1
|
Chen P, Yang J, Jin S, Li Y, Li D, Zhong C, Zhang Y, Xia Q, Fan X, Lin H. TMEM158 promotes ICC metastasis via inducing lactic acid mediated reduction of actin skeleton stiffness of ICC cells. J Adv Res 2025:S2090-1232(25)00222-X. [PMID: 40220896 DOI: 10.1016/j.jare.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
INTRODUCTION The survival rate of patients with intrahepatic cholangiocarcinoma (ICC) is extremely low mainly because of its high metastatic characteristic, pushing us to explore effective targets inhibiting the metastasis of ICC. OBJECTIVES To explore potential therapeutical targets to restrict the metastasis of ICC. METHODS The potential targets were screened via RNA sequencing and verified in cells and tissues. The prognostic value of TMEM158 was explored in ICC patients. The abilities of TMEM158 on affecting the metastasis of ICC were detected in cells and mice models. The cell actin skeleton stiffness was measured by phalloidin staining. The effect of TMEM158 on lactic acid (LA) generation was explored via metabolic flow and relative mechanism was detected by co-immunoprecipitation and immunofluorescence. The relationship between HIF-1A and TMEM158 was explored by dual luciferase reporter gene experiment. RESULTS TMEM158 was identified as a potential candidate over-expressed in ICC, especially with metastasis, that is linked to reduced overall survival. Besides, functional studies indicated that TMEM158 silencing inhibits ICC metastasis in vivo and in vitro through decreasing cell actin skeleton stiffness of ICC cells, and visa versa. Moreover, mechanically, lactic acid (LA) is validated as the bridge connecting TMEM158 and skeleton stiffness and TMEM158 induces the generation of LA via interaction with and activating Ras protein and subsequently enhancing glucose transporter 3 (Glut3) mediated glycolysis in ICC cells. Finally, HIF-1A directly targets the promoter region of TMEM158 and thus increases its level in ICC. CONCLUSION TMEM158 reduced the actin skeleton stiffness of ICC cells through activating Ras protein mediated generation of LA, which finally results in enhanced metastasis of ICC. Our work provides a preclinical evidence of concept for TMEM158 as a novel candidate inhibiting the metastasis of ICC.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Yujie Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310018, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310018, China; Internet and Artificial Intelligence Office, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310018, China; Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.
| |
Collapse
|
2
|
Lin X, Huo J, Su H, Xu Y, Zhang F. The Association of Melanoma-Associated Antigen-C Gene With Clinicopathological Characteristics and Prognosis in Breast Cancer: A Systematic Review and Meta-Analysis. Clin Breast Cancer 2024; 24:7-16. [PMID: 37872029 DOI: 10.1016/j.clbc.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023]
Abstract
To investigate the correlation of melanoma-associated antigen-C gene expression with clinicopathologic characteristics and prognosis in patients with breast cancer through a meta-analysis. PubMed, Embase, Web of Science, Cochrane, CNKI, Wanfang and VIP databases were searched from the establishment of the databases to December 2022. The New castle-Ottawa Scale (NOS) was used for literature quality evaluation, and meta-analysis of all studies was performed using Rev Man 5.3 and Stata14.0. A total of 11 studies and 1146 samples were included in the meta-analysis. High expression of MAGE-C gene was significantly correlated with tumor grade (OR = 8.06, 95%CI:4.14-15.67, P < .00001), lymph node metastasis (OR = 8.06, 95%CI:4.14-15.67, P < .00001), tumor type (OR = 0.36, 95%CI: 0.23-0.49, P < .00001), tumor stage (OR = 0.14, 95%CI: 0.05-0.38, P = .0001<.05), ER expression (OR = 0.14, 95%CI: 0.05-0.38, P = .0001<.05), HER-2 expression (OR = 0.24, 95%CI:0.11-0.57, P = .001<.05) and tumor embolus (OR = 0.24, 95%CI:0.11-0.57, P = .001<.05). In addition, the MAGE-C expression was correlated with the reduced overall survival (HR = 2.13, 95%CI: 1.52-2.99, P < .0001), recurrence-free survival (HR = 2.59, 95%CI:1.47-4.56, P = .0010) and metastasis-free survival (OR = 2.52, 95%CI: 1.38-4.59, P = .003). The high expression of MAGE-C gene is closely related to some clinicopathological parameters and poor prognosis of breast cancer, which may be used as a potential biomarker to determine the prognosis of breast cancer.
Collapse
Affiliation(s)
- Xunyi Lin
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to Hebei North University, Shijiazhuang 050051, Hebei Province, China
| | - Jiaxing Huo
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to Hebei Medicine University, Shijiazhuang 050051, Hebei Province, China
| | - Hang Su
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to North China University of Science and Technology, Shijiazhuang 050051, Hebei Province, China
| | - Yanbo Xu
- Department of Thyroid and Breast Surgery, Hebei General Hospital Affiliated to North China University of Science and Technology, Shijiazhuang 050051, Hebei Province, China
| | - Fenghua Zhang
- Department of Thyroid and Breast Surgery, Hebei General Hospital, No. 348 Peace West Road, Shijiazhuang 050051, Hebei Province, China.
