1
|
Ladeira Bernardes A, Albuquerque Pereira MDF, Xisto Campos I, Ávila L, Dos Santos Cruz BC, Duarte Villas Mishima M, Maciel Dos Santos Dias M, de Oliveira Mendes TA, Gouveia Peluzio MDC. Oral intake of Hibiscus sabdariffa L. increased c-Myc and caspase-3 gene expression and altered microbial population in colon of BALB/c mice induced to preneoplastic lesions. Eur J Nutr 2025; 64:109. [PMID: 40042671 DOI: 10.1007/s00394-025-03622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/17/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Colorectal carcinogenesis induces changes in the colon, such as the appearance of aberrant crypt foci (ACF). This process is influenced by genetic and environmental factors, such as diet. Hibiscus sabdariffa L. is a considerable source of phenolic compounds, such as anthocyanins, and dietary fibers that may exert anti-inflammatory, antioxidant and prebiotic properties, attenuating the appearance of ACFs. OBJECTIVES To investigate whether supplementation with 5% or 10% of dehydrated calyces of Hibiscus sabadariffa (DHSC) influences the composition of the intestinal microbiota and the expression of genes related to colorectal carcinogenesis in BALB/c mice. METHODS The in vivo experiment lasted 12 weeks and the animals were divided into 3 experimental groups: the control group and the supplemented groups (5% or 10% DCHS) and induced pre-neoplastic lesions with the drug Dimethylhydrazine. Serum aspartate aminotransferase and alanine aminotransferase markers, liver cytokine profile, gut microbiota composition and tumor protein 53, cellular myelocytomatosis oncogene, caspase-3 and Proliferating Cell Nuclear Antigen gene expression were determined. RESULTS Supplementation with 5% or 10% of DCHS altered the composition of the intestinal microbiota, increasing the abundance of the families Lachnospiraceae, Ruminococcaceae, Clostridiaceae and of the genus Clostridum, important producers of butyrate. Furthermore, 5% and 10% DCHS supplementation increased caspase-3 and c-Myc expression, respectively, which may suggest apoptotic events. CONCLUSIONS Therefore, the effects of DHSC, rich in anthocyanins and dietary fiber, on the composition of the intestinal microbiota and on the expression of genes associated with cell apoptosis may contribute to reducing the risk of developing preneoplastic lesions.
Collapse
Affiliation(s)
- Andressa Ladeira Bernardes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil.
| | | | - Iasmim Xisto Campos
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| | - Larissa Ávila
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bruna Cristina Dos Santos Cruz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| | - Marcella Duarte Villas Mishima
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| | - Manoela Maciel Dos Santos Dias
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| | | | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| |
Collapse
|
2
|
Chen H, Gao S, Wang P, Xie M, Zhang H, Fan Y, Nie E, Lan Q. SRBD1 Regulates the Cell Cycle, Apoptosis, and M2 Macrophage Polarization via the RPL11-MDM2-p53 Pathway in Glioma. ENVIRONMENTAL TOXICOLOGY 2025; 40:66-78. [PMID: 39258423 DOI: 10.1002/tox.24396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Low expression of certain ribosomal proteins leads to the inactivation of p53, which is mediated mainly by RPL5 or RPL11 (ribosomal protein L11). It is also unknown what mechanisms drive aberrant ribosomal proteins expression in tumor. SRBD1 (S1 RNA-binding domain 1), as a highly conserved RNA-binding protein, is lowly expressed in glioma tissues and correlated with glioma prognosis. In this study, we observed that SRBD1 was closely related to p53 signaling. The upregulation of SRBD1 elevated p53 levels, thereby activating the p53 signaling pathway. As an RNA bind protein, SRBD1 could bind to the 5'-UTR of target genes and regulate RNA translation. We further conducted RNA immunoprecipitation using anti-SRDB1 antibody and noticed 29 hub RNA, including RPL11. RPL11 could inhibit MDM2-mediated p53 ubiquitination. SRBD1 upregulation promoted RPL11 binding to MDM2 via elevating RPL11 protein levels, which in turn activated the p53 signaling. Disrupting the p53 signaling blocked SRBD1-induced glioma suppression. In mouse xenograft model, SRBD1 ectopic expression was effective in reducing the total M2 tumor-associated macrophages (TAMs) density and suppressed glioma tumor growth. In summary, these data show that SRBD1 has a critical role in inhibition of glioma tumor growth and M2 macrophage polarization, and targeting RPL11-MDM2-p53 signaling may be an effective strategy to improve therapy and survival for glioma patients.
Collapse
Affiliation(s)
- Hongfu Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Shuping Gao
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Peng Wang
- Department of Neurosurgery, Rizhao Central Hospital, Rizhao, Shandong, People's Republic of China
| | - Manyi Xie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Hui Zhang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yuechao Fan
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Er Nie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Hong Y, Lin Q, Zhang Y, Liu J, Zheng Z. Research Progress of Ribosomal Proteins in Reproductive Development. Int J Mol Sci 2024; 25:13151. [PMID: 39684863 DOI: 10.3390/ijms252313151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Ribosomal proteins constitute the principal components of ribosomes, and their functions span a wide spectrum. Recent investigations have unveiled their involvement in oocyte and embryo development, playing a pivotal role in reproductive development. Numerous pieces of evidence indicate that ribosomal proteins participate in the regulation of various cellular activities, including nucleolar stress, oxidative stress, cell proliferation and autophagy. Despite these findings, the precise mechanisms through which ribosomal proteins influence reproductive development via these cellular activities remain elusive. Therefore, elucidating the mechanisms of action is essential for a comprehensive understanding of the role and function of ribosomal proteins in reproductive development. This paper systematically reviews the progress in research on nucleolar stress, oxidative stress, cell proliferation and autophagy concerning ribosomal proteins during reproductive development. Furthermore, we explore the potential of ribosomal proteins as diagnostic markers for various diseases. Additionally, we propose the development of drugs and therapies targeting ribosomal proteins, underscoring the potential for novel medical interventions in the context of reproductive health.
