1
|
Xiong S, Zhang Y, Zhou X, Pant V, Mirani A, Gencel-Augusto J, Chau G, You MJ, Lozano G. Dependence on Mdm2 for Mdm4 inhibition of p53 activity. Cancer Lett 2025; 621:217622. [PMID: 40081463 DOI: 10.1016/j.canlet.2025.217622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Both Mdm2 and Mdm4 inhibit p53 activity by masking of its transcriptional activation domain. In addition, Mdm2 functions as an E3 ubiquitin ligase, targeting p53 for degradation. The amino terminus of Mdm4 binds wild type and mutant p53 while its RING domain, which lacks E3 ligase activity, is required for heterodimerization with Mdm2. To determine how these domains of Mdm4 regulate p53, we generated mouse models with either a deletion of the Mdm4 RING domain (Mdm4ΔR) or all of Mdm4 (Mdm4─) on a hypomorphic (p53neo) background. Mdm4ΔR mice exhibited elevated p53 levels and activity, albeit to a lesser extent than mice with complete Mdm4 loss, indicating that the amino terminus of Mdm4 contributes to p53 inhibition. Moreover, in the absence of Mdm2, neither the deletion of the Mdm4 RING domain nor the complete loss of Mdm4 further increased p53 protein levels on a mutant p53 background, indicating that Mdm4 modulates Mdm2 in its regulation of p53 stability. Collectively, our findings suggest that Mdm4 contributes to p53 inhibition by modulating Mdm2 activity via both its amino terminus and RING domains.
Collapse
Affiliation(s)
- Shunbin Xiong
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yun Zhang
- Department of Pharmaceutical Sciences, Joan M. Lafleur College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Xin Zhou
- Department of Pediatrics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Vinod Pant
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Akshita Mirani
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Gilda Chau
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - M James You
- Department of Hematopathology, UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guillermina Lozano
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Huang Y, Che X, Wang PW, Qu X. p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol 2024; 101:44-57. [PMID: 38762096 DOI: 10.1016/j.semcancer.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.
Collapse
Affiliation(s)
- Youyi Huang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Peter W Wang
- Department of Medicine, Oasis Medical Research Center, Watertown, MA 02472, USA.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
3
|
Pant V, Sun C, Lozano G. Tissue specificity and spatio-temporal dynamics of the p53 transcriptional program. Cell Death Differ 2023; 30:897-905. [PMID: 36755072 PMCID: PMC10070629 DOI: 10.1038/s41418-023-01123-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 02/10/2023] Open
Abstract
Transcription factors regulate hundreds of genes and p53 is no exception. As a stress responsive protein, p53 transactivates an array of downstream targets which define its role in maintaining physiological functions of cells/tissues. Despite decades of studies, our understanding of the p53 in vivo transcriptional program is still incomplete. Here we discuss some of the physiological stressors that activate p53, the pathological and physiological implications of p53 activation and the molecular profiling of the p53 transcriptional program in maintaining tissue homeostasis. We argue that the p53 transcriptional program is spatiotemporally regulated in a tissue-specific manner and define a p53 target signature that faithfully depicts p53 activity. We further emphasize that additional in vivo studies are needed to refine the p53 transactivation profile to harness it for therapeutic purposes.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, 1515 Holcombe Blvd, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chang Sun
- Department of Genetics, 1515 Holcombe Blvd, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guillermina Lozano
- Department of Genetics, 1515 Holcombe Blvd, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Pant V, Aryal NK, Xiong S, Chau GP, Fowlkes NW, Lozano G. Alterations of the MDM2 C-terminus differentially impact its function in vivo. Cancer Res 2022; 82:1313-1320. [PMID: 35078816 PMCID: PMC8983537 DOI: 10.1158/0008-5472.can-21-2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 01/10/2023]
Abstract