| |
Collapse
|
3
|
Cui Y, Lee P, Reardon JJ, Wang A, Lynch S, Otero JJ, Sizemore G, Winter JO. Evaluating glioblastoma tumour sphere growth and migration in interaction with astrocytes using 3D collagen-hyaluronic acid hydrogels. J Mater Chem B 2023; 11:5442-5459. [PMID: 37159233 PMCID: PMC10330682 DOI: 10.1039/d3tb00066d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Glioblastoma (GB) is an astrocytic brain tumour with a low survival rate, partly because of its highly invasive nature. The GB tumour microenvironment (TME) includes its extracellular matrix (ECM), a variety of brain cell types, unique anatomical structures, and local mechanical cues. As such, researchers have attempted to create biomaterials and culture models that mimic features of TME complexity. Hydrogel materials have been particularly popular because they enable 3D cell culture and mimic TME mechanical properites and chemical composition. Here, we used a 3D collagen I-hyaluronic acid hydrogel material to explore interactions between GB cells and astrocytes, the normal cell type from which GB likely derives. We demonstrate three different spheroid culture configurations, including GB multi-spheres (i.e., GB and astrocyte cells in spheroid co-culture), GB-only mono-spheres cultured with astrocyte-conditioned media, and GB-only mono-spheres cultured with dispersed live or fixed astrocytes. Using U87 and LN229 GB cell lines and primary human astrocytes, we investigated material and experiment variability. We then used time-lapse fluorescence microscopy to measure invasive potential by characterizing the sphere size, migration capacity, and weight-averaged migration distance in these hydrogels. Finally, we developed methods to extract RNA for gene expression analysis from cells cultured in hydrogels. U87 and LN229 cells displayed different migration behaviors. U87 migration occurred primarily as single cells and was reduced with higher numbers of astrocytes in both multi-sphere and mono-sphere plus dispersed astrocyte cultures. In contrast, LN229 migration exhibited features of collective migration and was increased in monosphere plus dispersed astrocyte cultures. Gene expression studies indicated that the most differentially expressed genes in these co-cultures were CA9, HLA-DQA1, TMPRSS2, FPR1, OAS2, and KLRD1. Most differentially expressed genes were related to immune response, inflammation, and cytokine signalling, with greater influence on U87 than LN229. These data show that 3D in vitro hydrogel co-culture models can be used to reveal cell line specific differences in migration and to study differential GB-astrocyte crosstalk.
Collapse
Affiliation(s)
- Yixiao Cui
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Paul Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jesse J Reardon
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Anna Wang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Skylar Lynch
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Jose J Otero
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Gina Sizemore
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Jessica O Winter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
- Ohio State University Comprehensive Cancer Center - James, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Schossig P, Coskun E, Arsenic R, Horst D, Sehouli J, Bergmann E, Andresen N, Sigler C, Busse A, Keller U, Ochsenreither S. Target Selection for T-Cell Therapy in Epithelial Ovarian Cancer: Systematic Prioritization of Self-Antigens. Int J Mol Sci 2023; 24:ijms24032292. [PMID: 36768616 PMCID: PMC9916968 DOI: 10.3390/ijms24032292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Adoptive T cell-receptor therapy (ACT) could represent a promising approach in the targeted treatment of epithelial ovarian cancer (EOC). However, the identification of suitable tumor-associated antigens (TAAs) as targets is challenging. We identified and prioritized TAAs for ACT and other immunotherapeutic interventions in EOC. A comprehensive list of pre-described TAAs was created and candidates were prioritized, using predefined weighted criteria. Highly ranked TAAs were immunohistochemically stained in a tissue microarray of 58 EOC samples to identify associations of TAA expression with grade, stage, response to platinum, and prognosis. Preselection based on expression data resulted in 38 TAAs, which were prioritized. Along with already published Cyclin A1, the TAAs KIF20A, CT45, and LY6K emerged as most promising targets, with high expression in EOC samples and several identified peptides in ligandome analysis. Expression of these TAAs showed prognostic relevance independent of molecular subtypes. By using a systematic vetting algorithm, we identified KIF20A, CT45, and LY6K to be promising candidates for immunotherapy in EOC. Results are supported by IHC and HLA-ligandome data. The described method might be helpful for the prioritization of TAAs in other tumor entities.
Collapse
Affiliation(s)
- Paul Schossig
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ebru Coskun
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ruza Arsenic
- Department of Pathology, Universitätsklinikum Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - David Horst
- Insitute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Tumorbank Ovarian Cancer Network, 13353 Berlin, Germany
| | - Eva Bergmann
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nadine Andresen
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christian Sigler
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Antonia Busse
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Sebastian Ochsenreither
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Charité Comprehensive Cancer Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
5
|
Pascucci FA, Escalada MC, Suberbordes M, Vidal C, Ladelfa MF, Monte M. MAGE-I proteins and cancer-pathways: A bidirectional relationship. Biochimie 2022; 208:31-37. [PMID: 36403755 DOI: 10.1016/j.biochi.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Data emerged from the last 20 years of basic research on tumor antigens positioned the type I MAGE (Melanoma Antigen GEnes - I or MAGE-I) family as cancer driver factors. MAGE-I gene expression is mainly restricted to normal reproductive tissues. However, abnormal re-expression in cancer unbalances the cell status towards enhanced oncogenic activity or reduced tumor suppression. Anomalous MAGE-I gene re-expression in cancer is attributed to altered epigenetic-mediated chromatin silencing. Still, emerging data indicate that MAGE-I can be regulated at protein level. Results from different laboratories suggest that after its anomalous re-expression, specific MAGE-I proteins can be regulated by well-known signaling pathways or key cellular processes that finally potentiate the cancer cell phenotype. Thus, MAGE-I proteins both regulate and are regulated by cancer-related pathways. Here, we present an updated review highlighting the recent findings on the regulation of MAGE-I by oncogenic pathways and the potential consequences in the tumor cell behavior.
