1
|
Doğan T, Atas H, Joshi V, Atakan A, Rifaioglu A, Nalbat E, Nightingale A, Saidi R, Volynkin V, Zellner H, Cetin-Atalay R, Martin M, Atalay V. CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations. Nucleic Acids Res 2021; 49:e96. [PMID: 34181736 PMCID: PMC8450100 DOI: 10.1093/nar/gkab543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/11/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Systemic analysis of available large-scale biological/biomedical data is critical for studying biological mechanisms, and developing novel and effective treatment approaches against diseases. However, different layers of the available data are produced using different technologies and scattered across individual computational resources without any explicit connections to each other, which hinders extensive and integrative multi-omics-based analysis. We aimed to address this issue by developing a new data integration/representation methodology and its application by constructing a biological data resource. CROssBAR is a comprehensive system that integrates large-scale biological/biomedical data from various resources and stores them in a NoSQL database. CROssBAR is enriched with the deep-learning-based prediction of relationships between numerous data entries, which is followed by the rigorous analysis of the enriched data to obtain biologically meaningful modules. These complex sets of entities and relationships are displayed to users via easy-to-interpret, interactive knowledge graphs within an open-access service. CROssBAR knowledge graphs incorporate relevant genes-proteins, molecular interactions, pathways, phenotypes, diseases, as well as known/predicted drugs and bioactive compounds, and they are constructed on-the-fly based on simple non-programmatic user queries. These intensely processed heterogeneous networks are expected to aid systems-level research, especially to infer biological mechanisms in relation to genes, proteins, their ligands, and diseases.
Collapse
Affiliation(s)
- Tunca Doğan
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
- Institute of Informatics, Hacettepe University, Ankara 06800, Turkey
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara 06800, Turkey
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Heval Atas
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara 06800, Turkey
| | - Vishal Joshi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Ahmet Atakan
- Department of Computer Engineering, METU, Ankara 06800, Turkey
- Department of Computer Engineering, EBYU, Erzincan 24002, Turkey
| | - Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, METU, Ankara 06800, Turkey
- Department of Computer Engineering, İskenderun Technical University, Hatay 31200, Turkey
| | - Esra Nalbat
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara 06800, Turkey
| | - Andrew Nightingale
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Rabie Saidi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Vladimir Volynkin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Hermann Zellner
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara 06800, Turkey
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Maria Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Volkan Atalay
- Department of Computer Engineering, METU, Ankara 06800, Turkey
| |
Collapse
|
2
|
Dysregulated KRAS gene-signaling axis and abnormal chromatin remodeling drive therapeutic resistance in heterogeneous-sized circulating tumor cells in gastric cancer patients. Cancer Lett 2021; 517:78-87. [PMID: 34126192 DOI: 10.1016/j.canlet.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/25/2023]
Abstract
The mechanism by which heterogeneous-sized circulating tumor cells (CTCs) in gastric cancer (GC) patients are resistant to the targeted therapy and/or chemotherapy remains unclear. This study investigated prognostic value and genomic variations of size-heterogenous CTCs, in an attempt to unravel the molecular mechanisms underlying the therapeutic resistance, which is relevant to poor prognosis in GC. Aneuploid CTCs, detected in 111 advanced GC patients, were categorized into small (≤white blood cell [WBC], 25.54%) and large (>WBC, 74.46%) cells. Pre-treatment patients possessing ≥3 baseline small CTCs with trisomy 8 (SCTCstri) or ≥6 large multiploid CTCs (LCTCsmulti) showed an inferior median progression-free survival. Moreover, the cut-off value of ≥6 LCTCsmulti was also an effective prognosticator for poor median overall survival. Single cell-based DNA sequencing of 50 targeted CTCs indicated that SCTCstri and LCTCsmulti harbored distinct gene variations respectively. Mutations in the KRAS and Rap1 pathway were remarkably abundant in SCTCstri, whereas several unique mutations in the MET/PI3K/AKT pathway and SMARCB1 gene were identified in LCTCsmulti. Obtained results suggested that SCTCstri and LCTCsmulti exhibited different mechanisms to therapy resistance and correlated with patients' poor outcome.
