1
|
Monteagudo M, Calsina B, Salazar-Hidalgo ME, Martínez-Montes ÁM, Piñeiro-Yáñez E, Caleiras E, Martín MC, Rodríguez-Perales S, Letón R, Gil E, Buffet A, Burnichon N, Fernández-Sanromán Á, Díaz-Talavera A, Mellid S, Arroba E, Reglero C, Martínez-Puente N, Roncador G, Del Olmo MI, Corrales PJP, Oliveira CL, Álvarez-Escolá C, Gutiérrez MC, López-Fernández A, García NP, Regojo RM, Díaz LR, Laorden NR, Guadarrama OS, Bechmann N, Beuschlein F, Canu L, Eisenhofer G, Fassnacht M, Nölting S, Quinkler M, Rapizzi E, Remde H, Timmers HJ, Favier J, Gimenez-Roqueplo AP, Rodriguez-Antona C, Currás-Freixes M, Al-Shahrour F, Cascón A, Leandro-García LJ, Montero-Conde C, Robledo M. MAML3-fusions modulate vascular and immune tumour microenvironment and confer high metastatic risk in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024; 38:101931. [PMID: 39218714 DOI: 10.1016/j.beem.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pheochromocytomas and paragangliomas are rare neuroendocrine tumours. Around 20-25 % of patients develop metastases, for which there is an urgent need of prognostic markers and therapeutic stratification strategies. The presence of a MAML3-fusion is associated with increased metastatic risk, but neither the processes underlying disease progression, nor targetable vulnerabilities have been addressed. We have compiled a cohort of 850 patients, which has shown a 3.65 % fusion prevalence and represents the largest MAML3-positive series reported to date. While MAML3-fusions mainly cause single pheochromocytomas, we also observed somatic post-zygotic events, resulting in multiple tumours in the same patient. MAML3-tumours show increased expression of neuroendocrine-to-mesenchymal transition markers, MYC-targets, and angiogenesis-related genes, leading to a distinct tumour microenvironment with unique vascular and immune profiles. Importantly, our findings have identified MAML3-tumours specific vulnerabilities beyond Wnt-pathway dysregulation, such as a rich vascular network, and overexpression of PD-L1 and CD40, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- María Monteagudo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Bruna Calsina
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Milton E Salazar-Hidalgo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ángel M Martínez-Montes
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Core Unit Biotechnology Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Carmen Martín
- Molecular Citogenetic Unit Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Citogenetic Unit Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rocío Letón
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Gil
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alexandre Buffet
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Nelly Burnichon
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Ángel Fernández-Sanromán
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Díaz-Talavera
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sara Mellid
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ester Arroba
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Clara Reglero
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Natalia Martínez-Puente
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Giovanna Roncador
- Monoclonal Antibodies Core Unit Biotechnology Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Isabel Del Olmo
- Department of Endocrinology and Nutrition, University Hospital La Fe, Valencia, Spain
| | | | - Cristina Lamas Oliveira
- Department of Endocrinology and Nutrition Albacete University Hospital, SESCAM, Albacete, Spain
| | | | | | | | | | | | - Luis Robles Díaz
- Department of Oncology, 12 de Octubre University Hospital, Madrid, Spain
| | | | | | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine Faculty of Medicine and University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden Germany, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV Klinikum der Universität München, Munich, Germany; Klinik für Endokrinologie Diabetologie und Klinische Ernährung UniversitätsSpital Zürich, Zürich, Switzerland; LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Letizia Canu
- Department of Experimental and Clinical Medicine University of Florence, Florence, Italy
| | - Graeme Eisenhofer
- Department of Medicine III University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I Division of Endocrinology and Diabetes University Hospital Würzburg University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Svenja Nölting
- Klinik für Endokrinologie Diabetologie und Klinische Ernährung UniversitätsSpital Zürich, Zürich, Switzerland
| | - Marcus Quinkler
- Endocrinology in Charlottenburg Stuttgarter Platz 1, Berlin, Germany
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine University of Florence, Florence, Italy
| | - Hanna Remde
- Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Henri J Timmers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Judith Favier
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France; Université Paris Cité, Inserm, PARCC, Paris, France
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Maria Currás-Freixes
- Familial Cancer Clinical Unit, Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Luis J Leandro-García
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group; Human Cancer Genetics Program Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
2
|
Andersen K, Tjønnfjord GE, Ramslien LF, Panagopoulos I. RUNX1::MIR99AHG Chimera in Acute Myeloid Leukemia. Genes Chromosomes Cancer 2024; 63:e23272. [PMID: 39324493 DOI: 10.1002/gcc.23272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
RUNX1 fuses with over 70 different partner genes in hematological neoplasms. While common RUNX1 chimeras have been extensively studied and their prognosis is well established, our current understanding of less common RUNX1 chimeras is limited. Here, we present a case of acute myeloid leukemia (AML) with a rare RUNX1 chimera. Bone marrow cells obtained at diagnosis from a 71-year-old patient diagnosed with AML-M5 were studied using G-banding, fluorescence in situ hybridization, array comparative genomic hybridization, RNA sequencing, PCR, and Sanger sequencing. Combined findings from the abovementioned assays suggested three cytogenetic clones: one with a normal karyotype, one with inv(21)(q21q22), and one with two inv(21)(q21q22). The molecular analysis revealed the fusion of RUNX1 with MIR99AHG (at 21q21.1), further supporting the presence of an inv(21)(q21q22). The present case is the third reported AML harboring a RUNX1::MIR99AHG chimera. Similar to the two previously described AML patients, our case also had an FLT3 aberration.