Collapse
Affiliation(s)
- Franco Andrés Pascucci
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carolina Escalada
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Suberbordes
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Candela Vidal
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fátima Ladelfa
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Martín Monte
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Beasley HK, Widatalla SE, Whalen DS, Williams SD, Korolkova OY, Namba C, Pratap S, Ochieng J, Sakwe AM. Identification of MAGEC2/CT10 as a High Calcium-Inducible Gene in Triple-Negative Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:816598. [PMID: 35355564 PMCID: PMC8959981 DOI: 10.3389/fendo.2022.816598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
The expression of the melanoma/cancer-testis antigen MAGEC2/CT10 is restricted to germline cells, but like most cancer-testis antigens, it is frequently upregulated in advanced breast tumors and other malignant tumors. However, the physiological cues that trigger the expression of this gene during malignancy remain unknown. Given that malignant breast cancer is often associated with skeletal metastasis and co-morbidities such as cancer-induced hypercalcemia, we evaluated the effect of high Ca2+ on the calcium-sensing receptor (CaSR) and potential mechanisms underlying the survival of triple-negative breast cancer (TNBC) cells at high Ca2+. We show that chronic exposure of TNBC cells to high Ca2+ decreased the sensitivity of CaSR to Ca2+ but stimulated tumor cell growth and migration. Furthermore, high extracellular Ca2+ also stimulated the expression of early response genes such as FOS/FOSB and a unique set of genes associated with malignant tumors, including MAGEC2. We further show that the MAGEC2 proximal promoter is Ca2+ inducible and that FOS/FOSB binds to this promoter in a Ca2+- dependent manner. Finally, downregulation of MAGEC2 strongly inhibited the growth of TNBC cells in vitro. These data suggest for the first time that MAGEC2 is a high Ca2+ inducible gene and that aberrant expression of MAGEC2 in malignant TNBC tissues is at least in part mediated by an increase in circulating Ca2+via the AP-1 transcription factor.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Sarrah E. Widatalla
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Diva S. Whalen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Stephen D. Williams
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Olga Y. Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Clementine Namba
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Siddharth Pratap
- Bioinformatics Core, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Josiah Ochieng
- Bioinformatics Core, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
- *Correspondence: Amos M. Sakwe,
| |
Collapse
|
7
|
Wu SC, Münger K. Role and Clinical Utility of Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225690. [PMID: 34830845 PMCID: PMC8616139 DOI: 10.3390/cancers13225690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer/testis (CT) antigens exhibit selective expression predominantly in immunoprivileged tissues in non-pathological contexts but are aberrantly expressed in diverse cancers. Due to their expression pattern, they have historically been attractive targets for immunotherapies. A growing number of studies implicate CT antigens in almost all hallmarks of cancer, suggesting that they may act as cancer drivers. CT antigens are expressed in head and neck squamous cell carcinomas. However, their role in the pathogenesis of these cancers remains poorly studied. Given that CT antigens hold intriguing potential as therapeutic targets and as biomarkers for prognosis and that they can provide novel insights into oncogenic mechanisms, their further study in the context of head and squamous cell carcinoma is warranted.
Collapse
Affiliation(s)
- Sharon Changshan Wu
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Karl Münger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence:
| |
Collapse
|
8
|
Hay M, Kumar V, Ricaño-Ponce I. The role of the X chromosome in infectious diseases. Brief Funct Genomics 2021; 21:143-158. [PMID: 34651167 DOI: 10.1093/bfgp/elab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Many infectious diseases in humans present with a sex bias. This bias arises from a combination of environmental factors, hormones and genetics. In this study, we review the contribution of the X chromosome to the genetic factor associated with infectious diseases. First, we give an overview of the X-linked genes that have been described in the context of infectious diseases and group them in four main pathways that seem to be dysregulated in infectious diseases: nuclear factor kappa-B, interleukin 2 and interferon γ cascade, toll-like receptors and programmed death ligand 1. Then, we review the infectious disease associations in existing genome-wide association studies (GWAS) from the GWAS Catalog and the Pan-UK Biobank, describing the main associations and their possible implications for the disease. Finally, we highlight the importance of including the X chromosome in GWAS analysis and the importance of sex-specific analysis.