Collapse
|
3
|
Khodadadi E, Mir SM, Memar MY, Sadeghi H, Kashiri M, Faeghiniya M, Jamalpoor Z, Sheikh Arabi M. Shelterin complex at telomeres: Roles in cancers. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Dong S, Song C, Qi B, Jiang X, Liu L, Xu Y. Strongly preserved modules between cancer tissue and cell line contribute to drug resistance analysis across multiple cancer types. Genomics 2021; 113:1026-1036. [PMID: 33647440 DOI: 10.1016/j.ygeno.2021.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
The existence and emergence of drug resistance in tumor cells is the main burden of cancer treatment. Most cancer drug resistance analyses are based entirely on cell line data and ignore the discordance between human tumors and cell lines, leading to biased preclinical model transformation. Based on cancer tissue data in TCGA and cancer cell line data in CCLE, this study identified and excluded non-preserved module (NP module) between cancer tissue and cell lines. We used strongly preserved module (SP module) for clinically relevant drug resistance analysis and identified 2068 "cancer-drug-module" pairs of 7 cancer types and 212 drugs based on data in GDSC. Furthermore, we identified potentially ineffective combination therapy (PICT) from multiple perspectives. Finally, we found 1608 sets of predictors that can predict drug response. These results provide insights and clues for the clinical selection of effective chemotherapy drugs to overcome cancer resistance in a new perspective.
Collapse
Affiliation(s)
- Siyao Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chengyan Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Baocui Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaochen Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lu Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
5
|
Differential Regulation of Telomeric Complex by BCR-ABL1 Kinase in Human Cellular Models of Chronic Myeloid Leukemia-From Single Cell Analysis to Next-Generation Sequencing. Genes (Basel) 2020; 11:genes11101145. [PMID: 33003326 PMCID: PMC7601685 DOI: 10.3390/genes11101145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Telomeres are specialized nucleoprotein complexes, localized at the physical ends of chromosomes, that contribute to the maintenance of genome stability. One of the features of chronic myeloid leukemia (CML) cells is a reduction in telomere length which may result in increased genomic instability and progression of the disease. Aberrant telomere maintenance in CML is not fully understood and other mechanisms such as the alternative lengthening of telomeres (ALT) are involved. In this work, we employed five BCR-ABL1-positive cell lines, namely K562, KU-812, LAMA-84, MEG-A2, and MOLM-1, commonly used in the laboratories to study the link between mutation, copy number, and expression of telomere maintenance genes with the expression, copy number, and activity of BCR-ABL1. Our results demonstrated that the copy number and expression of BCR-ABL1 are crucial for telomere lengthening. We observed a correlation between BCR-ABL1 expression and telomere length as well as shelterins upregulation. Next-generation sequencing revealed pathogenic variants and copy number alterations in major tumor suppressors, such as TP53 and CDKN2A, but not in telomere-associated genes. Taken together, we showed that BCR-ABL1 kinase expression and activity play a crucial role in the maintenance of telomeres in CML cell lines. Our results may help to validate and properly interpret results obtained by many laboratories employing these in vitro models of CML.