Collapse
Affiliation(s)
- Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, the Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - L Frode Ramslien
- Department of Internal Medicine, Telemark Hospital Trust, Skien, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, the Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Lin Z, Lei Y, Wen M, He Q, Tian D, Xie H. MTAP-ANRIL gene fusion promotes melanoma epithelial-mesenchymal transition-like process by activating the JNK and p38 signaling pathways. Sci Rep 2023; 13:9073. [PMID: 37277447 DOI: 10.1038/s41598-023-36404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
Gene fusions caused by cytogenetic aberrations play important roles in the initiation and progression of cancers. The recurrent MTAP-ANRIL fusion gene was reported to have a frequency of greater than 7% in melanoma in our previous study. However, its functions remain unclear. Truncated MTAP proteins resulting from point mutations in the last three exons of MTAP can physically interact with the wild-type MTAP protein, a tumor suppressor in several human cancers. Similarly, MTAP-ANRIL, which is translated into a truncated MTAP protein, would influence wild-type MTAP to act as an oncogene. Here, we found that MTAP-ANRIL gene fusion downregulated the expression of wild-type MTAP and promoted epithelial-mesenchymal transition-like process through the activation of JNK and p38 MAPKs in vitro and in vivo. Our results suggest that MTAP-ANRIL is a potential molecular prognostic biomarker and therapeutic target for melanoma.
Collapse
Affiliation(s)
- Zhuoying Lin
- Department of Gastroenterology, Shangrao People's Hospital, Shangrao, 334000, Jiangxi Province, China
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Huazhong University of Science and Technology, Tongji Hospital of Tongji Medical CollegeWuhan, 430030, Hubei Province, China
| | - Mingyao Wen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Qin He
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Huazhong University of Science and Technology, Tongji Hospital of Tongji Medical CollegeWuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Huazhong University of Science and Technology, Tongji Hospital of Tongji Medical CollegeWuhan, 430030, Hubei Province, China
| | - Huaping Xie
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
- Institute of Liver and Gastrointestinal Diseases, Huazhong University of Science and Technology, Tongji Hospital of Tongji Medical CollegeWuhan, 430030, Hubei Province, China.
| |
Collapse
|
4
|
Morgado-Palacin L, Brown JA, Martinez TF, Garcia-Pedrero JM, Forouhar F, Quinn SA, Reglero C, Vaughan J, Heydary YH, Donaldson C, Rodriguez-Perales S, Allonca E, Granda-Diaz R, Fernandez AF, Fraga MF, Kim AL, Santos-Juanes J, Owens DM, Rodrigo JP, Saghatelian A, Ferrando AA. The TINCR ubiquitin-like microprotein is a tumor suppressor in squamous cell carcinoma. Nat Commun 2023; 14:1328. [PMID: 36899004 PMCID: PMC10006087 DOI: 10.1038/s41467-023-36713-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
The TINCR (Terminal differentiation-Induced Non-Coding RNA) gene is selectively expressed in epithelium tissues and is involved in the control of human epidermal differentiation and wound healing. Despite its initial report as a long non-coding RNA, the TINCR locus codes for a highly conserved ubiquitin-like microprotein associated with keratinocyte differentiation. Here we report the identification of TINCR as a tumor suppressor in squamous cell carcinoma (SCC). TINCR is upregulated by UV-induced DNA damage in a TP53-dependent manner in human keratinocytes. Decreased TINCR protein expression is prevalently found in skin and head and neck squamous cell tumors and TINCR expression suppresses the growth of SCC cells in vitro and in vivo. Consistently, Tincr knockout mice show accelerated tumor development following UVB skin carcinogenesis and increased penetrance of invasive SCCs. Finally, genetic analyses identify loss-of-function mutations and deletions encompassing the TINCR gene in SCC clinical samples supporting a tumor suppressor role in human cancer. Altogether, these results demonstrate a role for TINCR as protein coding tumor suppressor gene recurrently lost in squamous cell carcinomas.
Collapse
Affiliation(s)
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Thomas F Martinez
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Juana M Garcia-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Ciber de Cáncer, CIBERONC, Madrid, Spain
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Joan Vaughan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yasamin Hajy Heydary
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Cynthia Donaldson
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Rocio Granda-Diaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Ciber de Cáncer, CIBERONC, Madrid, Spain
| | - Agustin F Fernandez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Rare Diseases CIBER (ciberer) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Mario F Fraga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain
- Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain
- Rare Diseases CIBER (ciberer) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Arianna L Kim
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jorge Santos-Juanes
- Department of Dermatology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
- Dermatology Area, University of Oviedo Medical School, Oviedo, Asturias, Spain
| | - David M Owens
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Ciber de Cáncer, CIBERONC, Madrid, Spain
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Dermatology Area, University of Oviedo Medical School, Oviedo, Asturias, Spain.
- Department of Systems Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
PANAGOPOULOS IOANNIS, HEIM SVERRE. Neoplasia-associated Chromosome Translocations Resulting in Gene Truncation. Cancer Genomics Proteomics 2022; 19:647-672. [PMID: 36316036 PMCID: PMC9620447 DOI: 10.21873/cgp.20349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
Chromosomal translocations in cancer as well as benign neoplasias typically lead to the formation of fusion genes. Such genes may encode chimeric proteins when two protein-coding regions fuse in-frame, or they may result in deregulation of genes via promoter swapping or translocation of the gene into the vicinity of a highly active regulatory element. A less studied consequence of chromosomal translocations is the fusion of two breakpoint genes resulting in an out-of-frame chimera. The breaks then occur in one or both protein-coding regions forming a stop codon in the chimeric transcript shortly after the fusion point. Though the latter genetic events and mechanisms at first awoke little research interest, careful investigations have established them as neither rare nor inconsequential. In the present work, we review and discuss the truncation of genes in neoplastic cells resulting from chromosomal rearrangements, especially from seemingly balanced translocations.