Murine double minute 2 (Mdm2) is the principal E3-ubiquitin ligase for p53 and contains a C2H2C4 type RING domain wherein the last cysteine residue is followed by an evolutionarily conserved 13 amino acid C-terminal tail. Previous studies have indicated that integrity of the C-terminal tail is critical for Mdm2 function. Recently, a mutation extending the MDM2 length by five amino acids was identified and associated with enhanced p53 response in fibroblasts and premature aging in a human patient. To investigate the importance of the conserved Mdm2 C-terminal length on p53 regulatory function in vivo, we engineered three novel mouse alleles using CRISPR-Cas9 technology. Genetic studies with these murine models showed that curtailing Mdm2 C-terminal length by even a single amino acid leads to p53-dependent embryonic lethality. Extension of the Mdm2 C-terminal length by five amino acids (QLTCL) yielded viable mice that are smaller in size, exhibit fertility problems, and have a shortened life span. Analysis of early passage mouse embryonic fibroblasts indicated impaired Mdm2 function correlates with enhanced p53 activity under stress conditions. Furthermore, analysis in mice showed tissue-specific alterations in p53 target gene expression and enhanced radiosensitivity. These results confirm the physiological importance of the evolutionarily conserved Mdm2 C-terminus in regulating p53 functions. SIGNIFICANCE This in vivo study highlights that alterations to the C-terminus of Mdm2 perturb its regulation of the tumor suppressor p53.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Neeraj K. Aryal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Current address: Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451
| | - Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Gilda P Chau
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Corresponding author: Guillermina Lozano, PhD, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, Tel. 713 834 6386,
| |
Collapse
|
5
|
Wang M, Attardi LD. A Balancing Act: p53 Activity from Tumor Suppression to Pathology and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:205-226. [PMID: 34699262 DOI: 10.1146/annurev-pathol-042320-025840] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TP53, encoding the p53 transcription factor, is the most frequently mutated tumor suppressor gene across all human cancer types. While p53 has long been appreciated to induce antiproliferative cell cycle arrest, apoptosis, and senescence programs in response to diverse stress signals, various studies in recent years have revealed additional important functions for p53 that likely also contribute to tumor suppression, including roles in regulating tumor metabolism, ferroptosis, signaling in the tumor microenvironment, and stem cell self-renewal/differentiation. Not only does p53 loss or mutation cause cancer, but hyperactive p53 also drives various pathologies, including developmental phenotypes, premature aging, neurodegeneration, and side effects of cancer therapies. These findings underscore the importance of balanced p53 activity and influence our thinking of how to best develop cancer therapies based on modulating the p53 pathway. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mengxiong Wang
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Laura D Attardi
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA; .,Department of Genetics and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
6
|
Tung LT, Wang H, Belle JI, Petrov JC, Langlais D, Nijnik A. p53-dependent induction of P2X7 on hematopoietic stem and progenitor cells regulates hematopoietic response to genotoxic stress. Cell Death Dis 2021; 12:923. [PMID: 34625535 PMCID: PMC8501024 DOI: 10.1038/s41419-021-04202-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Stem and progenitor cells are the main mediators of tissue renewal and repair, both under homeostatic conditions and in response to physiological stress and injury. Hematopoietic system is responsible for the regeneration of blood and immune cells and is maintained by bone marrow-resident hematopoietic stem and progenitor cells (HSPCs). Hematopoietic system is particularly susceptible to injury in response to genotoxic stress, resulting in the risk of bone marrow failure and secondary malignancies in cancer patients undergoing radiotherapy. Here we analyze the in vivo transcriptional response of HSPCs to genotoxic stress in a mouse whole-body irradiation model and, together with p53 ChIP-Seq and studies in p53-knockout (p53KO) mice, characterize the p53-dependent and p53-independent branches of this transcriptional response. Our work demonstrates the p53-independent induction of inflammatory transcriptional signatures in HSPCs in response to genotoxic stress and identifies multiple novel p53-target genes induced in HSPCs in response to whole-body irradiation. In particular, we establish the direct p53-mediated induction of P2X7 expression on HSCs and HSPCs in response to genotoxic stress. We further demonstrate the role of P2X7 in hematopoietic response to acute genotoxic stress, with P2X7 deficiency significantly extending mouse survival in irradiation-induced hematopoietic failure. We also demonstrate the role of P2X7 in the context of long-term HSC regenerative fitness following sublethal irradiation. Overall our studies provide important insights into the mechanisms of HSC response to genotoxic stress and further suggest P2X7 as a target for pharmacological modulation of HSC fitness and hematopoietic response to genotoxic injury.
