1
|
Güney-Esken G, Aerts-Kaya F. Generation and Hematopoietic Differentiation of Mesenchymal Stromal/Stem Cell-Derived Induced Pluripotent Stem Cell Lines for Disease Modeling of Hematopoietic and Immunological Diseases. Methods Mol Biol 2022; 2549:23-42. [PMID: 34907509 DOI: 10.1007/7651_2021_452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, we describe a protocol for reprogramming of bone marrow-derived multipotent mesenchymal stromal/stem cells to obtain induced pluripotent stem cells from patients with primary immune deficiencies using lentiviral vectors, followed by hematopoietic differentiation of the MSC-derived iPSCs. This protocol is particularly helpful in cases where it is difficult to obtain sufficient numbers of hematopoietic cells for research and can be applied to model any hematological/immunological disease.
Collapse
Affiliation(s)
- Gülen Güney-Esken
- Koç University-Is Bank Center for Infectious Diseases, Istanbul, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, Ankara, Turkey.
| |
Collapse
|
2
|
Fischer A, Notarangelo LD, Neven B, Cavazzana M, Puck JM. Severe combined immunodeficiencies and related disorders. Nat Rev Dis Primers 2015; 1:15061. [PMID: 27189259 DOI: 10.1038/nrdp.2015.61] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe combined immunodeficiencies (SCIDs) comprise a group of rare, monogenic diseases that are characterized by an early onset and a profound block in the development of T lymphocytes. Given that adaptive immunity is abrogated, patients with SCID are prone to recurrent infections caused by both non-opportunistic and opportunistic pathogens, leading to early death unless immunity can be restored. Several molecular defects causing SCIDs have been identified, along with many other defects causing profound, albeit incomplete, T cell immunodeficiencies; the latter are referred to as atypical SCIDs or combined immunodeficiencies. The pathophysiology of many of these conditions has now been characterized. Early, accurate and precise diagnosis combined with the ongoing implementation of newborn screening have enabled major advances in the care of infants with SCID, including better outcomes of allogeneic haematopoietic stem cell transplantation. Gene therapy is also becoming an effective option. Further advances and a progressive extension of the indications for gene therapy can be expected in the future. The assessment of long-term outcomes of patients with SCID is now a major challenge, with a view to evaluating the quality and sustainability of immune restoration, the risks of sequelae and the ability to relieve the non-haematopoietic syndromic manifestations that accompany some of these conditions.
Collapse
Affiliation(s)
- Alain Fischer
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bénédicte Neven
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Paris, France
| | - Marina Cavazzana
- Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,INSERM UMR 1163, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Jennifer M Puck
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Romano G, Morales F, Marino IR, Giordano A. A Commentary on iPS Cells: Potential Applications in Autologous Transplantation, Study of Illnesses and Drug Screening. J Cell Physiol 2013; 229:148-52. [DOI: 10.1002/jcp.24437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Gaetano Romano
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| | - Fátima Morales
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| | - Ignazio R. Marino
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery; Jefferson Medical College, Thomas Jefferson University Hospital; Philadelphia Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| |
Collapse
|
4
|
Heijnen CJ, Witt O, Wulffraat N, Kulozik AE. Stem cells in pediatrics: state of the art and future perspectives. Pediatr Res 2012; 71:407-9. [PMID: 22430377 DOI: 10.1038/pr.2012.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|