Collapse
Affiliation(s)
- Yuqi Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jilong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhanhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Huang Y, Che X, Wang PW, Qu X. p53/MDM2 signaling pathway in aging, senescence and tumorigenesis. Semin Cancer Biol 2024; 101:44-57. [PMID: 38762096 DOI: 10.1016/j.semcancer.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
A wealth of evidence has emerged that there is an association between aging, senescence and tumorigenesis. Senescence, a biological process by which cells cease to divide and enter a status of permanent cell cycle arrest, contributes to aging and aging-related diseases, including cancer. Aging populations have the higher incidence of cancer due to a lifetime of exposure to cancer-causing agents, reduction of repairing DNA damage, accumulated genetic mutations, and decreased immune system efficiency. Cancer patients undergoing cytotoxic therapies, such as chemotherapy and radiotherapy, accelerate aging. There is growing evidence that p53/MDM2 (murine double minute 2) axis is critically involved in regulation of aging, senescence and oncogenesis. Therefore, in this review, we describe the functions and mechanisms of p53/MDM2-mediated senescence, aging and carcinogenesis. Moreover, we highlight the small molecular inhibitors, natural compounds and PROTACs (proteolysis targeting chimeras) that target p53/MDM2 pathway to influence aging and cancer. Modification of p53/MDM2 could be a potential strategy for treatment of aging, senescence and tumorigenesis.
Collapse
Affiliation(s)
- Youyi Huang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Peter W Wang
- Department of Medicine, Oasis Medical Research Center, Watertown, MA 02472, USA.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Provincial key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
5
|
Zhang W, Song X, Jin Z, Zhang Y, Li S, Jin F, Zheng A. U2AF2-SNORA68 promotes triple-negative breast cancer stemness through the translocation of RPL23 from nucleoplasm to nucleolus and c-Myc expression. Breast Cancer Res 2024; 26:60. [PMID: 38594783 PMCID: PMC11005140 DOI: 10.1186/s13058-024-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Small nucleolar RNAs (snoRNAs) play key roles in ribosome biosynthesis. However, the mechanism by which snoRNAs regulate cancer stemness remains to be fully elucidated. METHODS SNORA68 expression was evaluated in breast cancer tissues by in situ hybridization and qRT‒PCR. Proliferation, migration, apoptosis and stemness analyses were used to determine the role of SNORA68 in carcinogenesis and stemness maintenance. Mechanistically, RNA pull-down, RNA immunoprecipitation (RIP), cell fractionation and coimmunoprecipitation assays were conducted. RESULTS SNORA68 exhibited high expression in triple-negative breast cancer (TNBC) and was significantly correlated with tumor size (P = 0.048), ki-67 level (P = 0.037), and TNM stage (P = 0.015). The plasma SNORA68 concentration was significantly lower in patients who achieved clinical benefit. The SNORA68-high patients had significantly shorter disease-free survival (DFS) (P = 0.036). Functionally, SNORA68 was found to promote the cell stemness and carcinogenesis of TNBC in vitro and in vivo. Furthermore, elevated SNORA68 expression led to increased nucleolar RPL23 expression and retained RPL23 in the nucleolus by binding U2AF2. RPL23 in the nucleolus subsequently upregulated c-Myc expression. This pathway was validated using a xenograft model. CONCLUSION U2AF2-SNORA68 promotes TNBC stemness by retaining RPL23 in the nucleolus and increasing c-Myc expression, which provides new insight into the regulatory mechanism of stemness.
Collapse
Affiliation(s)
- Wenrong Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xinyue Song
- Department of Pharmacology, Liaoning Province Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, China Medical University, Shenyang, Liaoning Province, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiqi Zhang
- Department of Breast Surgery, The First Hospital of Jinzhou Medical University, Shenyang, Liaoning Province, China
| | - Shan Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Ang Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
6
|
Kiparaki M, Baker NE. Ribosomal protein mutations and cell competition: autonomous and nonautonomous effects on a stress response. Genetics 2023; 224:iyad080. [PMID: 37267156 PMCID: PMC10691752 DOI: 10.1093/genetics/iyad080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/16/2023] [Indexed: 06/04/2023] Open
Abstract
Ribosomal proteins (Rps) are essential for viability. Genetic mutations affecting Rp genes were first discovered in Drosophila, where they represent a major class of haploinsufficient mutations. One mutant copy gives rise to the dominant "Minute" phenotype, characterized by slow growth and small, thin bristles. Wild-type (WT) and Minute cells compete in mosaics, that is, Rp+/- are preferentially lost when their neighbors are of the wild-type genotype. Many features of Rp gene haploinsufficiency (i.e. Rp+/- phenotypes) are mediated by a transcriptional program. In Drosophila, reduced translation and slow growth are under the control of Xrp1, a bZip-domain transcription factor induced in Rp mutant cells that leads ultimately to the phosphorylation of eIF2α and consequently inhibition of most translation. Rp mutant phenotypes are also mediated transcriptionally in yeast and in mammals. In mammals, the Impaired Ribosome Biogenesis Checkpoint activates p53. Recent findings link Rp mutant phenotypes to other cellular stresses, including the DNA damage response and endoplasmic reticulum stress. We suggest that cell competition results from nonautonomous inputs to stress responses, bringing decisions between adaptive and apoptotic outcomes under the influence of nearby cells. In Drosophila, cell competition eliminates aneuploid cells in which loss of chromosome leads to Rp gene haploinsufficiency. The effects of Rp gene mutations on the whole organism, in Minute flies or in humans with Diamond-Blackfan Anemia, may be inevitable consequences of pathways that are useful in eliminating individual cells from mosaics. Alternatively, apparently deleterious whole organism phenotypes might be adaptive, preventing even more detrimental outcomes. In mammals, for example, p53 activation appears to suppress oncogenic effects of Rp gene haploinsufficiency.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Visual Sciences and Ophthalmology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
8
|
Huang C, Zhao Q, Zhou X, Huang R, Duan Y, Haybaeck J, Yang Z. The progress of protein synthesis factors eIFs, eEFs and eRFs in inflammatory bowel disease and colorectal cancer pathogenesis. Front Oncol 2022; 12:898966. [PMID: 36387239 PMCID: PMC9659945 DOI: 10.3389/fonc.2022.898966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/14/2022] [Indexed: 04/02/2025] Open
Abstract
Colorectal diseases are threatening human health, especially inflammatory bowel disease (IBD) and colorectal cancer (CRC). IBD is a group of chronic, recurrent and incurable disease, which may affect the entire gastrointestinal tract, increasing the risk of CRC. Eukaryotic gene expression is a complicated process, which is mainly regulated at the level of gene transcription and mRNA translation. Protein translation in tissue is associated with a sequence of steps, including initiation, elongation, termination and recycling. Abnormal regulation of gene expression is the key to the pathogenesis of CRC. In the early stages of cancer, it is vital to identify new diagnostic and therapeutic targets and biomarkers. This review presented current knowledge on aberrant expression of eIFs, eEFs and eRFs in colorectal diseases. The current findings of protein synthesis on colorectal pathogenesis showed that eIFs, eEFs and eRFs may be potential targets for CRC treatment.