Collapse
|
6
|
Qiu XT, Song YC, Liu J, Wang ZM, Niu X, He J. Identification of an immune-related gene-based signature to predict prognosis of patients with gastric cancer. World J Gastrointest Oncol 2020; 12:857-876. [PMID: 32879664 PMCID: PMC7443845 DOI: 10.4251/wjgo.v12.i8.857] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the most commonly diagnosed malignancy worldwide. Increasing evidence suggests that it is necessary to further explore genetic and immunological characteristics of GC. AIM To construct an immune-related gene (IRG) signature for accurately predicting the prognosis of patients with GC. METHODS Differentially expressed genes (DEGs) between 375 gastric cancer tissues and 32 normal adjacent tissues were obtained from The Cancer Genome Atlas (TCGA) GDC data portal. Then, differentially expressed IRGs from the ImmPort database were identified for GC. Cox univariate survival analysis was used to screen survival-related IRGs. Differentially expressed survival-related IRGs were considered as hub IRGs. Genetic mutations of hub IRGs were analyzed. Then, hub IRGs were selected to conduct a prognostic signature. Receiver operating characteristic (ROC) curve analysis was used to evaluate the prognostic performance of the signature. The correlation of the signature with clinical features and tumor-infiltrating immune cells was analyzed. RESULTS Among all DEGs, 70 hub IRGs were obtained for GC. The deletions and amplifications were the two most common types of genetic mutations of hub IRGs. A prognostic signature was identified, consisting of ten hub IRGs (including S100A12, DEFB126, KAL1, APOH, CGB5, GRP, GLP2R, LGR6, PTGER3, and CTLA4). This prognostic signature could accurately distinguish patients into high- and low- risk groups, and overall survival analysis showed that high risk patients had shortened survival time than low risk patients (P < 0.0001). The area under curve of the ROC of the signature was 0.761, suggesting that the prognostic signature had a high sensitivity and accuracy. Multivariate regression analysis demonstrated that the prognostic signature could become an independent prognostic predictor for GC after adjustment for other clinical features. Furthermore, we found that the prognostic signature was significantly correlated with macrophage infiltration. CONCLUSION Our study proposed an immune-related prognostic signature for GC, which could help develop treatment strategies for patients with GC in the future.
Collapse
Affiliation(s)
- Xiang-Ting Qiu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi 276400, Shandong Province, China
| | - Yu-Cui Song
- Department of Operating Room, Linyi Central Hospital, Linyi 276400, Shandong Province, China
| | - Jian Liu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi 276400, Shandong Province, China
| | - Zhen-Min Wang
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi 276400, Shandong Province, China
| | - Xing Niu
- Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong Province, China
| |
Collapse
|
7
|
Alnafakh RAA, Adishesh M, Button L, Saretzki G, Hapangama DK. Telomerase and Telomeres in Endometrial Cancer. Front Oncol 2019; 9:344. [PMID: 31157162 PMCID: PMC6533802 DOI: 10.3389/fonc.2019.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres at the termini of human chromosomes are shortened with each round of cell division due to the “end replication problem” as well as oxidative stress. During carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid initiation of cellular senescence or apoptosis and halting cell division by critically short telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes the maintenance of telomeres but most human somatic cells do not have sufficient telomerase activity to prevent telomere shortening. Tissues with high and prolonged replicative potential demonstrate adequate cellular telomerase activity to prevent telomere erosion, and high telomerase activity appears to be a critical feature of most (80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress in response to progesterone which is frequently used to treat advanced endometrial cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere and telomerase biology in endometrial cancer is therefore important, as targeting telomerase (a downstream target of progestogens) in endometrial cancer may provide novel and more effective therapeutic avenues. This review aims to examine the available evidence for the role and importance of telomere and telomerase biology in endometrial cancer.
