3390/life6010009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 01/18/2023] Open
Abstract
Silent mutations are being intensively studied. We previously showed that the estrogen receptor alpha Ala87’s synonymous polymorphism affects its functional properties. Whereas a link has been clearly established between the effect of silent mutations, tRNA abundance and protein folding in prokaryotes, this connection remains controversial in eukaryotic systems. Although a synonymous polymorphism can affect mRNA structure or the interaction with specific ligands, it seems that the relative frequencies of isoacceptor tRNAs could play a key role in the protein-folding process, possibly through modulation of translation kinetics. Conformational changes could be subtle but enough to cause alterations in solubility, proteolysis profiles, functional parameters or intracellular targeting. Interestingly, recent advances describe dramatic changes in the tRNA population associated with proliferation, differentiation or response to chemical, physical or biological stress. In addition, several reports reveal changes in tRNAs’ posttranscriptional modifications in different physiological or pathological conditions. In consequence, since changes in the cell state imply quantitative and/or qualitative changes in the tRNA pool, they could increase the likelihood of protein conformational variants, related to a particular codon usage during translation, with consequences of diverse significance. These observations emphasize the importance of genetic code flexibility in the co-translational protein-folding process.
Collapse
|