Collapse
Affiliation(s)
- Conggai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhao
- Department of Pathology, Basic Medical College of Southwest Medical University, Luzhou, China
| | - Xiaoqing Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ran Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Duan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Li H, Zhang H, Huang G, Bing Z, Xu D, Liu J, Luo H, An X. Loss of RPS27a expression regulates the cell cycle, apoptosis, and proliferation via the RPL11-MDM2-p53 pathway in lung adenocarcinoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:33. [PMID: 35073964 PMCID: PMC8785590 DOI: 10.1186/s13046-021-02230-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Background Depletion of certain ribosomal proteins induces p53 activation, which is mediated mainly by ribosomal protein L5 (RPL5) and/or ribosomal protein L11 (RPL11). Therefore, RPL5 and RPL11 may link RPs and p53 activation. Thus, this study aimed to explore whether RPs interact with RPL11 and regulate p53 activation in lung adenocarcinoma (LUAD) cells. Methods The endogenous RPL11-binding proteins in A549 cells were pulled down through immunoprecipitation and identified with a proteomics approach. Docking analysis and GST-fusion protein assays were used to analyze the interaction of ribosomal protein S27a (RPS27a) and RPL11. Co-immunoprecipitation and in vitro ubiquitination assays were used to detect the effects of knockdown of RPS27a on the interaction between RPS27a and RPL11, and on p53 accumulation. Cell cycle, apoptosis, cell invasion and migration, cell viability and colony-formation assays were performed in the presence of knockdown of RPS27a. The RPS27a mRNA expression in LUAD was analyzed on the basis of the TCGA dataset, and RPS27a expression was detected through immunohistochemistry in LUAD samples. Finally, RPS27a and p53 expression was analyzed through immunohistochemistry in A549 cell xenografts with knockdown of RPS27a. Results RPS27a was identified as a novel RPL11 binding protein. GST pull-down assays revealed that RPS27a directly bound RPL11. Knockdown of RPS27a weakened the interaction between RPS27a and RPL11, but enhanced the binding of RPL11 and murine double minute 2 (MDM2), thereby inhibiting the ubiquitination and degradation of p53 by MDM2. Knockdown of RPS27a stabilized p53 in an RPL11-dependent manner and induced cell viability inhibition, cell cycle arrest and apoptosis in a p53-dependent manner in A549 cells. The expression of RPS27a was upregulated in LUAD and correlated with LUAD progression and poorer prognosis. Overexpression of RPS27a correlated with upregulation of p53, MDM2 and RPL11 in LUAD clinical specimens. Knockdown of RPS27a increased p53 activation, thus, suppressing the formation of A549 cell xenografts in nude mice. Conclusions RPS27a interacts with RPL11, and RPS27a knockdown enhanced the binding of RPL11 and MDM2, thereby inhibiting MDM2-mediated p53 ubiquitination and degradation; in addition, RPS27a as important roles in LUAD progression and prognosis, and may be a therapeutic target for patients with LUAD. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02230-z.
Collapse
|
11
|
Targeting Post-Translational Regulation of p53 in Colorectal Cancer by Exploiting Vulnerabilities in the p53-MDM2 Axis. Cancers (Basel) 2022; 14:cancers14010219. [PMID: 35008383 PMCID: PMC8750794 DOI: 10.3390/cancers14010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
The role played by the key tumor suppressor gene p53 and the implications of p53 mutations for the development and progression of neoplasia continue to expand. This review focuses on colorectal cancer and the regulators of p53 expression and activity identified over the past decade. These newly recognized regulatory mechanisms include (1) direct regulation of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase; (2) modulation of the MDM2-p53 interaction; (3) MDM2-independent p53 degradation; and (4) inhibition of p53 nuclear translocation. We positioned these regulatory mechanisms in the context of p53 missense mutations, which not only evade canonical p53 degradation machinery but also exhibit gain-of-function phenotypes that enhance tumor survival and metastasis. Lastly, we discuss current and potential therapeutic strategies directed against p53 mutant-bearing tumors.