Collapse
|
9
|
Park D, Han S, Joo H, Ka HI, Soh S, Park J, Yang Y. Increased Melanoma-Associated Antigen C2 Expression Affords Resistance to Apoptotic Deathin Suspension-Cultured Tumor Cells. J Breast Cancer 2021; 24:138-152. [PMID: 33818016 PMCID: PMC8090803 DOI: 10.4048/jbc.2021.24.e6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/05/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Melanoma-associated antigen C2 (MAGEC2) is an oncogene associated with various types of cancers. However, the biological function of MAGEC2 in circulating tumor cells remains unclear. In this study, we investigated the role of MAGEC2 using adapted suspension cells (ASCs), which were previously developed to study circulating tumor cells (CTCs). METHODS Differential gene expression in adherent cells (ADs) and ASCs was examined using RNA-seq analysis. MAGEC2 expression was assessed using reverse transcription quantitative polymerase chain reaction (RT-qPCR), immunoblotting, and ChIP-seq analysis. Depletion of MAGEC2 expression was performed using siRNA. MAGEC2-depleted ADs and ASCs were used to investigate changes in the proliferation rate and cell cycle. Then, the protein levels of signal transducer and activator of transcription 3 (STAT3), phosphorylated STAT3, and downstream of STAT3 were measured using control and MAGEC2-depleted ADs and ASCs. In ASCs, the direct effect of active STAT3 inhibition with Stattic, a STAT3 inhibitor, was assessed in terms of proliferation and apoptosis. Finally, an Annexin V/7-AAD assay was performed to determine the percentage of apoptotic cells in the Stattic-treated cells. RESULTS MAGEC2 was highly expressed in ASCs when compared with ADs. Depletion of MAGEC2 reduced the proliferation rate and viability of ASCs. To elucidate the underlying mechanism, the level of STAT3 was examined owing to its oncogenic properties. Tyrosine-phosphorylated active STAT3 was highly expressed in ASCs and decreased in MAGEC2-depleted ASCs. Furthermore, on treating ASCs with Stattic, an active STAT3 inhibitor, the cells were markedly sensitive to intrinsic pathway-mediated apoptosis. CONCLUSIONS High MAGEC2 expression may play an important role in the survival of ASCs by maintaining the expression of activated STAT3 to prevent apoptotic cell death.
Collapse
Affiliation(s)
- Doyeon Park
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Sora Han
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Hyunjeong Joo
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Hye In Ka
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | - Sujung Soh
- Department of Biological Sciences, Research Center for Cellular Heterogeneity, Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea
| | | | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea.
| |
Collapse
|
10
|
Liang SX, Fang H, Chen W, Yan YB. Expression of Cancer-testis Antigens in Adenoid Cystic Carcinoma of the Salivary Glands Correlates with Clinical Outcomes. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital
| | - Hui Fang
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Wei Chen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction
| | - Ying-Bin Yan
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction
| |
Collapse
|
11
|
Arora M, Kumari S, Singh J, Chopra A, Chauhan SS. Downregulation of Brain Enriched Type 2 MAGEs Is Associated With Immune Infiltration and Poor Prognosis in Glioma. Front Oncol 2020; 10:573378. [PMID: 33425727 PMCID: PMC7787151 DOI: 10.3389/fonc.2020.573378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma associated antigen (MAGE) is an extensively studied family of tumor-associated genes that share a common MAGE homology domain (MHD). Based upon their expression pattern, MAGE genes have been broadly classified into type 1 MAGEs (T1Ms) and type 2 MAGEs (T2Ms) categories. Interestingly, several T2Ms are highly expressed in the brain and involved in the regulation of neuronal development, differentiation, and survival. Available literature suggests possible tumor suppressor functions of a few T2Ms, while information available about their expression, regulation, and clinical significance in glioma is scanty. This prompted us to perform a comprehensive analysis of T2M expression in glioma. Gene expression data from glioma datasets: Oncomine, TCGA, and REMBRANDT study, were used to assess the mRNA expression of T2M genes (MAGED1, MAGED2, MAGED3, MAGED4, MAGED4B, MAGEE1, MAGEE2, MAGEF1, MAGEH1, MAGEL2, NSMCE3, and NDN), and their association with clinical characteristics and composition of the tumor microenvironment. Further, mutation, copy number alteration, and DNA methylation data from TCGA were assessed for determining potential mechanisms of T2Ms expression in glioma. Expression analysis revealed overexpression of MAGED subfamily genes in glioma, while other genes of this family exhibited reduced expression in advanced grades of this malignancy. Further, the expression of T2Ms exhibited varying extent of positive correlations with each other. Amongst downregulated T2Ms, MAGEH1 expression exhibited negative correlations with DNA methylation. Additionally, genes associated with MAGEH1 were enriched in Myc and Hedgehog signaling. Furthermore, T2Ms downregulation was associated with immune infiltration in glioma tissues and poor overall survival of glioma patients. In multivariate Cox regression analysis, MAGEH1 emerged as an independent prognosticator in lower grade glioma. Conclusively, these results suggest that expression of T2Ms is associated with important clinical and molecular features in glioma. Mechanistic studies may further provide novel insights into their role in glioma progression.
