1
|
Wu D, Zhou W, Du J, Zhao T, Li N, Peng F, Li A, Zhang X, Zhang M, Hao A. Isoliquiritigenin ameliorates abnormal oligodendrocyte development and behavior disorders induced by white matter injury. Front Pharmacol 2024; 15:1473019. [PMID: 39323643 PMCID: PMC11423201 DOI: 10.3389/fphar.2024.1473019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background White matter injury is a predominant form of brain injury in preterm infants. However, effective drugs for its treatment are currently lacking. Previous studies have shown the neuroprotective effects of Isoliquiritigenin (ISL), but its impact on white matter injury in preterm infants remains poorly understood. Aims This study aimed to investigate the protective effects of ISL against white matter injury caused by infection in preterm infants using a mouse model of lipopolysaccharide-induced white matter injury, integrating network pharmacology as well as in vivo and in vitro experiments. Methods This study explores the potential mechanisms of ISL on white matter injury by integrating network pharmacology. Core pathways and biological processes affected by ISL were verified through experiments, and motor coordination, anxiety-like, and depression-like behaviors of mice were evaluated using behavioral experiments. White matter injury was observed using hematoxylin-eosin staining, Luxol Fast Blue staining, and electron microscopy. The development of oligodendrocytes and the activation of microglia in mice were assessed by immunofluorescence. The expression of related proteins was detected by Western blot. Results We constructed a drug-target network, including 336 targets associated with ISL treatment of white matter injury. The biological process of ISL treatment of white matter injury mainly involves microglial inflammation regulation and myelination. Our findings revealed that ISL reduced early nerve reflex barriers and white matter manifestations in mice, leading to decreased activation of microglia and release of proinflammatory cytokines. Additionally, ISL demonstrated the ability to mitigate impairment in oligodendrocyte development and myelination, ultimately improving behavior disorders in adult mice. Mechanistically, we observed that ISL downregulated HDAC3 expression, promoted histone acetylation, enhanced the expression of H3K27ac, and regulated oligodendrocyte pro-differentiation factors. Conclusion These findings suggest that ISL can have beneficial effects on white matter injury in preterm infants by alleviating inflammation and promoting oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Dong Wu
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Naigang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anna Li
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xinyue Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meihua Zhang
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Aijun Hao
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Kelly SB, Tran NT, Polglase GR, Hunt RW, Nold MF, Nold-Petry CA, Olson DM, Chemtob S, Lodygensky GA, Robertson SA, Gunn AJ, Galinsky R. A systematic review of immune-based interventions for perinatal neuroprotection: closing the gap between animal studies and human trials. J Neuroinflammation 2023; 20:241. [PMID: 37864272 PMCID: PMC10588248 DOI: 10.1186/s12974-023-02911-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Rodney W Hunt
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - David M Olson
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada
| | - Sylvain Chemtob
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Gregory A Lodygensky
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Sarah A Robertson
- The University of Adelaide, Robinson Research Institute, North Adelaide, SA, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Yu Z, Chen W, Zhang L, Chen Y, Chen W, Meng S, Lu L, Han Y, Shi J. Gut-derived bacterial LPS attenuates incubation of methamphetamine craving via modulating microglia. Brain Behav Immun 2023; 111:101-115. [PMID: 37004759 DOI: 10.1016/j.bbi.2023.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The microbiota-gut-brain axis plays a critical role in the pathophysiology of neuropsychiatric disorders, and the compositions of gut microbiota are altered by addictive drugs. However, the role of gut microbiota in the incubation of methamphetamine (METH) craving remains poorly understood. METHODS 16S rRNA gene sequencing was performed to assess the richness and diversity of gut microbiota in METH self-administration model. Hematoxylin and eosin staining was performed to evaluate the integrity of intestinal barrier. Immunofluorescence and three-dimensional reconstruction were performed to assess the morphologic changes of microglia. Serum levels of lipopolysaccharide (LPS) were determined using the rat enzyme-linked immunosorbent assay kits. Quantitative real-time PCR was performed to assess transcript levels of dopamine receptor, glutamate ionotropic AMPA receptor 3 and brain-derived neurotrophic factor. RESULTS METH self-administration induced gut microbiota dysbiosis, intestinal barrier damage and microglia activation in the nucleus accumbens core (NAcc), which was partially recovered after prolonged withdrawal. Microbiota depletion via antibiotic treatment increased LPS levels and induced a marked change in the microglial morphology in the NAcc, as indicated by the decreases in the lengths and numbers of microglial branches. Depleting the gut microbiota also prevented the incubation of METH craving and increased the population of Klebsiella oxytoca. Furthermore, Klebsiella oxytoca treatment or exogenous administration of the gram-negative bacterial cell wall component LPS increased serum and central LPS levels, induced microglial morphological changes and reduced the dopamine receptor transcription in the NAcc. Both treatments and NAcc microinjections of gut-derived bacterial LPS significantly decreased METH craving after prolonged withdrawal. CONCLUSIONS These data suggest that LPS from gut gram-negative bacteria may enter circulating blood, activate microglia in the brain and consequently decrease METH craving after withdrawal, which may have important implications for novel strategies to prevent METH addiction and relapse.