Collapse
Affiliation(s)
- Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jad I Belle
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jessica C Petrov
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Bowen ME, Mulligan AS, Sorayya A, Attardi LD. Puma- and Caspase9-mediated apoptosis is dispensable for p53-driven neural crest-based developmental defects. Cell Death Differ 2021; 28:2083-2094. [PMID: 33574585 PMCID: PMC8257737 DOI: 10.1038/s41418-021-00738-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/20/2023] Open
Abstract
Inappropriate activation of the p53 transcription factor is thought to contribute to the developmental phenotypes in a range of genetic syndromes. Whether p53 activation drives these developmental phenotypes by triggering apoptosis, cell cycle arrest, or other p53 cellular responses, however, has remained elusive. As p53 hyperactivation in embryonic neural crest cells (NCCs) drives a number of phenotypes, including abnormal craniofacial and neuronal development, we investigate the basis for p53 action in this context. We show that p53-driven developmental defects are associated with the induction of a robust pro-apoptotic transcriptional signature. Intriguingly, however, deleting Puma or Caspase9, which encode key components of the intrinsic apoptotic pathway, does not rescue craniofacial, neuronal or pigmentation defects triggered by p53 hyperactivation in NCCs. Immunostaining analyses for two key apoptosis markers confirm that deleting Puma or Caspase9 does indeed impair p53-hyperactivation-induced apoptosis in NCCs. Furthermore, we demonstrate that p53 hyperactivation does not trigger a compensatory dampening of cell cycle progression in NCCs upon inactivation of apoptotic pathways. Together, our results indicate that p53-driven craniofacial, neuronal and pigmentation defects can arise in the absence of apoptosis and cell cycle arrest, suggesting that p53 hyperactivation can act via alternative pathways to trigger developmental phenotypes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abigail S Mulligan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aryo Sorayya
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
p53 drives a transcriptional program that elicits a non-cell-autonomous response and alters cell state in vivo. Proc Natl Acad Sci U S A 2020; 117:23663-23673. [PMID: 32900967 DOI: 10.1073/pnas.2008474117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene that encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 chromatin immunoprecipitation (ChIP) sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes, which included Mdm2 but not p21 Global p53 activation caused a metaplastic phenotype in the pancreas that was missing in mice with acinar-specific p53 activation, suggesting non-cell-autonomous effects. The p53 cellular response at single-cell resolution in the intestine altered transcriptional cell state, leading to a proximal enterocyte population enriched for genes within oxidative phosphorylation pathways. In addition, a population of active CD8+ T cells was recruited. Combined, this study provides a comprehensive profile of the p53 transcriptional response in vivo, revealing both tissue-specific transcriptomes and a unique signature, which were integrated to induce both cell-autonomous and non-cell-autonomous responses and transcriptional plasticity.