Collapse
|
12
|
Huang H, Park S, Zhang H, Park S, Kwon W, Kim E, Zhang X, Jang S, Yoon D, Choi SK, Yi JK, Kim SH, Dong Z, Lee MH, Ryoo Z, Kim MO. Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:114. [PMID: 33785035 PMCID: PMC8010944 DOI: 10.1186/s13046-021-01895-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Enugyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Soyoung Jang
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbuk-do Livestock Research Institute, Yeongju, South Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Korea
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, 58245, Republic of Korea.
| | - Zaeyoung Ryoo
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
13
|
Wang H, Xing J, Wang W, Lv G, He H, Lu Y, Sun M, Chen H, Li X. Molecular Characterization of the Oncogene BTF3 and Its Targets in Colorectal Cancer. Front Cell Dev Biol 2021; 8:601502. [PMID: 33644029 PMCID: PMC7905040 DOI: 10.3389/fcell.2020.601502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Guifen Lv
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Haiyan He
- Department of Digestive Endoscopy, Changhai Hospital, Shanghai, China
| | - Yeqing Lu
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Mei Sun
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Haiyan Chen
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
14
|
Bursać S, Prodan Y, Pullen N, Bartek J, Volarević S. Dysregulated Ribosome Biogenesis Reveals Therapeutic Liabilities in Cancer. Trends Cancer 2020; 7:57-76. [PMID: 32948502 DOI: 10.1016/j.trecan.2020.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Ribosome biogenesis (RiBi) is one of the most complex and energy demanding processes in human cells, critical for cell growth and proliferation. Strong causal links between inherited and acquired impairment in RiBi with cancer pathogenesis are emerging, pointing to RiBi as an attractive therapeutic target for cancer. Here, we will highlight new knowledge about causes of excessive or impaired RiBi and the impact of these changes on protein synthesis. We will also discuss how new knowledge about secondary consequences of dysregulated RiBi and protein synthesis, including proteotoxic stress, metabolic alterations, adaptive transcriptional and translational programs, and the impaired ribosome biogenesis checkpoint (IRBC) provide a foundation for the development of new anticancer therapies.
Collapse
Affiliation(s)
- Slađana Bursać
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ylenia Prodan
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Nick Pullen
- Bristol Myers Squibb, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Jiri Bartek
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, 171 76, Stockholm, Sweden; The Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.
| | - Siniša Volarević
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
15
|
Ma GL, Qiao ZL, He D, Wang J, Kong YY, Xin XY, Wen FQ, Bao SJ, Ma ZR, Wang FS, Xie J, Hu YH. Establishment of a low-tumorigenic MDCK cell line and study of differential molecular networks. Biologicals 2020; 68:112-121. [PMID: 32928630 DOI: 10.1016/j.biologicals.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza is an acute respiratory infection caused by the influenza virus, and vaccination against influenza is considered the best way to prevent the onset and spread. MDCK (Madin-Darby canine kidney) cells are typically used to isolate the influenza virus, however, their high tumorigenicity is the main controversy in the production of influenza vaccines. Here, MDCK-C09 and MDCK-C35 monoclonal cell lines were established, which were proven to be low in tumorigenicity. RNA-seq of MDCK-C09, MDCK-C35, and MDCK-W73 cells was performed to investigate the putative tumorigenicity mechanisms. Tumor-related molecular interaction analysis of the differentially expressed genes indicates that hub genes, such as CUL3 and EGFR, may play essential roles in tumorigenicity differences between MDCK-C (MDCK-C09 and MDCK-C35) and MDCK-W (MDCK-W73) cells. Moreover, the analysis of cell proliferation regulation-associated molecular interaction shows that downregulated JUN and MYC, for instance, mediate increased proliferation of these cells. The present study provides a new low-tumorigenic MDCK cell line and describes the potential molecular mechanism for the low tumorigenicity and high proliferation rate.
Collapse
Affiliation(s)
- Gui-Lan Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Zi-Lin Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Dan He
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Yan-Yan Kong
- Huashan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Xiao-Yong Xin
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China.
| | - Feng-Qin Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China.
| | - Shi-Jun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China.
| | - Zhong-Ren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, PR China.
| | - Fu-Shuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| | - Yong-Hao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730030, PR China.
| |
Collapse
|
16
|
Jiao Q, Ren Y, Ariston Gabrie AN, Wang Q, Wang Y, Du L, Liu X, Wang C, Wang YS. Advances of immune checkpoints in colorectal cancer treatment. Biomed Pharmacother 2020; 123:109745. [DOI: 10.1016/j.biopha.2019.109745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
|
17
|
Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint. Oncogene 2020; 39:3443-3457. [PMID: 32108164 DOI: 10.1038/s41388-020-1231-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/05/2023]
Abstract
Perturbations in ribosome biogenesis have been associated with cancer. Such aberrations activate p53 through the RPL5/RPL11/5S rRNA complex-mediated inhibition of HDM2. Studies using animal models have suggested that this signaling pathway might constitute an important anticancer barrier. To gain a deeper insight into this issue in humans, here we analyze somatic mutations in RPL5 and RPL11 coding regions, reported in The Cancer Genome Atlas and International Cancer Genome Consortium databases. Using a combined computational and statistical approach, complemented by a range of biochemical and functional analyses in human cancer cell models, we demonstrate the existence of several mechanisms by which RPL5 mutations may impair wild-type p53 upregulation and ribosome biogenesis. Unexpectedly, the same approach provides only modest evidence for a similar role of RPL11, suggesting that RPL5 represents a preferred target during human tumorigenesis in cancers with wild-type p53. Furthermore, we find that several functional cancer-associated RPL5 somatic mutations occur as rare germline variants in general population. Our results shed light on the so-far enigmatic role of cancer-associated mutations in genes encoding ribosomal proteins, with implications for our understanding of the tumor suppressive role of the RPL5/RPL11/5S rRNA complex in human malignancies.
Collapse
|
18
|
WDR74 modulates melanoma tumorigenesis and metastasis through the RPL5-MDM2-p53 pathway. Oncogene 2020; 39:2741-2755. [PMID: 32005977 DOI: 10.1038/s41388-020-1179-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 11/08/2022]
Abstract
The key molecules and underlying mechanisms of melanoma metastasis remain poorly understood. Using isobaric tag for relative and absolute quantitation (iTRAQ) proteomic screening, probing of patients' samples, functional verification, and mechanistic validation, we identified the important role of the WD repeat-containing protein 74 (WDR74) in melanoma progression and metastasis. Through gain- and loss-of-function approaches, WDR74 was found to promote cell proliferation, apoptosis resistance, and aggressive behavior in vitro. Moreover, WDR74 contributed to melanoma growth and metastasis in vivo. Mechanistically, WDR74 modulates RPL5 protein levels and consequently regulates MDM2 and insulates the ubiquitination degradation of p53 by MDM2. Our study is the first to reveal the oncogenic role of WDR74 in melanoma progression and the regulatory effect of WDR74 on the RPL5-MDM2-p53 pathway. Collectively, WDR74 can serve as a candidate target for the prevention and treatment of melanoma in the clinic.