Collapse
Affiliation(s)
- Zhoulong Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Wenxi Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China.
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; Peking University Shenzhen Hospital, Shenzhen 518036, China; The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China; The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
4
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
5
|
Lara-Espinosa JV, Arce-Aceves MF, Mata-Espinosa D, Barrios-Payán J, Marquina-Castillo B, Hernández-Pando R. The Therapeutic Effect of Intranasal Administration of Dexamethasone in Neuroinflammation Induced by Experimental Pulmonary Tuberculosis. Int J Mol Sci 2021; 22:ijms22115997. [PMID: 34206086 PMCID: PMC8199538 DOI: 10.3390/ijms22115997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is an important infectious disease and a public health problem. The organs most frequently affected by TB are the lungs; despite this, it has been reported that TB patients suffer from depression and anxiety, which have been attributed to social factors. In previous experimental work, we observed that the extensive pulmonary inflammation characteristic of TB with high cytokine production induces neuroinflammation, neuronal death and behavioral abnormalities in the absence of brain infection. The objective of the present work was to reduce this neuroinflammation and avoid the psycho-affective disorders showed during pulmonary TB. Glucocorticoids (GCs) are the first-line treatment for neuroinflammation; however, their systemic administration generates various side effects, mostly aggravating pulmonary TB due to immunosuppression of cellular immunity. Intranasal administration is a route that allows drugs to be released directly in the brain through the olfactory nerve, reducing their doses and side effects. In the present work, dexamethasone’s (DEX) intranasal administration was evaluated in TB BALB /c mice comparing three different doses (0.05, 0.25 and 2.5 mg/kg BW) on lung disease evolution, neuroinflammation and behavioral alterations. Low doses of dexamethasone significantly decreased neuroinflammation, improving behavioral status without aggravating lung disease.