Collapse
|
9
|
Lozano G. Restoring p53 in cancer: the promises and the challenges. J Mol Cell Biol 2020; 11:615-619. [PMID: 31283825 PMCID: PMC6736346 DOI: 10.1093/jmcb/mjz063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Guillermina Lozano
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence to: Guillermina Lozano, E-mail:
| |
Collapse
|
10
|
Bowen ME, Attardi LD. The role of p53 in developmental syndromes. J Mol Cell Biol 2019; 11:200-211. [PMID: 30624728 PMCID: PMC6478128 DOI: 10.1093/jmcb/mjy087] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/22/2018] [Accepted: 01/06/2019] [Indexed: 12/17/2022] Open
Abstract
While it is well appreciated that loss of the p53 tumor suppressor protein promotes cancer, growing evidence indicates that increased p53 activity underlies the developmental defects in a wide range of genetic syndromes. The inherited or de novo mutations that cause these syndromes affect diverse cellular processes, such as ribosome biogenesis, DNA repair, and centriole duplication, and analysis of human patient samples and mouse models demonstrates that disrupting these cellular processes can activate the p53 pathway. Importantly, many of the developmental defects in mouse models of these syndromes can be rescued by loss of p53, indicating that inappropriate p53 activation directly contributes to their pathogenesis. A role for p53 in driving developmental defects is further supported by the observation that mouse strains with broad p53 hyperactivation, due to mutations affecting p53 pathway components, display a host of tissue-specific developmental defects, including hematopoietic, neuronal, craniofacial, cardiovascular, and pigmentation defects. Furthermore, germline activating mutations in TP53 were recently identified in two human patients exhibiting bone marrow failure and other developmental defects. Studies in mice suggest that p53 drives developmental defects by inducing apoptosis, restraining proliferation, or modulating other developmental programs in a cell type-dependent manner. Here, we review the growing body of evidence from mouse models that implicates p53 as a driver of tissue-specific developmental defects in diverse genetic syndromes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology in the Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology in the Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Wang L, Zhu Z, Han L, Zhao L, Weng J, Yang H, Wu S, Chen K, Wu L, Chen T. A curcumin derivative, WZ35, suppresses hepatocellular cancer cell growthviadownregulating YAP-mediated autophagy. Food Funct 2019; 10:3748-3757. [PMID: 31172987 DOI: 10.1039/c8fo02448k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HCC is a common cancer type in the world. Here, we found WZ35, a novel derivative of curcumin, could notably suppress HCC cell growthviainhibiting YAP controlled autophagy, highlighting the potent anti-tumor activity of WZ35 in liver cancer therapy.
Collapse
Affiliation(s)
- Lihua Wang
- School of Ophthalmology and Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325000
- China
| | - Zheng Zhu
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| | - Lei Han
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| | - Liqian Zhao
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| | - Jialei Weng
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| | - Hongbao Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Kaiyuan Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Liang Wu
- Department of Pathology
- First Affiliated Hospital of WenZhou Medical University
- Wenzhou 325000
- China
| | - Tongke Chen
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|
12
|
Wang L, Han L, Tao Z, Zhu Z, Han L, Yang Z, Wang H, Dai D, Wu L, Yuan Z, Chen T. The curcumin derivative WZ35 activates ROS-dependent JNK to suppress hepatocellular carcinoma metastasis. Food Funct 2018; 9:2970-2978. [PMID: 29766185 DOI: 10.1039/c8fo00314a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor metastasis is the leading cause of cancer death; due to the progress made in the elucidation of the mechanism of cancer cell metastasis, there is hope for patients with severe stages of cancer. Curcumin, as a novel anti-cancer drug, has been applied in cancer therapy; however, the toxicity of curcumin hinders its application. Herein, we constructed a novel derivative, WZ35, and evaluated its metastatic inhibition properties in vitro and in vivo. CCK-8 assay was performed to evaluate the tumor suppressive activity of WZ35. Cell apoptosis was detected by flow cytometry analysis. Transwell cell migration assay and RTCA were used to detect cell migration in mock and WZ35-treated cells. Western blotting was performed to analyze molecular alteration with different treatments. In this study, we found that curcumin and its derivative WZ35 could dramatically suppress proliferation, invasion, and migration of the hepatocellular HCCLM3, HepG2, and Huh7 cancer cells. Moreover, the cancer cell metastatic markers MMP-2, MMP-9, and N-cadherin were decreased, and E-cadherin was up-regulated. In addition, our data show that WZ35 promotes ROS-dependent JNK activation that is essential for WZ35-caused cell metastasis suppression. Moreover, the NAC and JNK inhibitor SP600125 could dramatically reverse WZ35-caused MMP-2, MMP-9, and N-cadherin reduction and E-cadherin up-regulation. We have also found that WZ35 exhibits powerful anti-metastasis activity of HCCLM3 in vivo. In conclusion, our data indicated that WZ35 could be a candidate for the treatment of metastatic liver cancer patients.