Collapse
Affiliation(s)
- Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sarita Kumari
- Laboratory Oncology Unit, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (Dr. BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (Dr. BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (Dr. BRA-IRCH), All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
13
|
Li X, Wang X, Liu YS, Wang XD, Zhou J, Zhou H. Downregulation of miR-3568 Protects Against Ischemia/Reperfusion-Induced Cardiac Dysfunction in Rats and Apoptosis in H9C2 Cardiomyocytes Through Targeting TRIM62. Front Pharmacol 2020; 11:17. [PMID: 32116696 PMCID: PMC7031202 DOI: 10.3389/fphar.2020.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
microRNA-3568 (miR-3568) has been reported to be associated with atherosclerosis. Only few data describe the expression and underlying mechanism of miR-3568 in regulating cardiac ischemia-reperfusion (I/R) injury such as apoptosis. In this study, we therefore sought to investigate the potential function of miR-3568 in simulated I/R-induced apoptosis in H9C2 cardiomyocytes and related signaling pathways involved. Flow cytometry was performed to examine the cell apoptosis. The expression of miR-3568, Survivin, Bcl-2, ERK, JNK, p38, AKT, and STAT3 was measured by western blot and quantitative real-time PCR. The correlation between TRIM62 and p-STAT3 was measured by co-immunoprecipitation and ubiquitination. We found that miR-3568 expression in simulated I/R-induced H9C2 cardiomyocytes was increased in a time-dependent manner. miR-3568 mimic transfection in H9C2 cardiomyocytes significantly enhanced cell apoptosis, decreased the expression of Bcl-2 and Survivin, and activated STAT3 signaling, which were reversed by miR-3568 inhibitor. The direct interaction between miR-3568 and the 3'-untranslated region (UTR) of TRIM62 mRNA was confirmed by dual-luciferase reporter assay. TRIM62 overexpression or AG490, a selective inhibitor of JAK2/STAT3 significantly, significantly inhibited I/R and miR-3568 mimic induced cell apoptosis and STAT3 activation. TRIM62 was found to interact with and induce ubiquitination of p-STAT3. The facilitating role of miR-3568 in I/R injury was also observed in our in vivo rat models. In conclusion, our study suggests that miR-3568 promotes simulated I/R-induced apoptosis in H9C2 cardiomyocytes through targeting TRIM62.
Collapse
Affiliation(s)
- Xin Li
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Wang
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-Sheng Liu
- Department of Cardiovascular Medicine, Ji'AN Hospital, Shanghai East Hospital, Ji'ani, China
| | - Xiao-Dong Wang
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Zhou
- Department of Cardiovascular Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Xu Z, Tang H, Zhang T, Sun M, Han Q, Xu J, Wei M, Yu Z. TEX19 promotes ovarian carcinoma progression and is a potential target for epitope vaccine immunotherapy. Life Sci 2019; 241:117171. [PMID: 31843525 DOI: 10.1016/j.lfs.2019.117171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 01/21/2023]
Abstract
AIMS Testis Expressed 19 (TEX19) is one of cancer/testis antigens identified in recent years and is related to the oncogenesis and progress of several cancers. This study aimed to reveal the role of TEX19 in ovarian cancer (OC) and searched for potential candidate epitope peptides of TEX19 to facilitate clinical application. MAIN METHODS TEX19 levels were evaluated by immunohistochemistry (IHC) in 98 human ovarian tissue samples. The correlation of TEX19 levels with patients' clinicopathological features was assessed. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were utilized to detect TEX19 levels in ovarian cell lines and TEX19-deficient cells. The level of TEX19 in OVCAR-3 and A2780 was knocked down by small interfering RNA (siRNA), and loss-of-function assays were used to determine the biological effects of TEX19 on the proliferation, migration, and invasion of OC cells. Subsequently, candidate epitope peptides from TEX19 were predicted and verified by the IEDB database, pepsite2 website, MOE software, and T2 cell binding assay. KEY FINDINGS TEX19 was significantly upregulated in OC which correlated to higher TNM stage, lymph node involvement, and invasiveness. Knockdown of TEX19 inhibited proliferation, migration, and invasion of OC cells. Additionally, we screened four peptides derived from TEX19 and found TL to be the dominant peptide with the greatest affinity with HLA-A*0201. SIGNIFICANCE Our data indicated a cancer-promoting effect of TEX19 in OC and demonstrated that TL could be a potential candidate for an anti-tumor epitope vaccine of OC, suggesting that TEX19 is a promising biomarker and immunotherapeutic target for OC.
Collapse
Affiliation(s)
- Zhaoxu Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Cancer immune peptide drug Engineering Technology Research Center, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Cancer immune peptide drug Engineering Technology Research Center, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Tianshu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No.1 Tian Tan Xi Li, Dongcheng District, Beijing 100050, PR China; No.9, Dongdan Santiao, Dongcheng District, Beijing 100730, PR China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Cancer immune peptide drug Engineering Technology Research Center, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Qiang Han
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Cancer immune peptide drug Engineering Technology Research Center, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jiao Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Cancer immune peptide drug Engineering Technology Research Center, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Cancer immune peptide drug Engineering Technology Research Center, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Liaoning Cancer immune peptide drug Engineering Technology Research Center, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
15
|
Hendrickson PG, Olson M, Luetkens T, Weston S, Han T, Atanackovic D, Fine GC. The promise of adoptive cellular immunotherapies in hepatocellular carcinoma. Oncoimmunology 2019; 9:1673129. [PMID: 32002284 PMCID: PMC6959455 DOI: 10.1080/2162402x.2019.1673129] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Current systemic therapies result only in modest benefits and new therapeutic options are critically needed. Some patients show promising clinical responses to immune checkpoint inhibitors, however, additional immunotherapeutic approaches, such as adoptive cell therapies (ACT), need to be developed. This review summarizes recent ACT studies and discusses the promise and obstacles of this approach. We further discuss ways of improving the efficacy of ACT in HCC including the use of combination therapies and locoregional delivery methods.