Collapse
|
6
|
Chen Q, Hua C, Niu L, Geng Y, Cai L, Tao S, Ni Y, Zhao R. Exploring differentially expressed genes related to metabolism by RNA-Seq in goat liver after dexamethasone treatment. Gene 2018; 659:175-182. [DOI: 10.1016/j.gene.2018.03.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
|
7
|
Chen Q, Niu L, Hua C, Geng Y, Cai L, Tao S, Ni Y, Zhao R. Chronic dexamethasone exposure markedly decreased the hepatic triglyceride accumulation in growing goats. Gen Comp Endocrinol 2018; 259:115-121. [PMID: 29155266 DOI: 10.1016/j.ygcen.2017.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/05/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
Chronic stress seriously threatens welfare and health in animals and humans. Consecutive dexamethasone (Dex) injection was used to mimic chronic stress previously. In order to investigate the effect of chronic stress on hepatic lipids metabolism, in this study, 10 healthy male goats were randomly allocated into two groups, one received a consecutive injection of Dex via intramuscularly for 3 weeks (Dex group), the other received the same volume of saline as the control group (Con group). Hepatic health and triglyceride (TG) metabolism were analyzed and compared between two groups. The data showed that a significant decrease of TG in plasma and the liver was significantly decreased by Dex (P < .05), while the hepatic nonesterified fatty acid (NEFA) concentration was increased compared to the Con group (P < .05). Consistent with the decrease of TG level, the activity of hepatic lipoprotein lipase (LPL) and hepatic lipase (HL) enzymes activities were significantly enhanced by Dex. Real-time PCR results showed that the mRNA expression of sterol regulatory element binding transcription factor 1 (SREBP-1), acyl-CoA dehydrogenase long chain (ACADL) and acyl-CoA synthetase bubblegum family member 1 (ACSBG1) genes in liver was significantly up-regulated by chronic Dex injection (P < .05), whereas perilipin 2 (PLIN2) and adipose triglyceride lipase (ATGL) mRNA expression was significantly decreased by Dex (P < .05). In addition, no obvious damages were observed in the liver in both Con and Dex groups demonstrating by the sirius red staining, HE staining as well as several biochemical parameters related to the functional status of hepatocytes. Our data indicate that chronic Dex exposure decreases TG levels in the circulation and the liver through activating lipolysis and inhibiting lipogenesis without causing hepatic damages in the growing goats.
Collapse
Affiliation(s)
- Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
8
|
Crisafulli U, Xavier AM, Dos Santos FB, Cambiaghi TD, Chang SY, Porcionatto M, Castilho BA, Malnic B, Glezer I. Topical Dexamethasone Administration Impairs Protein Synthesis and Neuronal Regeneration in the Olfactory Epithelium. Front Mol Neurosci 2018; 11:50. [PMID: 29559887 PMCID: PMC5845685 DOI: 10.3389/fnmol.2018.00050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/06/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic inflammatory process in the nasal mucosa is correlated with poor smell perception. Over-activation of immune cells in the olfactory epithelium (OE) is generally associated with loss of olfactory function, and topical steroidal anti-inflammatory drugs have been largely used for treating such condition. Whether this therapeutic strategy could directly affect the regenerative process in the OE remains unclear. In this study, we show that nasal topical application of dexamethasone (DEX; 200 or 800 ng/nostril), a potent synthetic anti-inflammatory steroid, attenuates OE lesion caused by Gram-negative bacteria lipopolysaccharide (LPS) intranasal infusion. In contrast, repeated DEX (400 ng/nostril) local application after lesion establishment limited the regeneration of olfactory sensory neurons after injury promoted by LPS or methimazole. Remarkably, DEX effects were observed when the drug was infused as 3 consecutive days regimen. The anti-inflammatory drug does not induce OE progenitor cell death, however, disturbance in mammalian target of rapamycin downstream signaling pathway and impairment of protein synthesis were observed during the course of DEX treatment. In addition, in vitro studies conducted with OE neurospheres in the absence of an inflammatory environment showed that glucocorticoid receptor engagement directly reduces OE progenitor cells proliferation. Our results suggest that DEX can interfere with the intrinsic regenerative cellular mechanisms of the OE, raising concerns on the use of topical anti-inflammatory steroids as a risk factor for progressive olfactory function impairment.