Collapse
Affiliation(s)
- Lihua Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Relevance of the p53-MDM2 axis to aging. Cell Death Differ 2017; 25:169-179. [PMID: 29192902 DOI: 10.1038/cdd.2017.187] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
In response to varying stress signals, the p53 tumor suppressor is able to promote repair, survival, or elimination of damaged cells - processes that have great relevance to organismal aging. Although the link between p53 and cancer is well established, the contribution of p53 to the aging process is less clear. Delineating how p53 regulates distinct aging hallmarks such as cellular senescence, genomic instability, mitochondrial dysfunction, and altered metabolic pathways will be critical. Mouse models have further revealed the centrality and complexity of the p53 network in aging processes. While naturally aged mice have linked longevity with declining p53 function, some accelerated aging mice present with chronic p53 activation, whose phenotypes can be rescued upon p53 deficiency. Further, direct modulation of the p53-MDM2 axis has correlated elevated p53 activity with either early aging or with delayed-onset aging. We speculate that p53-mediated aging phenotypes in these mice must have (1) stably active p53 due to MDM2 dysregulation or chronic stress or (2) shifted p53 outcomes. Pinpointing which p53 stressors, modifications, and outcomes drive aging processes will provide further insights into our understanding of the human aging process and could have implications for both cancer and aging therapeutics.
Collapse
|
14
|
Wang L, Chen X, Du Z, Li G, Chen M, Chen X, Liang G, Chen T. Curcumin suppresses gastric tumor cell growth via ROS-mediated DNA polymerase γ depletion disrupting cellular bioenergetics. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:47. [PMID: 28359291 PMCID: PMC5374654 DOI: 10.1186/s13046-017-0513-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/10/2017] [Indexed: 02/08/2023]
Abstract
Background Curcumin, as a pro-apoptotic agent, is extensively studied to inhibit tumor cell growth of various tumor types. Previous work has demonstrated that curcumin inhibits cancer cell growth by targeting multiple signaling transduction and cellular processes. However, the role of curcumin in regulating cellular bioenergetic processes remains largely unknown. Methods Western blotting and qRT-PCR were performed to analyze the protein and mRNA level of indicated molecules, respectively. RTCA, CCK-8 assay, nude mice xenograft assay, and in vivo bioluminescence imaging were used to visualize the effects of curcmin on gastric cancer cell growth in vitro and in vivo. Seahorse bioenergetics analyzer was used to investigate the alteration of oxygen consumption and aerobic glycolysis rate. Results Curcumin significantly inhibited gastric tumor cell growth, proliferation and colony formation. We further investigated the role of curcumin in regulating cellular redox homeostasis and demonstrated that curcumin initiated severe cellular apoptosis via disrupting mitochondrial homeostasis, thereby enhancing cellular oxidative stress in gastric cancer cells. Furthermore, curcumin dramatically decreased mtDNA content and DNA polymerase γ (POLG) which contributed to reduced mitochondrial oxygen consumption and aerobic glycolysis. We found that curcumin induced POLG depletion via ROS generation, and POLG knockdown also reduced oxidative phosphorylation (OXPHOS) activity and cellular glycolytic rate which was partially rescued by ROS scavenger NAC, indiating POLG plays an important role in the treatment of gastric cancer. Data in the nude mice model verified that curcumin treatment significantly attenuated tumor growth in vivo. Finally, POLG was up-regulated in human gastric cancer tissues and primary gastric cancer cell growth was notably suppressed due to POLG deficiency. Conclusions Together, our data suggest a novel mechanism by which curcumin inhibited gastric tumor growth through excessive ROS generation, resulting in depletion of POLG and mtDNA, and the subsequent disruption of cellular bioenergetics.