Collapse
Affiliation(s)
- Rafah A A Alnafakh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meera Adishesh
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Button
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gabriele Saretzki
- The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dharani K Hapangama
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, United Kingdom.,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Wu Q, Han D, Zhang J, Li X. Expression of telomere repeat binding factor 1 and TRF2 in Alzheimer’s disease and correlation with clinical parameters. Neurol Res 2019; 41:504-509. [PMID: 30761946 DOI: 10.1080/01616412.2019.1580456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qi Wu
- The Second Clinical Medical College, Zhengzhou University, Zhengzhou, China
| | - Dongyang Han
- The Second Clinical Medical College, Zhengzhou University, Zhengzhou, China
| | - Jiangkuan Zhang
- The Second Clinical Medical College, Zhengzhou University, Zhengzhou, China
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Novel combination of tanshinone I and lenalidomide induces chemo-sensitivity in myeloma cells by modulating telomerase activity and expression of shelterin complex and its associated molecules. Mol Biol Rep 2018; 45:2429-2439. [DOI: 10.1007/s11033-018-4409-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022]
|
10
|
Kumar R, Khan R, Gupta N, Seth T, Sharma A, Kalaivani M, Sharma A. Identifying the biomarker potential of telomerase activity and shelterin complex molecule, telomeric repeat binding factor 2 (TERF2), in multiple myeloma. Leuk Lymphoma 2017; 59:1677-1689. [PMID: 29043869 DOI: 10.1080/10428194.2017.1387915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Telomere length (TL) is maintained by telomere capping protein complex called shelterin complex. We studied the possible involvement and biomarker potential of shelterin complex molecules in naive multiple myeloma (MM) patients and controls. TL, relative telomerase activity (RTA), real-time PCR and Western blotting were performed in bonemarrow sample of 70 study subjects (patients = 50; controls = 20). Significantly lowered mean TL, increased RTA and higher mRNA expression of shelterin molecules were observed in patients, while PIN2/TERF1 interacting telomerase inhibitor 1 (PINX1) showed lower mRNA expression. Significantly increased protein expression of telomeric repeat binding factor 2 (TERF2), protection of telomeres 1, adrenocortical dysplasia homolog, Tankyrase 1 and telomere reverse transcriptase were observed in MM patients. Significant correlation was observed among genes and of genes with clinical parameters. In conclusion, our findings showed alteration of these molecules at mRNA and protein levels suggested their involvement in disease progression. Optimal sensitivity and specificity of TERF2 and RTA on receiver operating characteristics curve analysis and univariate analysis demonstrated their biomarkers potential in better prediction of disease course.
Collapse
Affiliation(s)
- Raman Kumar
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Rehan Khan
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Nidhi Gupta
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Tulika Seth
- b Department of Hematology , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Atul Sharma
- c Department of Medical Oncology , BRA-IRCH, All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Mani Kalaivani
- d Department of Biostatistics , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| | - Alpana Sharma
- a Department of Biochemistry , All India Institute of Medical Sciences (AIIMS) , New Delhi , India
| |
Collapse
|
11
|
Ishdorj G, Kost SEF, Beiggi S, Zang Y, Gibson SB, Johnston JB. A novel spliced variant of the TIN2 shelterin is present in chronic lymphocytic leukemia. Leuk Res 2017; 59:66-74. [PMID: 28575699 DOI: 10.1016/j.leukres.2017.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/02/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023]
Abstract
The shelterin proteins play important roles in telomere maintenance and genome stability. These proteins have been found to be mutated in many cancers including CLL. Herein, we demonstrate here the presence of a novel spliced isoform of TIN2S in chronic lymphocytic leukemia (CLL), related to deletion of exon 2 in the TIN2 gene. The expressions of spliced TIN2S mRNA varied widely in CLL and there was an inverse relationship between the mRNA levels of full-length TIN2S and the spliced moiety. Small amounts of spliced TIN2S were also observed in normal B cells but not in T cells. Spliced TIN2S appeared dysfunctional, as immunoprecipitation studies showed the typical association of TRF2 and TIN2 in normal lymphocytes but not in CLL cells. Moreover, whereas TRF2 localized to the nucleus in normal lymphocytes, it was present in both nuclei and cytoplasm in CLL cells. The levels of spliced TIN2S increased with age and in 3 of 8 patients increased over time. The presence of the spliced variant failed to be related to telomere length in CLL suggesting other functions for this protein. Further studies are required to determine the etiology and biological significance of this unique spliced TIN2S variant.