Collapse
|
19
|
Zheng S, Qian Z, Jiang F, Ge D, Tang J, Chen H, Yang J, Yao Y, Yan J, Zhao L, Li H, Yang L. CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels. Am J Transl Res 2019; 11:4126-4138. [PMID: 31396323 PMCID: PMC6684910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
We aimed to investigate the biological functions of circLRP6 in the progression of osteosarcoma. CircLRP6 level in OS was detected by quantitative real-time polymerase chain reaction. Correlation between circLRP6 level with survival of OS patients was evaluated. Cell counting kit-8 and Transwell assay were conducted to detect proliferative, migratory and invasive capacities of OS cells. Cell cycle and apoptosis in OS cells influenced by circLRP6 were evaluated by flow cytometry. RNA immunoprecipitation was conducted to verify the binding relationship between circLRP6 with LSD1 and EZH2. Finally, the interaction between LSD1, EZH2 and promoter regions of KLF2, APC was clarified by chromatin immunoprecipitation. CircLRP6 level markedly increased in OS tissues. Besides, OS patients with high expression of circLRP6 showed shorter disease-free survival and over-all survival than those with low expression. CircLRP6 knockdown suppressed proliferative, migratory and invasive rates of OS cells. Moreover, circLRP6 knockdown induced apoptosis and arrested cell cycle in G0/G1 phase. The interaction between circLRP6 with LSD1 and EZH2 mediates their binding to the promoter regions of KLF2 and APC. Knockdown of circLRP6 weakened the binding abilities of LSD1, EZH2 to KLF2, APC. APC overexpression inhibited proliferation, induced apoptosis and arrested cell cycle. Moreover, the tumor-suppressor effect of downregulated circLRP6 on OS could be reversed by APC knockdown. Collectively, circLRP6 was highly expressed in OS and served as an oncogene by binding to LSD1 and EZH2 to inhibit expressions of KLF2 and APC.
Collapse
Affiliation(s)
- Shengnai Zheng
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Zhanyang Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Fan Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Dawei Ge
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Jian Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Hongtao Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Jin Yang
- Department of Pathology, Wuxi Third People’s HospitalWuxi 214000, Jiangsu, PR China
| | - Yilun Yao
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Junwei Yan
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Lei Zhao
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| | - Haijun Li
- Department of Orthopaedics, Taizhou People’s Hospital Affiliated to Nantong UniversityTaizhou 225300, Jiangsu, PR China
| | - Lei Yang
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, PR China
| |
Collapse
|
20
|
Ren J, Sui H, Fang F, Li Q, Li B. The application of Apc Min/+ mouse model in colorectal tumor researches. J Cancer Res Clin Oncol 2019; 145:1111-1122. [PMID: 30887153 DOI: 10.1007/s00432-019-02883-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE ApcMin/+ mouse is an excellent animal model bearing multiple intestinal neoplasia, used to simulate human familial adenomatous polyposis and colorectal tumors. The key point of this model is the mutation of Apc gene, which is a significant tumor-suppressor gene in the Wnt signaling pathway. There are also some other possible mechanisms responsible for the development of colorectal tumors in the ApcMin/+ mouse model, such as tumor-associated signaling pathways activation, the changes of tumor-related genes, and the involvement of some related proteins or molecules. METHODS The relevant literatures about ApcMin/+ mouse model from PUBMED databases are reviewed in this study. RESULTS In recent years, increasing studies have focused on the application of ApcMin/+ mouse model in colorectal tumor, trying to find effective therapeutic targets for further use. CONCLUSION This article will give a brief review on the related molecular mechanisms of the ApcMin/+ mouse model and its application in colorectal tumor researches.
Collapse
Affiliation(s)
- Junze Ren
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Hua Sui
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Qi Li
- Department of Medical Oncology, Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
21
|
Lv ZD, Xin HN, Yang ZC, Wang WJ, Dong JJ, Jin LY, Li FN. miR-135b promotes proliferation and metastasis by targeting APC in triple-negative breast cancer. J Cell Physiol 2019; 234:10819-10826. [PMID: 30624764 DOI: 10.1002/jcp.27906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. The aim of our study was to investigate the functional role of microRNA-135b (miR-135b) in TNBC. A real-time polymerase chain reaction assay was used to quantify miR-135b expression levels in 90 paired TNBC tissue and adjacent normal tissue samples. Wound-healing and transwell assays were performed to evaluate the effects of miR-135b expression on the migration and invasion of TNBC cells. Luciferase reporter and western blot analyses were used to verify whether the mRNA encoding APC is a major target of miR-135b. In the current study, we found that miR-135b was highly expressed in TNBC tissue and cells, and the expression levels were correlated with lymph node status and TNM stage. In TNBC cells, the ectopic expression of miR-135b promoted cell proliferation and invasion in vitro. In addition, our study proved that the overexpression of miR-135b significantly suppressed APC expression by targeting the 3'-untranslated region of APC, whereas enhanced APC expression could partially abrogate the miR-135b-mediated promotion of carcinogenic traits in TNBC cells. Taken together, our study demonstrated that miR-135b expression promoted the proliferation and invasion of TNBC by downregulating APC expression, indicating that miR-135b may serve as a promising target for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hai-Na Xin
- Department of General Surgery, Maternity and Child Care Hospital of Weifang, Weifang, People's Republic of China
| | - Zhao-Chuan Yang
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Wen-Juan Wang
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jiao-Jiao Dong
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Li-Ying Jin
- Cerebrovascular Disease Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fu-Nian Li
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
22
|