Collapse
Affiliation(s)
- IOANNIS PANAGOPOULOS
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - SVERRE HEIM
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Montero‐Conde C, Leandro‐García LJ, Martínez‐Montes ÁM, Martínez P, Moya FJ, Letón R, Gil E, Martínez‐Puente N, Guadalix S, Currás‐Freixes M, García‐Tobar L, Zafon C, Jordà M, Riesco‐Eizaguirre G, González‐García P, Monteagudo M, Torres‐Pérez R, Mancikova V, Ruiz‐Llorente S, Pérez‐Martínez M, Pita G, Galofré JC, Gonzalez‐Neira A, Cascón A, Rodríguez‐Antona C, Megías D, Blasco MA, Caleiras E, Rodríguez‐Perales S, Robledo M. Comprehensive molecular analysis of immortalization hallmarks in thyroid cancer reveals new prognostic markers. Clin Transl Med 2022; 12:e1001. [PMID: 35979662 PMCID: PMC9386325 DOI: 10.1002/ctm2.1001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Comprehensive molecular studies on tumours are needed to delineate immortalization process steps and identify sensitive prognostic biomarkers in thyroid cancer. METHODS AND RESULTS In this study, we extensively characterize telomere-related alterations in a series of 106 thyroid tumours with heterogeneous clinical outcomes. Using a custom-designed RNA-seq panel, we identified five telomerase holoenzyme-complex genes upregulated in clinically aggressive tumours compared to tumours from long-term disease-free patients, being TERT and TERC denoted as independent prognostic markers by multivariate regression model analysis. Characterization of alterations related to TERT re-expression revealed that promoter mutations, methylation and/or copy gains exclusively co-occurred in clinically aggressive tumours. Quantitative-FISH (fluorescence in situ hybridization) analysis of telomere lengths showed a significant shortening in these carcinomas, which matched with a high proliferative rate measured by Ki-67 immunohistochemistry. RNA-seq data analysis indicated that short-telomere tumours exhibit an increased transcriptional activity in the 5-Mb-subtelomeric regions, site of several telomerase-complex genes. Gene upregulation enrichment was significant for specific chromosome-ends such as the 5p, where TERT is located. Co-FISH analysis of 5p-end and TERT loci showed a more relaxed chromatin configuration in short telomere-length tumours compared to normal telomere-length tumours. CONCLUSIONS Overall, our findings support that telomere shortening leads to a 5p subtelomeric region reorganization, facilitating the transcription and accumulation of alterations at TERT-locus.
Collapse
|
7
|
Zanetti SR, Velasco-Hernandez T, Gutierrez-Agüera F, Díaz VM, Romecín PA, Roca-Ho H, Sánchez-Martínez D, Tirado N, Baroni ML, Petazzi P, Torres-Ruiz R, Molina O, Bataller A, Fuster JL, Ballerini P, Juan M, Jeremias I, Bueno C, Menéndez P. A novel and efficient tandem CD19- and CD22-directed CAR for B cell ALL. Mol Ther 2022; 30:550-563. [PMID: 34478871 PMCID: PMC8821938 DOI: 10.1016/j.ymthe.2021.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/28/2021] [Accepted: 08/25/2021] [Indexed: 02/04/2023] Open
Abstract
CD19-directed chimeric antigen receptor (CAR) T cells have yielded impressive response rates in refractory/relapse B cell acute lymphoblastic leukemia (B-ALL); however, most patients ultimately relapse due to poor CAR T cell persistence or resistance of either CD19+ or CD19- B-ALL clones. CD22 is a pan-B marker whose expression is maintained in both CD19+ and CD19- relapses. CD22-CAR T cells have been clinically used in B-ALL patients, although relapse also occurs. T cells engineered with a tandem CAR (Tan-CAR) containing in a single construct both CD19 and CD22 scFvs may be advantageous in achieving higher remission rates and/or preventing antigen loss. We have generated and functionally validated using cutting-edge assays a 4-1BB-based CD22/CD19 Tan-CAR using in-house-developed novel CD19 and CD22 scFvs. Tan-CAR-expressing T cells showed similar in vitro expansion to CD19-CAR T cells with no increase in tonic signaling. CRISPR-Cas9-edited B-ALL cells confirmed the bispecificity of the Tan-CAR. Tan-CAR was as efficient as CD19-CAR in vitro and in vivo using B-ALL cell lines, patient samples, and patient-derived xenografts (PDXs). Strikingly, the robust antileukemic activity of the Tan-CAR was slightly more effective in controlling the disease in long-term follow-up PDX models. This Tan-CAR construct warrants a clinical appraisal to test whether simultaneous targeting of CD19 and CD22 enhances leukemia eradication and reduces/delays relapse rates and antigen loss.
Collapse
Affiliation(s)
- Samanta Romina Zanetti
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,Corresponding author: Samanta Romina Zanetti, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain.
| | - Talia Velasco-Hernandez
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain,Corresponding author: Talia Velasco-Hernández, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain.
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain
| | - Víctor M. Díaz
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,OneChain Immunotherapeutics S.L., Barcelona, Spain,Faculty of Medicine and Health Sciences, International University of Catalonia, Sant Cugat del Vallès 08195, Spain
| | - Paola Alejandra Romecín
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain
| | - Diego Sánchez-Martínez
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain
| | - Néstor Tirado
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain
| | - Matteo Libero Baroni
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain
| | - Paolo Petazzi
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain
| | - Raúl Torres-Ruiz
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain,Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| | - Oscar Molina
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain
| | - Alex Bataller
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,Department of Hematology, Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - José Luis Fuster
- RICORS-TERAV, ISCIII, Madrid, Spain,Sección de Oncohematología Pediátrica, Hospital Virgen de Arrixaca, Murcia 30120, Spain
| | - Paola Ballerini
- Department of Pediatric Hemato-oncology, Hospital Armand Trousseau, Paris 75012, France
| | - Manel Juan
- RICORS-TERAV, ISCIII, Madrid, Spain,Department of Immunology, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Barcelona 08950, Spain
| | - Irmela Jeremias
- Department of Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health (HMGU), Munich 85764, Germany,Department of Pediatrics, Dr von Hauner Children’s Hospital, LMU, Munich 80337, Germany
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain,CIBER-ONC, ISCIII, Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain,RICORS-TERAV, ISCIII, Madrid, Spain,CIBER-ONC, ISCIII, Barcelona, Spain,Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain,Corresponding author: Pablo Menéndez, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Carrer Casanova 143, 4° floor, Barcelona 08036, Spain.