Collapse
Affiliation(s)
- Ganchimeg Ishdorj
- Research Institute of Oncology and Hematology (Formerly Manitoba Institute of Cell Biology), CancerCare Manitoba, Winnipeg, Manitoba, Canada.
| | - Sara E F Kost
- Research Institute of Oncology and Hematology (Formerly Manitoba Institute of Cell Biology), CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Sara Beiggi
- Research Institute of Oncology and Hematology (Formerly Manitoba Institute of Cell Biology), CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Yunli Zang
- Research Institute of Oncology and Hematology (Formerly Manitoba Institute of Cell Biology), CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Spencer B Gibson
- Research Institute of Oncology and Hematology (Formerly Manitoba Institute of Cell Biology), CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James B Johnston
- Research Institute of Oncology and Hematology (Formerly Manitoba Institute of Cell Biology), CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Yu Y, Li L, Zheng Z, Chen S, Chen E, Hu Y. Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. J Cell Mol Med 2016; 21:955-967. [PMID: 27878953 PMCID: PMC5387161 DOI: 10.1111/jcmm.13035] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/15/2016] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) remains a threat to public health with high incidence and mortality worldwide. Increasing evidence demonstrates that long non‐coding RNAs (lncRNAs) play critical regulatory roles in cancer biology, including GC. Previous profiling study showed that lncRNA linc00261 was aberrantly expressed in GC. However, the role of linc00261 in GC progression and the precise molecular mechanism remain unknown. In this study, we report that linc00261 was significantly down‐regulated in GC tissues and the expression level of linc00261 negatively correlated with advanced tumour status and clinical stage as well as poor prognostic outcome. In vitro functional assays indicate that ectopic expression of linc00261 suppressed cell invasion by inhibiting the epithelial–mesenchymal transition (EMT). By RNA pull‐down and mass spectrum experiments, we identified Slug as an RNA‐binding protein that binds to linc00261. We confirmed that linc00261 down‐regulated Slug by decreasing the stability of Slug proteins and that the tumour‐suppressive function of linc00261 can be neutralized by Slug. linc00261 may promote the degradation of Slug via enhancing the interaction between GSK3β and Slug. Moreover, linc00216 overexpression repressed lung metastasis in vivo. Together, our findings suggest that linc00261 acts a tumour suppressor in GC by decreasing the stability of Slug proteins and suppressing EMT. By clarifying the mechanisms underlying GC progression, these findings may facilitate the development of novel therapeutic strategies for GC.
Collapse
Affiliation(s)
- Yingcong Yu
- Department of Gastroenterology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Linjin Li
- Department of Urology Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Zhiqiang Zheng
- Department of General Surgery, The Second Affilated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Senrui Chen
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Ende Chen
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yiren Hu
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
13
|
Heregulin, a new interactor of the telosome/shelterin complex in human telomeres. Oncotarget 2016; 6:39408-21. [PMID: 26327598 PMCID: PMC4741835 DOI: 10.18632/oncotarget.4962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023] Open
Abstract
Telomere length, shape and function depend on a complex of six core telomere-associated proteins referred to as the telosome or shelterin complex. We here demonstrate that the isoform β2 of the heregulin family of growth factors (HRGβ2) is a novel interactor of the telosome/shelterin complex in human telomeres. Analysis of protein-protein interactions using a high-throughput yeast two-hybrid (Y2H) screen identified RAP1, the only telomere protein that is conserved from yeasts to mammals, as a novel interacting partner of HRGβ2. Deletion analysis of RAP1 revealed that the linker domain, a region previously suggested to recruit negative regulators of telomere length, interacts specifically with HRGβ2. Co-immunoprecipitation and imaging experiments demonstrated that, in addition to RAP1, HRGβ2 could associate with the RAP1-associated telomeric repeat binding factor 2 (TRF2). Deletion analysis of HRGβ2 confirmed that a putative nuclear localization signal (NLS) was necessary for nuclear HRGβ2 to exert a negative regulation of telomere length whereas the N-terminus (extracellular) amino acids of HRGβ2 were sufficient to interact with RAP1/TRF2 and promote telomere shortening. Taken together, our studies identify nuclear HRGβ2 as one of the previously unknown regulators predicted to be recruited by the RAP1 linker domain to negatively regulate telomere length in human cells. Our current findings reveal that a new, but likely not the last, unexpected visitor has arrived to the “telosome/shelterin town”.