Collapse
Affiliation(s)
- Lihua Wang
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of the People's Republic of China, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiwen Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuanyun Du
- School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gefei Li
- School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mayun Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China.
| | - Tongke Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
15
|
Abstract
The p53 tumor suppressor has been studied for decades, and still there are many questions left unanswered. In this review, we first describe the current understanding of the wild-type p53 functions that determine cell survival or death, and regulation of the protein, with a particular focus on the negative regulators, the murine double minute family of proteins. We also summarize tissue-, stress-, and age-specific p53 activities and the potential underlying mechanisms. Among all p53 gene alterations identified in human cancers, p53 missense mutations predominate, suggesting an inherent biological advantage. Numerous gain-of-function activities of mutant p53 in different model systems and contexts have been identified. The emerging theme is that mutant p53, which retains a potent transcriptional activation domain, also retains the ability to modify gene transcription, albeit indirectly. Lastly, because mutant p53 stability is necessary for its gain of function, we summarize the mechanisms through which mutant p53 is specifically stabilized. A deeper understanding of the multiple pathways that impinge upon wild-type and mutant p53 activities and how these, in turn, regulate cell behavior will help identify vulnerabilities and therapeutic opportunities.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
16
|
Tan BX, Liew HP, Chua JS, Ghadessy FJ, Tan YS, Lane DP, Coffill CR. Anatomy of Mdm2 and Mdm4 in evolution. J Mol Cell Biol 2017; 9:3-15. [PMID: 28077607 PMCID: PMC6372010 DOI: 10.1093/jmcb/mjx002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/24/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Mouse double minute (Mdm) genes span an evolutionary timeframe from the ancient eukaryotic placozoa Trichoplax adhaerens to Homo sapiens, implying a significant and possibly conserved cellular role throughout history. Maintenance of DNA integrity and response to DNA damage involve many key regulatory pathways, including precise control over the tumour suppressor protein p53. In most vertebrates, degradation of p53 through proteasomal targeting is primarily mediated by heterodimers of Mdm2 and the Mdm2-related protein Mdm4 (also known as MdmX). Both Mdm2 and Mdm4 have p53-binding regions, acidic domains, zinc fingers, and C-terminal RING domains that are conserved throughout evolution. Vertebrates typically have both Mdm2 and Mdm4 genes, while analyses of sequenced genomes of invertebrate species have identified single Mdm genes, suggesting that a duplication event occurred prior to emergence of jawless vertebrates about 550-440 million years ago. The functional relationship between Mdm and p53 in T. adhaerens, an organism that has existed for 1 billion years, implies that these two proteins have evolved together to maintain a conserved and regulated function.
Collapse
Affiliation(s)
- Ban Xiong Tan
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Hoe Peng Liew
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Joy S. Chua
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Farid J. Ghadessy
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, #07-01,Singapore138671, Singapore
| | - David P. Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Cynthia R. Coffill
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| |
Collapse
|
17
|
Moyer SM, Larsson CA, Lozano G. Mdm proteins: critical regulators of embry ogenesis and homeostasis. J Mol Cell Biol 2017; 9:mjx004. [PMID: 28093454 PMCID: PMC5439424 DOI: 10.1093/jmcb/mjx004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/13/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
Mdm2 and Mdm4 are negative regulators of the tumor suppressor p53; hence, this relationship is the focus of many cancer related studies. A multitude of experiments across various developmental stages have been conducted to explore the tissue-specific roles of these proteins in the mouse. When Mdm2 or Mdm4 are deleted in the germline or specific tissues, they display different phenotypic defects, some of which lead to embryonic lethality. Mdm2 loss is often more deleterious than loss of its homolog Mdm4 All tissues experience activation of p53 target genes upon loss of Mdm2 or Mdm4; however, the degree to which the p53 pathway is perturbed is highly tissue-specific and does not correlate to the severity of the morphological phenotypes. Therefore, a need for further understanding of how these proteins regulate p53 activity is warranted, as therapeutic targeting of the p53 pathway is rapidly evolving and gaining attention in the field of cancer research. In this review, we discuss the tissue-specificity of Mdm proteins in regulating p53 and expose the need for investigation at the cell-specific level.
Collapse
Affiliation(s)
- Sydney M Moyer
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Connie A Larsson
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Abstract
This perspective will focus on the physiological impact of wild-type and mutant p53 activities. In particular, the tissue-specific nature of activation of p53 targets and their subsequent effects on cell behavior will be discussed. Because mutations in p53 are common in human cancers, the regulation and physiological consequences of mutant p53 proteins will also be discussed.
Collapse
|