| |
Collapse
|
8
|
Manso R, Rodríguez-Perales S, Torres-Ruiz R, Santonja C, Rodríguez-Pinilla SM. PD-L1 expression in peripheral T-cell lymphomas is not related to either PD-L1 gene amplification or rearrangements. Leuk Lymphoma 2021; 62:1648-1656. [PMID: 33550887 DOI: 10.1080/10428194.2021.1881511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nodal peripheral T-cell lymphomas (n-PTCL) are aggressive lymphomas with no specific treatment. Programmed death 1 (PD-1) inhibits T-cell activation and proliferation, and the expression of its ligand PD-L1 has been associated with worse prognosis in some tumors. We performed immunohistochemistry for PD-1, p-STAT3, and PD-L1 (Clones SP142/263/22C3/28.8) and FISH studies for PD-L1/2 genes in chromosome 9p in a series of 168 formalin-fixed, paraffin-embedded n-PTCL samples. PD-L1 (clone 263) was the most frequently detected in both tumor cells (especially in the ALCL subgroup) and the microenvironment (especially in the AITL subgroup). In five ALCL cases, 3-4 copies of the two loci of chromosome 9 were found, suggestive of polyploidy. PD-L1 correlated with p-STAT3 on tumor cells. PD-1 expression in tumor cells was related to expression of PD-L1 in microenvironment. The expression of PD-L1 on tumor cells or microenvironment suggests that some n-PTCL cases might benefit from immune check-point modulation therapy.
Collapse
Affiliation(s)
- Rebeca Manso
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carlos Santonja
- Pathology Department, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | |
Collapse
|
9
|
Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ, Quintana-Bustamante O, Garcia-Silva S, Carcaboso AM, Petazzi P, Bueno C, Mora J, Peinado H, Segovia JC, Menendez P, Rodriguez-Perales S. In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun 2020. [PMID: 33033246 DOI: 10.1038/s41467-020-18875-x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fusion oncogenes (FOs) are common in many cancer types and are powerful drivers of tumor development. Because their expression is exclusive to cancer cells and their elimination induces cell apoptosis in FO-driven cancers, FOs are attractive therapeutic targets. However, specifically targeting the resulting chimeric products is challenging. Based on CRISPR/Cas9 technology, here we devise a simple, efficient and non-patient-specific gene-editing strategy through targeting of two introns of the genes involved in the rearrangement, allowing for robust disruption of the FO specifically in cancer cells. As a proof-of-concept of its potential, we demonstrate the efficacy of intron-based targeting of transcription factors or tyrosine kinase FOs in reducing tumor burden/mortality in in vivo models. The FO targeting approach presented here might open new horizons for the selective elimination of cancer cells.
Collapse
Affiliation(s)
- M Martinez-Lage
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - R Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain. .,Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain.
| | - P Puig-Serra
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - P Moreno-Gaona
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - M C Martin
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - F J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - O Quintana-Bustamante
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - S Garcia-Silva
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - A M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - P Petazzi
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - C Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - J Mora
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - H Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - J C Segovia
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - P Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys, 08010, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - S Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
10
|
Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ, Quintana-Bustamante O, Garcia-Silva S, Carcaboso AM, Petazzi P, Bueno C, Mora J, Peinado H, Segovia JC, Menendez P, Rodriguez-Perales S. In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun 2020; 11:5060. [PMID: 33033246 PMCID: PMC7544871 DOI: 10.1038/s41467-020-18875-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Fusion oncogenes (FOs) are common in many cancer types and are powerful drivers of tumor development. Because their expression is exclusive to cancer cells and their elimination induces cell apoptosis in FO-driven cancers, FOs are attractive therapeutic targets. However, specifically targeting the resulting chimeric products is challenging. Based on CRISPR/Cas9 technology, here we devise a simple, efficient and non-patient-specific gene-editing strategy through targeting of two introns of the genes involved in the rearrangement, allowing for robust disruption of the FO specifically in cancer cells. As a proof-of-concept of its potential, we demonstrate the efficacy of intron-based targeting of transcription factors or tyrosine kinase FOs in reducing tumor burden/mortality in in vivo models. The FO targeting approach presented here might open new horizons for the selective elimination of cancer cells.
Collapse
Affiliation(s)
- M Martinez-Lage
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - R Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain.
| | - P Puig-Serra
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - P Moreno-Gaona
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - M C Martin
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - F J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - O Quintana-Bustamante
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - S Garcia-Silva
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - A M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - P Petazzi
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - C Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - J Mora
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - H Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - J C Segovia
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - P Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys, 08010, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - S Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
11
|
Román-Rodríguez FJ, Ugalde L, Álvarez L, Díez B, Ramírez MJ, Risueño C, Cortón M, Bogliolo M, Bernal S, March F, Ayuso C, Hanenberg H, Sevilla J, Rodríguez-Perales S, Torres-Ruiz R, Surrallés J, Bueren JA, Río P. NHEJ-Mediated Repair of CRISPR-Cas9-Induced DNA Breaks Efficiently Corrects Mutations in HSPCs from Patients with Fanconi Anemia. Cell Stem Cell 2019; 25:607-621.e7. [PMID: 31543367 DOI: 10.1016/j.stem.2019.08.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/24/2019] [Accepted: 08/26/2019] [Indexed: 12/26/2022]
Abstract
Non-homologous end-joining (NHEJ) is the preferred mechanism used by hematopoietic stem cells (HSCs) to repair double-stranded DNA breaks and is particularly increased in cells deficient in the Fanconi anemia (FA) pathway. Here, we show feasible correction of compromised functional phenotypes in hematopoietic cells from multiple FA complementation groups, including FA-A, FA-C, FA-D1, and FA-D2. NHEJ-mediated repair of targeted CRISPR-Cas9-induced DNA breaks generated compensatory insertions and deletions that restore the coding frame of the mutated gene. NHEJ-mediated editing efficacy was initially verified in FA lymphoblastic cell lines and then in primary FA patient-derived CD34+ cells, which showed marked proliferative advantage and phenotypic correction both in vitro and after transplantation. Importantly, and in contrast to homologous directed repair, NHEJ efficiently targeted primitive human HSCs, indicating that NHEJ editing approaches may constitute a sound alternative for editing self-renewing human HSCs and consequently for treatment of FA and other monogenic diseases affecting the hematopoietic system.