Magalhães L, Quintana LG, Lopes DCF, Vidal AF, Pereira AL, D'Araujo Pinto LC, de Jesus Viana Pinheiro J, Khayat AS, Goulart LR, Burbano R, de Assumpção PP, Ribeiro-Dos-Santos Â. APC gene is modulated by hsa-miR-135b-5p in both diffuse and intestinal gastric cancer subtypes. BMC Cancer 2018; 18:1055. [PMID: 30376837 PMCID: PMC6208123 DOI: 10.1186/s12885-018-4980-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Background Several genetic and epigenetic alterations are related to the development and progression of Gastric Cancer (GC), one of those being the deregulated microRNA (miRNA) expression profile. miRNAs are small noncoding RNAs that negatively regulate the expression of thousands of genes, including oncogenes and tumor suppressor genes. Our group identified, in previous studies, some miRNAs that are differentially expressed in GC when compared to the gastric mucosa without cancer, including hsa-miR-29c and hsa-miR-135b. The aim of the study was to modulate the expression of the miRNAs hsa-miR-29c-5p and hsa-miR-135b-5p and evaluate the expression of their target genes in 2D and 3D cell cultures. Methods hsa-miR-29c-5p and hsa-miR-135b-5p expression profiles were modulated by transfecting mimics and antimiRs, respectively, in 2D and 3D cell cultures. The expression of the proteins coded by the genes CDC42, DNMT3A (target genes of hsa-miR-29c-5p) and APC (target gene of hsa-miR-135b-5p) were measured by Western Blot. Results Results showed that mimics and antimiRs transfection significantly altered the expression of both miRNAs, increasing the expression of hsa-miR-29c-5p and reducing the expression of hsa-miR-135b-5p, especially in the 3D culture of the cell lines. When analyzing the proteins expression, we observed that AGP01 and AGP03 cell lines transfected with mimics had a reduction in the levels of CDC42 and DNMT3A and all three cell lines transfected with antimiRs had an increase in the expression of the protein APC. Conclusion We concluded that three-dimensional culture can be a more representative in vitro model that resembles better the in vivo reality. Our results also showed that hsa-miR-29c-5p is an important regulator of CDC42 and DNMT3A genes in the intestinal subtype gastric cancer and hsa-miR-135b-5p regulates the APC gene in both intestinal and diffuse subtypes of GC. Dysregulation in their expression, and consequently in their respectively signaling pathways, shows how these miRNAs can influence the carcinogenesis of different histological subtypes of gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4980-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leandro Magalhães
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Luciana Gonçalves Quintana
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratório de Neuropatologia Experimental, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Amanda Ferreira Vidal
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Adenilson Leão Pereira
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Lara Carolina D'Araujo Pinto
- Laboratório de Cultivo Celular, Faculdade de Odontologia, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - João de Jesus Viana Pinheiro
- Laboratório de Cultivo Celular, Faculdade de Odontologia, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - André Salim Khayat
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rommel Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Paulo Pimentel de Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil. .,Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.
| |
Collapse
|
23
|
Abstract
The rates of ribosome production by a nucleolus and of protein biosynthesis by ribosomes are tightly correlated with the rate of cell growth and proliferation. All these processes must be matched and appropriately regulated to provide optimal cell functioning. Deregulation of certain factors, including oncogenes, controlling these processes, especially ribosome biosynthesis, can lead to cell transformation. Cancer cells are characterized by intense ribosome biosynthesis which is advantageous for their growth and proliferation. On the other hand, this feature can be engaged as an anticancer strategy. Numerous nucleolar factors such as nucleolar and ribosomal proteins as well as different RNAs, in addition to their role in ribosome biosynthesis, have other functions, including those associated with cancer biology. Some of them can contribute to cell transformation and cancer development. Others, under stress evoked by different factors which often hamper function of nucleoli and thus induce nucleolar/ribosomal stress, can participate in combating cancer cells. In this sense, intentional application of therapeutic agents affecting ribosome biosynthesis can cause either release of these molecules from nucleoli or their de novo biosynthesis to mediate the activation of pathways leading to elimination of harmful cells. This review underlines the role of a nucleolus not only as a ribosome constituting apparatus but also as a hub of both positive and negative control of cancer development. The article is mainly based on original papers concerning mechanisms in which the nucleolus is implicated directly or indirectly in processes associated with neoplasia.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|
24
|
Lam AKY, Fridman M. Characteristics of cribriform morular variant of papillary thyroid carcinoma in post-Chernobyl affected region. Hum Pathol 2018; 74:170-177. [PMID: 29320754 DOI: 10.1016/j.humpath.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/30/2023]
Abstract
The aim is to study the characteristics of cribriform morular variant of papillary thyroid carcinoma (CMV-PTC) in patients living in the radiation-affected area of Belarus. The clinical and pathological features of 35 patients with CMV-PTC from Belarus were studied and compared with those of conventional papillary thyroid carcinoma diagnosed in the same period. The patients with CMV-PTC were all females and were younger at presentation (mean age = 24) than those with conventional papillary thyroid carcinoma. Familial adenomatous polyposis (FAP) was identified in 20% of the patients with CMV-PTC. The majority of the CMV-PTCs (29/35; 83%) were staged as pT1 and were less advanced than conventional papillary thyroid carcinoma. There was no evidence of lymph node metastases or distant metastases. CMV-PTCs were positive for β-catenin, APC (adenomatous polyposis coli) and p53 proteins. No psammoma bodies were identified on microscopic examination. Over a median follow-up of 9 years, all the patients were alive, and there was no cancer recurrence or mortality related to the thyroid cancer. To conclude, CMV-PTC in patients in the radiation-affected region behaves in an indolent fashion. They had distinctive features that are different from patients with conventional papillary thyroid carcinoma living in the same region.