Collapse
Affiliation(s)
- Peter G. Hendrickson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael Olson
- Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Tim Luetkens
- Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Siani Weston
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tiffany Han
- Department of Radiology, Norwalk Hospital, Norwalk, CT, USA
| | - Djordje Atanackovic
- Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Gabriel C. Fine
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Han Q, Sun ML, Liu WS, Zhao HS, Jiang LY, Yu ZJ, Wei MJ. Upregulated expression of ACTL8 contributes to invasion and metastasis and indicates poor prognosis in colorectal cancer. Onco Targets Ther 2019; 12:1749-1763. [PMID: 30881029 PMCID: PMC6402434 DOI: 10.2147/ott.s185858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background ACTL8 is a member of the CT antigens. There are only few studies on the role of ACTL8 in malignant tumors. The aim of this study is to investigate the expression and clinical significance of ACTL8 protein in colorectal cancer (CRC). Materials and methods Human CRC tissues and cell lines, and paired adjacent non-tumor tissues and human intestinal epithelial cell lines were obtained to evaluate the expression of ACTL8. The association between protein expression of ACTL8 and clinicopathological parameters and prognosis of CRC patients was examined. The biological functions of ACTL8 in the invasion and metastasis of CRC were determined by wound healing and transwell invasion assays after silencing of ACTL8 in CRC cell lines. The potential target genes of ACTL8 were also identified by quantitative reverse transcription PCR and Western blotting after silencing of ACTL8 in CRC cell lines. Results It was found that ACTL8 was upregulated in human CRC tissues and cell lines. The expression of ACTL8 was positively associated with poor differentiation, invasion and metastasis, postoperative infection, and poor prognosis, but negatively associated with proximal margin length. In addition, silencing of ACTL8 significantly decreased the capacity of invasion and migration in HT29 and SW620 CRC cell lines. Moreover, silencing of ACTL8 significantly decreased the expression of TRIM29 in HT29 and SW620 CRC cell lines. Conclusion These results suggest that ACTL8 plays a key role in the invasion and metastasis of CRC, and TRIM29 may be involved in the ACTL8-mediated poor prognosis of CRC.
Collapse
Affiliation(s)
- Qiang Han
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Ming-Li Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Wen-Si Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Hai-Shan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Long-Yang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Zhao-Jin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ; .,Department of Pharmacology, Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang 110122, Liaoning, China,
| |
Collapse
|
17
|
Song X, Guo C, Zheng Y, Wang Y, Jin Z, Yin Y. Post-transcriptional regulation of cancer/testis antigen MAGEC2 expression by TRIM28 in tumor cells. BMC Cancer 2018; 18:971. [PMID: 30309319 PMCID: PMC6182782 DOI: 10.1186/s12885-018-4844-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer/testis antigen MAGEC2 (also known as HCA587) is highly expressed in a wide variety of tumors and plays an active role in promoting growth and metastasis of tumor cells. However, little is known for the regulation of MAGEC2 expression in cancer cells. METHODS Western blotting and quantitative RT-PCR were performed to analyze MAGEC2 expression. Co-immunoprecipitation assay was applied for detecting the endogenous interaction of MAGEC2 and TRIM28 in tumor cells. Overexpression and knockdown assays were used to examine the effects of TRIM28 on the expression of MAGEC2 protein. Immunohistochemistry (IHC) staining was performed in hepatocellular carcinoma patients to evaluate the association between the expression of MAGEC2 and TRIM28. Proteasome inhibitors MG132 or PS-341 and lysosome inhibitor Chloroquine (CQ) were used to inhibit proteasomal or lysosomal-mediated protein degradation respectively. RESULTS We demonstrate that MAGEC2 interacts with TRIM28 in melanoma cells and MAGEC2 expression in tumor cells depends on the expression of TRIM28. The expression level of MAGEC2 protein was significantly reduced when TRIM28 was depleted in tumor cells, and no changes were observed in MAGEC2 mRNA level. Furthermore, expression levels of MAGEC2 and TRIM28 are positively correlated in MAGEC2-positive human hepatocellular carcinoma tissues (p = 0.0011). Mechanistic studies indicate that the regulatory role of TRIM28 on MAGEC2 protein expression in tumor cells depends on proteasome-mediated pathway. CONCLUSIONS Our findings show that TRIM28 is necessary for MAGEC2 expression in cancer cells, and TRIM28 may serve as a new potential target for immunotherapy of cancer.
Collapse
Affiliation(s)
- Xiao Song
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Chengli Guo
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Yutian Zheng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Zhongtian Jin
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
18
|
STAT3 Interactors as Potential Therapeutic Targets for Cancer Treatment. Int J Mol Sci 2018; 19:ijms19061787. [PMID: 29914167 PMCID: PMC6032216 DOI: 10.3390/ijms19061787] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) mediate essential signaling pathways in different biological processes, including immune responses, hematopoiesis, and neurogenesis. Among the STAT members, STAT3 plays crucial roles in cell proliferation, survival, and differentiation. While STAT3 activation is transient in physiological conditions, STAT3 becomes persistently activated in a high percentage of solid and hematopoietic malignancies (e.g., melanoma, multiple myeloma, breast, prostate, ovarian, and colon cancers), thus contributing to malignant transformation and progression. This makes STAT3 an attractive therapeutic target for cancers. Initial strategies aimed at inhibiting STAT3 functions have focused on blocking the action of its activating kinases or sequestering its DNA binding ability. More recently, the diffusion of proteomic-based techniques, which have allowed for the identification and characterization of novel STAT3-interacting proteins able to modulate STAT3 activity via its subcellular localization, interact with upstream kinases, and recruit transcriptional machinery, has raised the possibility to target such cofactors to specifically restrain STAT3 oncogenic functions. In this article, we summarize the available data about the function of STAT3 interactors in malignant cells and discuss their role as potential therapeutic targets for cancer treatment.