Collapse
Affiliation(s)
- Francisco José Román-Rodríguez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid 28040, Spain
| | - Laura Ugalde
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid 28040, Spain
| | - Lara Álvarez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid 28040, Spain
| | - Begoña Díez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid 28040, Spain
| | - María José Ramírez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Genome Instability and DNA Repair Syndromes Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona 08193, Spain; Servicio de Genética e Instituto de Investigaciones Biomédicas del Hospital de Sant Pau, Barcelona 08025, Spain
| | - Cristina Risueño
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid 28040, Spain
| | - Marta Cortón
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Department of Genetics, Hospital Universitario Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid 28040, Spain
| | - Massimo Bogliolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Genome Instability and DNA Repair Syndromes Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona 08193, Spain; Servicio de Genética e Instituto de Investigaciones Biomédicas del Hospital de Sant Pau, Barcelona 08025, Spain
| | - Sara Bernal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Servicio de Genética e Instituto de Investigaciones Biomédicas del Hospital de Sant Pau, Barcelona 08025, Spain
| | - Francesca March
- Servicio de Genética e Instituto de Investigaciones Biomédicas del Hospital de Sant Pau, Barcelona 08025, Spain
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Department of Genetics, Hospital Universitario Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid 28040, Spain
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf 40225, Germany; Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | | | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain; Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona 08036, Spain
| | - Jordi Surrallés
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Genome Instability and DNA Repair Syndromes Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona 08193, Spain; Servicio de Genética e Instituto de Investigaciones Biomédicas del Hospital de Sant Pau, Barcelona 08025, Spain
| | - Juan Antonio Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid 28040, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid 28040, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid 28040, Spain.
| |
Collapse
|
12
|
Torres-Ruiz R, Benítez-Burraco A, Martínez-Lage M, Rodríguez-Perales S, García-Bellido P. Functional characterization of two enhancers located downstream FOXP2. BMC MEDICAL GENETICS 2019; 20:65. [PMID: 31046704 PMCID: PMC6498672 DOI: 10.1186/s12881-019-0810-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mutations in the coding region of FOXP2 are known to cause speech and language impairment. However, it is not clear how dysregulation of the gene contributes to language deficit. Interestingly, microdeletions of the region downstream the gene have been associated with cognitive deficits. METHODS Here, we investigate changes in FOXP2 expression in the SK-N-MC neuroblastoma human cell line after deletion by CRISPR-Cas9 of two enhancers located downstream of the gene. RESULTS Deletion of any of these two functional enhancers downregulates FOXP2, but also upregulates the closest 3' gene MDFIC. Because this effect is not statistically significant in a HEK 293 cell line, derived from the human kidney, both enhancers might confer a tissue specific regulation to both genes. We have also found that the deletion of any of these enhancers downregulates six well-known FOXP2 target genes in the SK-N-MC cell line. CONCLUSIONS We expect these findings contribute to a deeper understanding of how FOXP2 and MDFIC are regulated to pace neuronal development supporting cognition, speech and language.
Collapse
Affiliation(s)
- Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain.
| | - Marta Martínez-Lage
- Molecular Cytogenetics Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | - Paloma García-Bellido
- Faculty of Modern Languages, University of Oxford, Oxford, UK.,Faculty of Linguistics, Philology and Phonetics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Xu-Monette ZY, Xiao M, Au Q, Padmanabhan R, Xu B, Hoe N, Rodríguez-Perales S, Torres-Ruiz R, Manyam GC, Visco C, Miao Y, Tan X, Zhang H, Tzankov A, Wang J, Dybkær K, Tam W, You H, Bhagat G, Hsi ED, Ponzoni M, Ferreri AJM, Møller MB, Piris MA, van Krieken JH, Winter JN, Westin JR, Pham LV, Medeiros LJ, Rassidakis GZ, Li Y, Freeman GJ, Young KH. Immune Profiling and Quantitative Analysis Decipher the Clinical Role of Immune-Checkpoint Expression in the Tumor Immune Microenvironment of DLBCL. Cancer Immunol Res 2019; 7:644-657. [PMID: 30745366 DOI: 10.1158/2326-6066.cir-18-0439] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/23/2018] [Accepted: 02/05/2019] [Indexed: 11/16/2022]
Abstract
PD-1/L1 and CTLA-4 blockade immunotherapies have been approved for 13 types of cancers and are being studied in diffuse large B-cell lymphoma (DLBCL), the most common aggressive B-cell lymphoma. However, whether both PD-1 and CTLA-4 checkpoints are active and clinically significant in DLBCL is unknown. Whether PD-1 ligands expressed by tumor cells or by the microenvironment of DLBCL are critical for the PD-1 immune checkpoint is unclear. We performed immunophenotypic profiling for 405 patients with de novo DLBCL using a MultiOmyx immunofluorescence platform and simultaneously quantitated expression/coexpression of 13 immune markers to identify prognostic determinants. In both training and validation cohorts, results demonstrated a central role of the tumor immune microenvironment, and when its functionality was impaired by deficiency in tumor-infiltrating T cells and/or natural killer cells, high PD-1 expression (but not CTLA-4) on CD8+ T cells, or PD-L1 expression on T cells and macrophages, patients had significantly poorer survival after rituximab-CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) immunochemotherapy. In contrast, tumor-cell PD-L2 expression was associated with superior survival, as well as PD-L1+CD20+ cells proximal (indicates interaction) to PD-1 + CD8+ T cells in patients with low PD-1 + percentage of CD8+ T cells. Gene-expression profiling results suggested the reversibility of T-cell exhaustion in PD-1+/PD-L1+ patients with unfavorable prognosis and implication of LILRA/B, IDO1, CHI3L1, and SOD2 upregulation in the microenvironment dysfunction with PD-L1 expression. This study comprehensively characterized the DLBCL immune landscape, deciphered the differential roles of various checkpoint components in rituximab-CHOP resistance in DLBCL patients, and suggests targets for PD-1/PD-L1 blockade and combination immunotherapies.