Collapse
Affiliation(s)
- Alfred King-Yin Lam
- Discipline of Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia.
| | - Mikhail Fridman
- Republican Centre for Thyroid Tumors, Nezavisimosty Av., 64, 220013 Minsk, Belarus
| |
Collapse
|
25
|
Hui W, Liu S, Zheng J, Fang Z, Ding Q, Feng C. Nutlin-3a as a novel anticancer agent for adrenocortical carcinoma with CTNNB1 mutation. Cancer Med 2018. [PMID: 29532999 PMCID: PMC5911589 DOI: 10.1002/cam4.1431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy, and CTNNB1 is frequently mutated in ACC. Our study aims to screen for effective agents with antineoplastic activity against ACC with CTNNB1 mutation. In‐silico screening of the Genomics of Drug Sensitivity in Cancer (GDSC) database was conducted. Drug sensitivity in cells with CTNNB1 mutation was analyzed and further in vitro and in vivo studies were performed using the compound. Only one compound, Nutlin‐3a, an MDM2 inhibitor, was significantly sensitive in 18 cancer cells with CTNNB1 mutation. Further analysis of the 18 cells revealed no significant efficacy between cells with both CTNNB1 and TP53 mutations indicating concomitant TP53 mutation did not impact on drug efficacy. We verified that Nutlin‐3a inhibited cellular proliferation in ACC cell line NCI‐H295R which harbored CTNNB1 mutation but not in SW13 cells which did not. Nutlin‐3a induced cell apoptosis and G1 cell‐cycle arrest in NCI‐H295R cells. Nutlin‐3a also decreased cellular migration and inhibited epithelial‐to‐mesenchymal transition (EMT) process in terms of EMT index. Nutlin‐3a resulted in decreased β‐catenin level independent of p53 level in NCI‐H295R but not SW13 cells. We also evaluated the effect of Nutlin‐3a on hormonal secretion of NCI‐H295R cells and found it resulted in decreased levels of cortisol, androgen, and progesterone. Nutlin‐3a treatment inhibited ACC tumor growth with no observed toxicity in mice in vivo. Our study has revealed that Nutlin‐3a potently inhibits ACC with CTNNB1 mutation. How p53/MDM2 axis coordinates with Wnt/beta‐Catenin signaling in ACC warrants further study.
Collapse
Affiliation(s)
- Wen Hui
- Department of Urology, Huashan Hospital, Shanghai, 200040, China.,Fudan Institute of Urology, Shanghai, 200040, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Shanghai, 200040, China.,Fudan Institute of Urology, Shanghai, 200040, China
| | - Jie Zheng
- Department of Urology, Huashan Hospital, Shanghai, 200040, China.,Fudan Institute of Urology, Shanghai, 200040, China
| | - Zujun Fang
- Department of Urology, Huashan Hospital, Shanghai, 200040, China.,Fudan Institute of Urology, Shanghai, 200040, China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Shanghai, 200040, China.,Fudan Institute of Urology, Shanghai, 200040, China
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Shanghai, 200040, China.,Fudan Institute of Urology, Shanghai, 200040, China
| |
Collapse
|
26
|
Liu DC, Seimetz J, Lee KY, Kalsotra A, Chung HJ, Lu H, Tsai NP. Mdm2 mediates FMRP- and Gp1 mGluR-dependent protein translation and neural network activity. Hum Mol Genet 2018; 26:3895-3908. [PMID: 29016848 DOI: 10.1093/hmg/ddx276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Activating Group 1 (Gp1) metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, elicits translation-dependent neural plasticity mechanisms that are crucial to animal behavior and circuit development. Dysregulated Gp1 mGluR signaling has been observed in numerous neurological and psychiatric disorders. However, the molecular pathways underlying Gp1 mGluR-dependent plasticity mechanisms are complex and have been elusive. In this study, we identified a novel mechanism through which Gp1 mGluR mediates protein translation and neural plasticity. Using a multi-electrode array (MEA) recording system, we showed that activating Gp1 mGluR elevates neural network activity, as demonstrated by increased spontaneous spike frequency and burst activity. Importantly, we validated that elevating neural network activity requires protein translation and is dependent on fragile X mental retardation protein (FMRP), the protein that is deficient in the most common inherited form of mental retardation and autism, fragile X syndrome (FXS). In an effort to determine the mechanism by which FMRP mediates protein translation and neural network activity, we demonstrated that a ubiquitin E3 ligase, murine double minute-2 (Mdm2), is required for Gp1 mGluR-induced translation and neural network activity. Our data showed that Mdm2 acts as a translation suppressor, and FMRP is required for its ubiquitination and down-regulation upon Gp1 mGluR activation. These data revealed a novel mechanism by which Gp1 mGluR and FMRP mediate protein translation and neural network activity, potentially through de-repressing Mdm2. Our results also introduce an alternative way for understanding altered protein translation and brain circuit excitability associated with Gp1 mGluR in neurological diseases such as FXS.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program
| | - Joseph Seimetz
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R.Woese Institute of Genomic Biology, University of Illinois, Champaign, IL 61801, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology.,Neuroscience Program.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Qin JJ, Wang W, Li X, Deokar H, Buolamwini JK, Zhang R. Inhibiting β-Catenin by β-Carboline-Type MDM2 Inhibitor for Pancreatic Cancer Therapy. Front Pharmacol 2018; 9:5. [PMID: 29387014 PMCID: PMC5776119 DOI: 10.3389/fphar.2018.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/03/2018] [Indexed: 01/24/2023] Open
Abstract
The β-catenin and MDM2 oncoproteins are overexpressed and constitutively activated in human pancreatic cancer and contribute to its initiation, progression, and metastasis. The Wnt/β-catenin signaling pathway strongly interacts with the MDM2-p53 signaling pathway, accelerating the tumorigenesis and its development. Therefore, therapies inhibiting both β-catenin and MDM2 are suggested to be ideal treatments for patients with advanced pancreatic cancer. We have recently identified a novel class of β-carboline compounds as the specific and potent MDM2 inhibitors, including a lead compound SP141. In the present study, we utilized SP141 as an exemplary β-carboline compound to characterize β-catenin as a molecular target of the β-carboline compounds and to demonstrate an important role of β-catenin in the anticancer activity of β-carboline. We found that the silencing of either β-catenin or MDM2 largely reduced the anticancer activity of SP141 while the double silencing of both genes almost completely blocked SP141’s activity. SP141 directly bound to β-catenin and inhibited its expression and activity in pancreatic cancer cells in vitro and in vivo. The inhibitory effects of SP141 on β-catenin were mediated by the ubiquitin–proteasome system in an MDM2-independent manner. In conclusion, these results suggest that SP141 exerts its anticancer activity by dually inhibiting β-catenin and MDM2. We envision that β-carboline derivatives can be developed as promising dual inhibitors of β-catenin and MDM2 for the treatment of advanced pancreatic cancer.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.,Center for Drug Discovery, University of Houston, Houston, TX, United States