Collapse
|
19
|
Faramarzi S, Ghafouri-Fard S. Melanoma: a prototype of cancer-testis antigen-expressing malignancies. Immunotherapy 2018; 9:1103-1113. [PMID: 29032737 DOI: 10.2217/imt-2017-0091] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the first malignancy in which expression and immunogenicity of cancer-testis antigens (CTAs) have been documented. Several CTAs have been shown to be expressed in melanoma samples especially those with metastatic potential. Many of them have been shown to exert oncogenic effects through modulation of essential pathways involved in melanoma. The crucial role of CTAs in the pathogenesis of melanoma, the high prevalence of expression of CTA panels in melanoma and the presence of spontaneous as well as inducible immune responses against CTAs in melanoma patients potentiate CTAs as immunotherapeutic targets. Numerous clinical trials are now ongoing to evaluate CTA-based immunotherapeutic effects in melanoma patient's survival. NY-ESO-1 and MAGE antigens have the most promising results up to now.
Collapse
Affiliation(s)
- Sepideh Faramarzi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Keysar SB, Eagles JR, Miller B, Jackson BC, Chowdhury FN, Reisinger J, Chimed TS, Le PN, Morton JJ, Somerset HL, Varella-Garcia M, Tan AC, Song JI, Bowles DW, Reyland ME, Jimeno A. Salivary Gland Cancer Patient-Derived Xenografts Enable Characterization of Cancer Stem Cells and New Gene Events Associated with Tumor Progression. Clin Cancer Res 2018; 24:2935-2943. [PMID: 29555661 DOI: 10.1158/1078-0432.ccr-17-3871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
Purpose: Salivary gland cancers (SGC) frequently present with distant metastases many years after diagnosis, suggesting a cancer stem cell (CSC) subpopulation that initiates late recurrences; however, current models are limited both in their availability and suitability to characterize these rare cells.Experimental Design: Patient-derived xenografts (PDX) were generated by engrafting patient tissue onto nude mice from one acinic cell carcinoma (AciCC), four adenoid cystic carcinoma (ACC), and three mucoepidermoid carcinoma (MEC) cases, which were derived from successive relapses from the same MEC patient. Patient and PDX samples were analyzed by RNA-seq and Exome-seq. Sphere formation potential and in vivo tumorigenicity was assessed by sorting for Aldefluor (ALDH) activity and CD44-expressing subpopulations.Results: For successive MEC relapses we found a time-dependent increase in CSCs (ALDH+CD44high), increasing from 0.2% to 4.5% (P=0.033), but more importantly we observed an increase in individual CSC sphere formation and tumorigenic potential. A 50% increase in mutational burden was documented in subsequent MEC tumors, and this was associated with increased expression of tumor-promoting genes (MT1E, LGR5, and LEF1), decreased expression of tumor-suppressor genes (CDKN2B, SIK1, and TP53), and higher expression of CSC-related proteins such as SOX2, MYC, and ALDH1A1. Finally, genomic analyses identified a novel NFIB-MTFR2 fusion in an ACC tumor and confirmed previously reported fusions (NTRK3-ETV6 and MYB-NFIB)Conclusions: Sequential MEC PDX models preserved key patient features and enabled the identification of genetic events putatively contributing to increases in both CSC proportion and intrinsic tumorigenicity, which mirrored the patient's clinical course. Clin Cancer Res; 24(12); 2935-43. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Justin R Eagles
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Brian C Jackson
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | | | - Julie Reisinger
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - John J Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | | | - Marileila Varella-Garcia
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado.,Department of Biostatistics and Informatics, University of Colorado School of Public Health, Denver, Colorado
| | - John I Song
- Department of Otolaryngology, UCDSOM, Denver, Colorado
| | - Daniel W Bowles
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado
| | - Mary E Reyland
- Department of Craniofacial Biology, University of Colorado Denver School of Dental Medicine, Denver, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver School of Medicine (UCDSOM), Denver, Colorado. .,Department of Otolaryngology, UCDSOM, Denver, Colorado.,Gates Center for Regenerative Medicine, UCDSOM, Denver, Colorado
| |
Collapse
|
21
|
Liu Y, Wang P. Selection by partitioning the solution paths. Electron J Stat 2018. [DOI: 10.1214/18-ejs1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