Collapse
Affiliation(s)
- Ziju Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Xiao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qingyan Au
- NeoGenomics Laboratories, Inc., Aliso Viejo, California.
| | | | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Fujian, China.
| | - Nicholas Hoe
- NeoGenomics Laboratories, Inc., Aliso Viejo, California
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Yi Miao
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaohong Tan
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongwei Zhang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital of Basel, Basel, Switzerland
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Wayne Tam
- Weill Cornell Medicine, Cornell University, New York, New York
| | - Hua You
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Govind Bhagat
- New York Presbyterian Hospital/Columbia University Medical Center, New York, New York
| | | | | | | | | | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - J Han van Krieken
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason R Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George Z Rassidakis
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Gordon J Freeman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
14
|
Rebolledo-Jaramillo B, Ziegler A. Teneurins: An Integrative Molecular, Functional, and Biomedical Overview of Their Role in Cancer. Front Neurosci 2018; 12:937. [PMID: 30618566 PMCID: PMC6297388 DOI: 10.3389/fnins.2018.00937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Teneurins are large transmembrane proteins originally identified in Drosophila. Their essential role in development of the central nervous system is conserved throughout species, and evidence supports their involvement in organogenesis of additional tissues. Homophilic and heterophilic interactions between Teneurin paralogues mediate cellular adhesion in crucial processes such as neuronal pathfinding and synaptic organization. At the molecular level, Teneurins are proteolytically processed into distinct subdomains that have been implicated in extracellular and intracellular signaling, and in transcriptional regulation. Phylogenetic studies have shown a high degree of intra- and interspecies conservation of Teneurin genes. Accordingly, the occurrence of genetic variants has been associated with functional and phenotypic alterations in experimental systems, and with some inherited or sporadic conditions. Recently, tumor-related variations in Teneurin gene expression have been associated with patient survival in different cancers. Although these findings were incidental and molecular mechanisms were not addressed, they suggested a potential utility of Teneurin transcript levels as biomarkers for disease prognosis. Mutations and chromosomal alterations affecting Teneurin genes have been found occasionally in tumors, but literature remains scarce. The analysis of open-access molecular and clinical datasets derived from large oncologic cohorts provides an invaluable resource for the identification of additional somatic mutations. However, Teneurin variants have not been classified in terms of pathogenic risk and their phenotypic impact remains unknown. On this basis, is it plausible to hypothesize that Teneurins play a role in carcinogenesis? Does current evidence support a tumor suppressive or rather oncogenic function for these proteins? Here, we comprehensively discuss available literature with integration of molecular evidence retrieved from open-access databases. We show that Teneurins undergo somatic changes comparable to those of well-established cancer genes, and discuss their involvement in cancer-related signaling pathways. Current data strongly suggest a functional contribution of Teneurins to human carcinogenesis.
Collapse
Affiliation(s)
| | - Annemarie Ziegler
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
15
|
Chen B, Teng J, Liu H, Pan X, Zhou Y, Huang S, Lai M, Bian G, Mao B, Sun W, Zhou Q, Yang S, Nakahata T, Ma F. Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm. J Mol Cell Biol 2018; 9:262-273. [PMID: 28992293 DOI: 10.1093/jmcb/mjx032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 08/12/2017] [Indexed: 12/16/2022] Open
Abstract
RUNX1 is absolutely required for definitive hematopoiesis, but the function of RUNX1b/c, two isoforms of human RUNX1, is unclear. We established inducible RUNX1b/c-overexpressing human embryonic stem cell (hESC) lines, in which RUNX1b/c overexpression prevented the emergence of CD34+ cells from early stage, thereby drastically reducing the production of hematopoietic stem/progenitor cells. Simultaneously, the expression of hematopoiesis-related factors was downregulated. However, such blockage effect disappeared from day 6 in hESC/AGM-S3 cell co-cultures, proving that the blockage occurred before the generation of hemogenic endothelial cells. This blockage was partially rescued by RepSox, an inhibitor of the transforming growth factor (TGF)-β signaling pathway, indicating a close relationship between RUNX1b/c and TGF-β pathway. Our results suggest a unique inhibitory function of RUNX1b/c in the development of early hematopoiesis and may aid further understanding of its biological function in normal and diseased models.
Collapse
Affiliation(s)
- B Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiawen Teng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Hongwei Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - X Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Y Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shu Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bin Mao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
16
|
Oldrini B, Curiel-García Á, Marques C, Matia V, Uluçkan Ö, Graña-Castro O, Torres-Ruiz R, Rodriguez-Perales S, Huse JT, Squatrito M. Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling. Nat Commun 2018; 9:1466. [PMID: 29654229 PMCID: PMC5899147 DOI: 10.1038/s41467-018-03731-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
To accurately recapitulate the heterogeneity of human diseases, animal models require to recreate multiple complex genetic alterations. Here, we combine the RCAS-TVA system with the CRISPR-Cas9 genome editing tools for precise modeling of human tumors. We show that somatic deletion in neural stem cells of a variety of known tumor suppressor genes (Trp53, Cdkn2a, and Pten) leads to high-grade glioma formation. Moreover, by simultaneous delivery of pairs of guide RNAs we generate different gene fusions with oncogenic potential, either by chromosomal deletion (Bcan-Ntrk1) or by chromosomal translocation (Myb-Qk). Lastly, using homology-directed-repair, we also produce tumors carrying the homologous mutation to human BRAF V600E, frequently identified in a variety of tumors, including different types of gliomas. In summary, we have developed an extremely versatile mouse model for in vivo somatic genome editing, that will elicit the generation of more accurate cancer models particularly appropriate for pre-clinical testing.