| | - Xin Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Hemantkumar Deokar
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - John K Buolamwini
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States.,Center for Drug Discovery, University of Houston, Houston, TX, United States
| |
Collapse
|
28
|
A Proteomics Analysis Reveals 9 Up-Regulated Proteins Associated with Altered Cell Signaling in Colon Cancer Patients. Protein J 2017; 36:513-522. [PMID: 29128960 DOI: 10.1007/s10930-017-9746-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Colorectal cancer is the second most common cancer in women and third most common cancer in men. Cell signaling alterations in colon cancer, especially in aggressive metastatic tumors, require further investigations. The present study aims to compare the expression pattern of proteins associated with cell signaling in paired tumor and non-tumor samples of patients with colon cancer, as well as to define the cluster of proteins to differentiate patients with non-metastatic (Dukes' grade B) and metastatic (Dukes' grade C&D) colon cancer. Frozen tumor and non-tumor samples were collected after tumor resection from 19 patients with colon cancer. The Panorama™ Antibody Microarray-Cell Signaling kits were used for the analyses. The expression ratios of paired tumor/non-tumor samples were calculated for the each protein. We employed R packages 'samr', 'gplots', 'supclust' (pelora, wilma algorithms), 'glmnet' for the differential expression analysis, supervised clustering and penalized logistic regression. Significance analysis of microarrays revealed 9 significantly up-regulated proteins, including protein kinase C gamma, c-Myc, MDM2, pan cytokeratin, and 1 significantly down-regulated protein (GAP1) in tumoral mucosa. Pan-cytokeratin and APP were up-regulated in tumor versus non-tumor tissue, and were selected in the predictive cluster to discriminate colon cancer type. Higher levels of S-100b and phospho-Tau-pSer199/202 were confirmed as the predictors of non-metastatic colon cancer by all employed regression/clustering methods. Deregulated proteins in colon cancer are involved in oncogenic signal transduction, cell cycle control, and regulation of cytoskeleton/transport. Further studies are needed to validate potential protein markers of colon cancer development and metastatic progression.
Collapse
|
29
|
Tackmann NR, Zhang Y. Mouse modelling of the MDM2/MDMX-p53 signalling axis. J Mol Cell Biol 2017; 9:34-44. [PMID: 28096294 PMCID: PMC5907827 DOI: 10.1093/jmcb/mjx006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/12/2017] [Indexed: 01/10/2023] Open
Abstract
It is evident that p53 activity is critical for tumour prevention and stress response through its transcriptional activation of genes affecting cellular senescence, apoptosis, cellular metabolism, and DNA repair. The regulation of p53 is highly complex, and MDM2 and MDMX are thought to be critical for deciding the fate of p53, both through inhibitory binding and post-translational modification. Many mouse models have been generated to study the regulation of p53 in vivo, and they have altered our interpretations of how p53 is regulated by MDM2 and MDMX. Although MDM2 is absolutely required for p53 regulation, certain functions are dispensable under unstressed conditions, including the ability of MDM2 to degrade p53. MDMX, on the other hand, may only be required in select situations, like embryogenesis. These models have also clarified how cellular stress signals modify the p53-inhibiting activities of MDM2 and MDMX in vivo. It is clear that more work will need to be performed to further understand the contexts for each of these signals and the requirements of various MDM2 and MDMX functions. Here, we will discuss what we have learned from mouse modelling of MDM2 and MDMX and underscore the ways in which these models could inform future therapies.
Collapse
Affiliation(s)
- Nicole R Tackmann
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yanping Zhang
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou 221002, China
| |
Collapse
|
30
|
Tan BX, Liew HP, Chua JS, Ghadessy FJ, Tan YS, Lane DP, Coffill CR. Anatomy of Mdm2 and Mdm4 in evolution. J Mol Cell Biol 2017; 9:3-15. [PMID: 28077607 PMCID: PMC6372010 DOI: 10.1093/jmcb/mjx002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/24/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Mouse double minute (Mdm) genes span an evolutionary timeframe from the ancient eukaryotic placozoa Trichoplax adhaerens to Homo sapiens, implying a significant and possibly conserved cellular role throughout history. Maintenance of DNA integrity and response to DNA damage involve many key regulatory pathways, including precise control over the tumour suppressor protein p53. In most vertebrates, degradation of p53 through proteasomal targeting is primarily mediated by heterodimers of Mdm2 and the Mdm2-related protein Mdm4 (also known as MdmX). Both Mdm2 and Mdm4 have p53-binding regions, acidic domains, zinc fingers, and C-terminal RING domains that are conserved throughout evolution. Vertebrates typically have both Mdm2 and Mdm4 genes, while analyses of sequenced genomes of invertebrate species have identified single Mdm genes, suggesting that a duplication event occurred prior to emergence of jawless vertebrates about 550-440 million years ago. The functional relationship between Mdm and p53 in T. adhaerens, an organism that has existed for 1 billion years, implies that these two proteins have evolved together to maintain a conserved and regulated function.
Collapse
Affiliation(s)
- Ban Xiong Tan
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Hoe Peng Liew
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Joy S. Chua
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Farid J. Ghadessy
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, #07-01,Singapore138671, Singapore
| | - David P. Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Cynthia R. Coffill
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| |
Collapse
|