Collapse
|
14
|
Zhou Q, Chai W. Suppression of STN1 enhances the cytotoxicity of chemotherapeutic agents in cancer cells by elevating DNA damage. Oncol Lett 2016; 12:800-808. [PMID: 27446354 PMCID: PMC4950739 DOI: 10.3892/ol.2016.4676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
DNA damage-inducing agents are among the most effective treatment regimens in clinical chemotherapy. However, drug resistance and severe side effects caused by these agents greatly limit their efficacy. Sensitizing malignant cells to chemotherapeutic agents has long been a goal of chemotherapy. In the present study, suppression of STN1, a gene important for safeguarding genome stability, potentiated the anticancer effect of chemotherapeutic agents in tumor cells. Using multiple cancer cells from a variety of origins, it was observed that downregulation of STN1 resulted in a significant decrease in the half maximal inhibitory concentration values of several conventional anticancer agents. When cells are treated with anticancer agents, STN1 suppression leads to a decline in colony formation and diminished anchorage-independent growth. Furthermore, it was additionally observed that STN1 knockdown augmented the levels of DNA damage caused by damage-inducing agents. The present study concluded that suppression of STN1 enhances the cytotoxicity of damage-inducing chemotherapeutic agents by increasing DNA damage in cancer cells.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Biomedical Sciences, Elson S. Floyd College of Medical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medical Sciences, Washington State University, Spokane, WA 99210, USA; School of Molecular Biosciences, Washington State University, Spokane, WA 99210, USA
| |
Collapse
|
15
|
Benhamou Y, Picco V, Pagès G. The telomere proteins in tumorigenesis and clinical outcomes of oral squamous cell carcinoma. Oral Oncol 2016; 57:46-53. [PMID: 27208844 DOI: 10.1016/j.oraloncology.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022]
Abstract
The "Hallmarks of Cancer" describe the ways by which cancer cells bypass homeostasis. Escape from replicative senescence is one of the earliest features of cancer cells. Maintenance of the telomeres through reactivation of telomerase was initially associated with replicative immortality in various cancers. The shelterin complex, a telomeric hexaprotein association, plays a key role in telomere maintenance and in the hallmarks of cancer. Some shelterin proteins are overexpressed in diverse cancers and can promote tumorigenesis in animal models. Shelterin can also have an impact on tumor size, tumor growth and resistance to treatment. Studies into the expression level of shelterin in oral squamous cell carcinoma (OSCC) report contradictory results. Moreover, the exact role of these proteins in OSCC tumorigenesis remains uncertain. In this review, we examined the data linking telomeres and hallmarks of OSCC. Furthermore, we examined the literature concerning telomeres and the clinical outcome of OSCC. Finally, we propose a model encompassing the role of shelterin proteins in oral tumorigenesis and treatment outcome.
Collapse
Affiliation(s)
- Y Benhamou
- University of Nice Sophia Antipolis, Institute for Research on Cancer and Aging of Nice CNRS UMR 7284/INSERM U 1081, France; University of Nice Sophia Antipolis, Nice University Hospital, Odontology Department, Nice, France
| | - V Picco
- Centre Scientifique de Monaco, Biomedical Department, 8 Quai Antoine Ier, MC-98000 Monaco, Monaco
| | - G Pagès
- University of Nice Sophia Antipolis, Institute for Research on Cancer and Aging of Nice CNRS UMR 7284/INSERM U 1081, France
| |
Collapse
|