Collapse
Affiliation(s)
- Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Álvaro Curiel-García
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Carolina Marques
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Veronica Matia
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Özge Uluçkan
- Genes, Development, and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre, CNIO, 28029, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, CNIO, 28029, Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Cancer Cell Biology Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain.
| |
Collapse
|
17
|
Panagopoulos I, Gorunova L, Andersen HK, Bergrem A, Dahm A, Andersen K, Micci F, Heim S. PAN3- PSMA2 fusion resulting from a novel t(7;13)(p14;q12) chromosome translocation in a myelodysplastic syndrome that evolved into acute myeloid leukemia. Exp Hematol Oncol 2018; 7:7. [PMID: 29560286 PMCID: PMC5859504 DOI: 10.1186/s40164-018-0099-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Acquired primary chromosomal changes in cancer are sometimes found as sole karyotypic abnormalities. They are specifically associated with particular types of neoplasia, essential in establishing the neoplasm, and they often lead to the generation of chimeric genes of pathogenetic, diagnostic, and prognostic importance. Thus, the report of new primary cancer-specific chromosomal aberrations is not only of scientific but also potentially of clinical interest, as is the detection of their gene-level consequences. Case presentation RNA-sequencing was performed on a bone marrow sample from a patient with myelodysplastic syndrome (MDS). The karyotype was 46,XX,t(7;13)(p14;q12)[2]/46,XX[23]. The MDS later evolved into acute myeloid leukemia (AML) at which point the bone marrow cells also contained additional, secondary aberrations. The 7;13-translocation resulted in fusion of the gene PAN3 from 13q12 with PSMA2 from 7p14 to generate an out-of-frame PAN3–PSMA2 fusion transcript whose presence was verified by RT-PCR together with Sanger sequencing. Interphase fluorescence in situ hybridization analysis confirmed the existence of the chimeric gene. Conclusions The novel t(7;13)(p14;q12)/PAN3–PSMA2 in the neoplastic bone marrow cells could affect two key protein complex: (a) the PAN2/PAN3 complex (PAN3 rearrangement) which is responsible for deadenylation, the process of removing the poly(A) tail from RNA, and (b) the proteasome (PSMA2 rearrangement) which is responsible for degradation of intracellular proteins. The patient showed a favorable response to decitabine after treatment with 5-azacitidine and conventional intensive chemotherapy had failed. Whether this might represent a consistent feature of MDS/AML with this particular gene fusion, remains unknown.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Ludmila Gorunova
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Hege Kilen Andersen
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Astrid Bergrem
- 2Department of Haematology, Akershus University Hospital, Nordbyhagen, Norway
| | - Anders Dahm
- 2Department of Haematology, Akershus University Hospital, Nordbyhagen, Norway.,3Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristin Andersen
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Francesca Micci
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway
| | - Sverre Heim
- 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, PO Box 49534 Nydalen, 0424 Oslo, Norway.,3Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Efficient Recreation of t(11;22) EWSR1-FLI1 + in Human Stem Cells Using CRISPR/Cas9. Stem Cell Reports 2018; 8:1408-1420. [PMID: 28494941 PMCID: PMC5425785 DOI: 10.1016/j.stemcr.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Efficient methodologies for recreating cancer-associated chromosome translocations are in high demand as tools for investigating how such events initiate cancer. The CRISPR/Cas9 system has been used to reconstruct the genetics of these complex rearrangements at native loci while maintaining the architecture and regulatory elements. However, the CRISPR system remains inefficient in human stem cells. Here, we compared three strategies aimed at enhancing the efficiency of the CRISPR-mediated t(11;22) translocation in human stem cells, including mesenchymal and induced pluripotent stem cells: (1) using end-joining DNA processing factors involved in repair mechanisms, or (2) ssODNs to guide the ligation of the double-strand break ends generated by CRISPR/Cas9; and (3) all-in-one plasmid or ribonucleoprotein complex-based approaches. We report that the generation of targeted t(11;22) is significantly increased by using a combination of ribonucleoprotein complexes and ssODNs. The CRISPR/Cas9-mediated generation of targeted t(11;22) in human stem cells opens up new avenues in modeling Ewing sarcoma.
Collapse
|
19
|
mTORC1 Inactivation Promotes Colitis-Induced Colorectal Cancer but Protects from APC Loss-Dependent Tumorigenesis. Cell Metab 2018; 27:118-135.e8. [PMID: 29275959 DOI: 10.1016/j.cmet.2017.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/21/2017] [Accepted: 11/15/2017] [Indexed: 01/17/2023]
Abstract
Dietary habits that can induce inflammatory bowel disease (IBD) are major colorectal cancer (CRC) risk factors, but mechanisms linking nutrients, IBD, and CRC are unknown. Using human data and mouse models, we show that mTORC1 inactivation-induced chromosomal instability impairs intestinal crypt proliferation and regeneration, CDK4/6 dependently. This triggers interleukin (IL)-6-associated reparative inflammation, inducing crypt hyper-proliferation, wound healing, and CRC. Blocking IL-6 signaling or reactivating mTORC1 reduces inflammation-induced CRC, so mTORC1 activation suppresses tumorigenesis in IBD. Conversely, mTORC1 inactivation is beneficial in APC loss-dependent CRC. Thus, IL-6 blockers or protein-rich-diet-linked mTORC1 activation may prevent IBD-associated CRC. However, abolishing mTORC1 can mitigate CRC in predisposed patients with APC mutations. Our work reveals mTORC1 oncogenic and tumor-suppressive roles in intestinal epithelium and avenues to optimized and personalized therapeutic regimens for CRC.