Collapse
Affiliation(s)
- Umberto Crisafulli
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André M Xavier
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabiana B Dos Santos
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tavane D Cambiaghi
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Seo Y Chang
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marimélia Porcionatto
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz A Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bettina Malnic
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Isaias Glezer
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Hassan HM, Guo H, Yousef BA, Ping-Ping D, Zhang L, Jiang Z. Dexamethasone Pretreatment Alleviates Isoniazid/Lipopolysaccharide Hepatotoxicity: Inhibition of Inflammatory and Oxidative Stress. Front Pharmacol 2017; 8:133. [PMID: 28360859 PMCID: PMC5350150 DOI: 10.3389/fphar.2017.00133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Isoniazid (INH) remains a cornerstone key constitute of the current tuberculosis management strategy, but its hepatotoxic potentiality remains a significant clinical problem. Our previous findings succeed to establish a rat model of INH hepatotoxicity employing the inflammatory stress theory in which non-injurious doses of inflammatory-mediating agent bacterial lipopolysaccharides (LPS) augmented the toxicity of INH that assist to uncover the mechanisms behind INH hepatotoxicity. Following LPS exposure, several inflammatory cells are activated and it is likely that the consequences of this activation rather than direct hepatocellular effects of LPS underlie the ability of LPS to augment toxic responses. In this study, we investigated the potential protective role of the anti-inflammatory agent dexamethasone (DEX), a potent synthetic glucocorticoid, in INH/LPS hepatotoxic rat model. DEX pre-treatment successfully eliminates the components of the inflammatory stress as shown through analysis of blood biochemistry and liver histopathology. DEX potentiated hepatic anti-oxidant mechanisms while serum and hepatic lipid profiles were reduced. However, DEX administration was not able to revoke the principal effects of cytochrome P450 2E1 (CYP2E1) in INH/LPS-induced liver damage. In conclusion, this study illustrated the DEX-preventive capabilities on INH/LPS-induced hepatotoxicity model through DEX-induced potent anti-inflammatory activity whereas the partial toxicity seen in the model could be attributed to the expression of hepatic CYP2E1. These findings potentiate the clinical applications of DEX co-administration with INH therapy in order to reduce the potential incidences of hepatotoxicity.
Collapse
Affiliation(s)
- Hozeifa M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; Department of Pharmacology, Faculty of Pharmacy, University of GeziraWad-Medani, Sudan
| | - Hongli Guo
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing, China
| | - Bashir A Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; Department of Pharmacology, Faculty of Pharmacy, University of KhartoumKhartoum, Sudan
| | - Ding Ping-Ping
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing, China
| |
Collapse
|
10
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
11
|
Early Postnatal Lipopolysaccharide Exposure Leads to Enhanced Neurogenesis and Impaired Communicative Functions in Rats. PLoS One 2016; 11:e0164403. [PMID: 27723799 PMCID: PMC5056722 DOI: 10.1371/journal.pone.0164403] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/23/2016] [Indexed: 11/23/2022] Open
Abstract
Perinatal infection is a well-identified risk factor for a number of neurodevelopmental disorders, including brain white matter injury (WMI) and Autism Spectrum Disorders (ASD). The underlying mechanisms by which early life inflammatory events cause aberrant neural, cytoarchitectural, and network organization, remain elusive. This study is aimed to investigate how systemic lipopolysaccharide (LPS)-induced neuroinflammation affects microglia phenotypes and early neural developmental events in rats. We show here that LPS exposure at early postnatal day 3 leads to a robust microglia activation which is characterized with mixed microglial proinflammatory (M1) and anti-inflammatory (M2) phenotypes. More specifically, we found that microglial M1 markers iNOS and MHC-II were induced at relatively low levels in a regionally restricted manner, whereas M2 markers CD206 and TGFβ were strongly upregulated in a sub-set of activated microglia in multiple white and gray matter structures. This unique microglial response was associated with a marked decrease in naturally occurring apoptosis, but an increase in cell proliferation in the subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus. LPS exposure also leads to a significant increase in oligodendrocyte lineage population without causing discernible hypermyelination. Moreover, LPS-exposed rats exhibited significant impairments in communicative and cognitive functions. These findings suggest a possible role of M2-like microglial activation in abnormal neural development that may underlie ASD-like behavioral impairments.