ZHU H, CHANG LL, YAN FJ, HU Y, ZENG CM, ZHOU TY, YUAN T, YING MD, CAO J, HE QJ, YANG B. AKR1C1 Activates STAT3 to Promote the Metastasis of Non-Small Cell Lung Cancer. Am J Cancer Res 2018; 8:676-692. [PMID: 29344298 PMCID: PMC5771085 DOI: 10.7150/thno.21463] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Metastasis is the leading cause of mortality for human non-small cell lung cancer (NSCLC). However, it is difficult to target tumor metastasis because the molecular mechanisms underlying NSCLC invasion and migration remain unclear. Methods: GEO data analyses and IHC analyses were performed to identify that the expression level of AKR1C1, a member of human aldo-keto reductase family, was highly elevated in patients with metastasis or metastatic foci of NSCLC patients. Functional analyses (in vitro and in vivo) and quantitative genomic analyses were preformed to confirm the pro-metastatic effects of AKR1C1 and the underlying mechanisms. The correlation of AKR1C1 with the prognosis of NSCLC patients was evaluated using Kaplan-Meier analyses. Results: in NSCLC patients, AKR1C1 expression was closely correlated with the metastatic potential of tumors. AKR1C1 overexpression in nonmetastatic cancer cells significantly promoted metastasis both in vitro and in vivo, whereas depletion of AKR1C1 in highly metastatic tumors potently alleviated these effects. Quantitative genomic and functional analyses revealed that AKR1C1 directly interacted with STAT3 and facilitated its phosphorylation-thus reinforcing the binding of STAT3 to the promoter regions of target genes-and then transactivated these genes, which ultimately promoted tumor metastasis. Further studies showed that AKR1C1 might facilitate the interaction of STAT3 with its upstream kinase JAK2. Intriguingly, AKR1C1 exerted these pro-metastatic effects in a catalytic-independent manner. In addition, a significant correlation between AKR1C1 and STAT3 pathway was observed in the metastatic foci of NSCLC patients, and the AKR1C1-STAT3 levels were highly correlated with a poor prognosis in NSCLC patients. Conclusions: taken together, we show that AKR1C1 is a potent inducer of NSCLC metastasis. Our study uncovers the active function of AKR1C1 as a key component of the STAT3 pathway, which promotes lung cancer metastasis, and highlights a candidate therapeutic target to potentially improve the survival of NSCLC patients with metastatic disease.
Collapse
|
23
|
Zeng P, Wang Y, Zheng Y, Song X, Yin Y. Cancer‑testis antigen HCA587/MAGEC2 interacts with the general transcription coactivator TAF9 in cancer cells. Mol Med Rep 2017; 17:3226-3231. [PMID: 29257297 DOI: 10.3892/mmr.2017.8260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma-associated antigen 587/melanoma antigen gene (HCA587/MAGEC2) is a cancer‑testis antigen, which is highly expressed in various types of tumors, but not in normal tissues with the exception of male germ‑line cells. HCA587/MAGEC2 has been previously recognized as a tumor‑specific target for immunotherapy; however, its biological functions have been relatively understudied. To investigate the function of HCA587/MAGEC2, the amino acid sequence of HCA587/MAGEC2 was analyzed by bioinformatics and it was demonstrated that HCA587/MAGEC2 contains a 9‑amino acid transactivation domain which may mediate the interaction of most transcription factors with TATA‑box binding protein associated factor 9 (TAF9), a general transcription coactivator. Co‑immunoprecipitation experiments revealed that HCA587/MAGEC2 interacted with TAF9 in transfected 293T and in A375 melanoma cells endogenously expressing HCA587/MAGEC2, and confirmed the endogenous interaction of HCA587/MAGEC2 and TAF9 within cells. Endogenous HCA587/MAGEC2 and TAF9 were demonstrated to be co‑localized principally in the nucleus of tumor cells using immunofluorescence. Glutathione-S-transferase pull‑down experiments demonstrated that HCA587/MAGEC2 interacts with TAF9 directly and the conserved region in the TAF9 may becrucial for HCA587/MAGEC2 binding. The present study demonstrated that the cancer‑testis antigen HCA587/MAGEC2 directly interacted with TAF9, which may provide novel information for identifying the oncogenic functions of HCA587/MAGEC2 in tumor cells.
Collapse
Affiliation(s)
- Pumei Zeng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yutian Zheng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xiao Song
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
24
|
Lee AK, Potts PR. A Comprehensive Guide to the MAGE Family of Ubiquitin Ligases. J Mol Biol 2017; 429:1114-1142. [PMID: 28300603 DOI: 10.1016/j.jmb.2017.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
Melanoma antigen (MAGE) genes are conserved in all eukaryotes and encode for proteins sharing a common MAGE homology domain. Although only a single MAGE gene exists in lower eukaryotes, the MAGE family rapidly expanded in eutherians and consists of more than 50 highly conserved genes in humans. A subset of MAGEs initially garnered interest as cancer biomarkers and immunotherapeutic targets due to their antigenic properties and unique expression pattern that is primary restricted to germ cells and aberrantly reactivated in various cancers. However, further investigation revealed that MAGEs not only drive tumorigenesis but also regulate pathways essential for diverse cellular and developmental processes. Therefore, MAGEs are implicated in a broad range of diseases including neurodevelopmental, renal, and lung disorders, and cancer. Recent biochemical and biophysical studies indicate that MAGEs assemble with E3 RING ubiquitin ligases to form MAGE-RING ligases (MRLs) and act as regulators of ubiquitination by modulating ligase activity, substrate specification, and subcellular localization. Here, we present a comprehensive guide to MAGEs highlighting the molecular mechanisms of MRLs and their physiological roles in germ cell and neural development, oncogenic functions in cancer, and potential as therapeutic targets in disease.
Collapse
Affiliation(s)
- Anna K Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|