Collapse
|
20
|
Salarpour F, Goudarzipour K, Mohammadi MH, Ahmadzadeh A, Faraahi S, Farsani MA. Evaluation of CCAAT/Enhancer Binding Protein (C/EBP) Alpha (CEBPA) and Runt-Related Transcription Factor 1 (RUNX1) Expression in Patients with De Novo Acute Myeloid Leukemia. Ann Hum Genet 2017; 81:276-283. [DOI: 10.1111/ahg.12210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Fatemeh Salarpour
- Laboratory Hematology and blood Banking Department; School of Allied Medical Sciences; Shahid Beheshti University of Medical Science; Tehran Iran
| | - Kourosh Goudarzipour
- Pediatric Congenital Hematologic Disorders Research Center; Shahid Beheshti University of Medical Science; Tehran Iran
| | - Mohammad Hossein Mohammadi
- Laboratory Hematology and Blood Bank Department; Faculty of Paramedical; Shahid Beheshti University of Medical Sciences
- HSCT Research Center; Shahid Beheshti University of Medical Sciences; Tehran
| | - Ahmad Ahmadzadeh
- Health Research Institute; Research Center of Thalassemia & Hemoglobinopathy; Ahvaz jundishapur University of Medical Science; Ahvaz Iran
| | - Sara Faraahi
- Laboratory Hematology and blood Banking Department; School of Allied Medical Sciences; Shahid Beheshti University of Medical Science; Tehran Iran
| | - Mehdi Allahbakhshian Farsani
- Laboratory Hematology and Blood Bank Department; Faculty of Paramedical; Shahid Beheshti University of Medical Sciences
- HSCT Research Center; Shahid Beheshti University of Medical Sciences; Tehran
| |
Collapse
|
21
|
Panagopoulos I, Gorunova L, Torkildsen S, Tierens A, Heim S, Micci F. FAM53B truncation caused by t(10;19)(q26;q13) chromosome translocation in acute lymphoblastic leukemia. Oncol Lett 2017; 13:2216-2220. [PMID: 28454383 PMCID: PMC5403202 DOI: 10.3892/ol.2017.5705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
RNA-sequencing of the patient's bone marrow detected fusion transcripts in which the coding sequence of the FAM53B gene (from 10q26) was fused to a genomic sequence (from 19q13) that mapped upstream of the SLC7A10 locus. Reverse transcription-polymerase chain reaction together with Sanger sequencing verified the presence of this fusion transcript. The FAM53B fusion transcript is not expected to produce any chimeric protein. However, it may code for a truncated FAM53B protein consisting of the first 302 amino acids of FAM53B together with amino acids from the 19q13 sequence. Functionally, the truncated FAM53B would be similar to the protein encoded by the FAM53B sequence with accession no. BC031654.1 (FAM53B protein accession no. AAH31654.1). Furthermore, the truncated protein contains the entire conserved domain of the FAM53 protein family. The chromosome aberration t(10;19)(q26;q13) detected in this study was previously reported in a single case of ALL, in which it was also the sole karyotypic change. Both patients entered complete hematological and cytogenetic remission following treatment.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Synne Torkildsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway.,Department of Hematology, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Anne Tierens
- Laboratory Medicine Program, Department of Haematopathology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway.,Faculty of Medicine, University of Oslo, NO-0316 Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| |
Collapse
|
22
|
Wang H, Chen X, Xu Z, Tan Y, Qi X, Zhang L, Xu A, Ren F. Identification of a novel fusion gene, RUNX1-PRPF38A, in acute myeloid leukemia. Int J Lab Hematol 2017; 39:e90-e93. [PMID: 28263028 DOI: 10.1111/ijlh.12642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- H Wang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - X Chen
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Z Xu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Y Tan
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - X Qi
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - L Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - A Xu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - F Ren
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Panagopoulos I, Torkildsen S, Gorunova L, Ulvmoen A, Tierens A, Zeller B, Heim S. RUNX1 truncation resulting from a cryptic and novel t(6;21)(q25;q22) chromosome translocation in acute myeloid leukemia: A case report. Oncol Rep 2016; 36:2481-2488. [PMID: 27667292 PMCID: PMC5055202 DOI: 10.3892/or.2016.5119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/12/2016] [Indexed: 12/28/2022] Open
Abstract
Fluorescence in situ hybridization examination of a pediatric AML patient whose bone marrow cells carried trisomy 4 and FLT3-ITD mutation, demonstrated that part of the RUNX1 probe had unexpectedly moved to chromosome band 6q25 indicating a cryptic t(6;21)(q25;q22) translocation. RNA sequencing showed fusion of exon 7 of RUNX1 with an intergenic sequence of 6q25 close to the MIR1202 locus, something that was verified by RT-PCR together with Sanger sequencing. The RUNX1 fusion transcript encodes a truncated protein containing the Runt homology domain responsible for both heterodimerization with CBFB and DNA binding, but lacking the proline-, serine-, and threonine-rich (PST) region which is the transcription activation domain at the C terminal end. Which genetic event (+4, FLT3-ITD, t(6;21)-RUNX1 truncation or other, undetected acquired changes) was more pathogenetically important in the present case of AML, remains unknown. The case illustrates that submicroscopic chromosomal rearrangements may accompany visible numerical changes and perhaps should be actively looked for whenever a single trisomy is found. An active search for them may provide both pathogenetic and prognostic novel information.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Synne Torkildsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Aina Ulvmoen
- Pediatric Medicine, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Anne Tierens
- Laboratory Medicine Program, Department of Haematopathology, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Bernward Zeller
- Pediatric Medicine, Oslo University Hospital, NO-0424 Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, NO-0424 Oslo, Norway
| |
Collapse
|
24
|
Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep 2016; 6:21918. [PMID: 26898344 PMCID: PMC4761995 DOI: 10.1038/srep21918] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/02/2016] [Indexed: 12/13/2022] Open
Abstract
Chromosomal translocation is the most common form of chromosomal abnormality and is often associated with congenital genetic disorders, infertility, and cancers. The lack of cellular and animal models for chromosomal translocations, however, has hampered our ability to understand the underlying disease mechanisms and to develop new therapies. Here, we show that site-specific chromosomal translocations can be generated in mouse embryonic stem cells (mESCs) via CRISPR/Cas9. Mouse ESCs carrying translocated chromosomes can be isolated and expanded to establish stable cell lines. Furthermore, chimeric mice can be generated by injecting these mESCs into host blastocysts. The establishment of ESC-based cellular and animal models of chromosomal translocation by CRISPR/Cas9 provides a powerful platform for understanding the effect of chromosomal translocation and for the development of new therapeutic strategies.
Collapse
|
25
|
Bidet A, Laharanne E, Achard S, Migeon M, Moreau C, Lippert E. Analysis ofRUNX1rearrangements: insights into leukaemogenesis mechanisms. Br J Haematol 2016; 175:738-740. [DOI: 10.1111/bjh.13881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Audrey Bidet
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
| | | | - Sandrine Achard
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
| | - Marina Migeon
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
| | - Candice Moreau
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
| | - Eric Lippert
- Laboratoire d'Hématologie; CHU de Bordeaux; Pessac Cedex France
- INSERM U1035; Laboratoire Hématopoïèse Leucémique et Cibles Thérapeutiques; Université de Bordeaux; Bordeaux France
| |
Collapse
|