Collapse
|
12
|
2-Cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride alters lipopolysaccharide-induced proinflammatory cytokines and neuronal morphology in mouse fetal brain. Neuropharmacology 2016; 102:32-41. [DOI: 10.1016/j.neuropharm.2015.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/01/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022]
|
13
|
Cardoso FL, Herz J, Fernandes A, Rocha J, Sepodes B, Brito MA, McGavern DB, Brites D. Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects. J Neuroinflammation 2015; 12:82. [PMID: 25924675 PMCID: PMC4440597 DOI: 10.1186/s12974-015-0299-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/10/2015] [Indexed: 12/11/2022] Open
Abstract
Background The inflammatory mediator lipopolysaccharide (LPS) has been shown to induce acute gliosis in neonatal mice. However, the progressive effects on the murine neurodevelopmental program over the week that follows systemic inflammation are not known. Thus, we investigated the effects of repeated LPS administration in the first postnatal week in mice, a condition mimicking sepsis in late preterm infants, on the developing central nervous system (CNS). Methods Systemic inflammation was induced by daily intraperitoneal administration (i.p.) of LPS (6 mg/kg) in newborn mice from postnatal day (PND) 4 to PND6. The effects on neurodevelopment were examined by staining the white matter and neurons with Luxol Fast Blue and Cresyl Violet, respectively. The inflammatory response was assessed by quantifying the expression/activity of matrix metalloproteinases (MMP), toll-like receptor (TLR)-4, high mobility group box (HMGB)-1, and autotaxin (ATX). In addition, B6 CX3CR1gfp/+ mice combined with cryo-immunofluorescence were used to determine the acute, delayed, and lasting effects on myelination, microglia, and astrocytes. Results LPS administration led to acute body and brain weight loss as well as overt structural changes in the brain such as cerebellar hypoplasia, neuronal loss/shrinkage, and delayed myelination. The impaired myelination was associated with alterations in the proliferation and differentiation of NG2 progenitor cells early after LPS administration, rather than with excessive phagocytosis by CNS myeloid cells. In addition to disruptions in brain architecture, a robust inflammatory response to LPS was observed. Quantification of inflammatory biomarkers revealed decreased expression of ATX with concurrent increases in HMGB1, TLR-4, and MMP-9 expression levels. Acute astrogliosis (GFAP+ cells) in the brain parenchyma and at the microvasculature interface together with parenchymal microgliosis (CX3CR1+ cells) were also observed. These changes preceded the migration/proliferation of CX3CR1+ cells around the vessels at later time points and the subsequent loss of GFAP+ astrocytes. Conclusion Collectively, our study has uncovered a complex innate inflammatory reaction and associated structural changes in the brains of neonatal mice challenged peripherally with LPS. These findings may explain some of the neurobehavioral abnormalities that develop following neonatal sepsis.
Collapse
Affiliation(s)
- Filipa L Cardoso
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Jasmin Herz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1430, USA.
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Maria A Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD, 20892-1430, USA.
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
14
|
Potential neuroprotective strategies for perinatal infection and inflammation. Int J Dev Neurosci 2015; 45:44-54. [DOI: 10.1016/j.ijdevneu.2015.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 01/17/2023] Open
|
15
|
The postnatal origin of adult neural stem cells and the effects of glucocorticoids on their genesis. Behav Brain Res 2015; 279:166-76. [DOI: 10.1016/j.bbr.2014.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022]
|
16
|
Zhang R, Bo T, Shen L, Luo S, Li J. Effect of dexamethasone on intelligence and hearing in preterm infants: a meta-analysis. Neural Regen Res 2014; 9:637-45. [PMID: 25206867 PMCID: PMC4146231 DOI: 10.4103/1673-5374.130085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE A meta-analysis of published randomized controlled trials investigating the long-term effect of dexamethasone on the nervous system of preterm infants. DATA SOURCES Online literature retrieval was conducted using The Cochrane Library (from January 1993 to June 2013), EMBASE (from January 1980 to June 2013), MEDLINE (from January 1963 to June 2013), OVID (from January 1993 to June 2013), Springer (from January 1994 to June 2013) and Chinese Academic Journal Full-text Database (from January 1994 to June 2013). Key words were preterm infants and dexamethasone in English and Chinese. STUDY SELECTION Selected studies were randomized controlled trials assessing the effect of intravenous dexamethasone in preterm infants. The quality of the included papers was evaluated and those without the development of the nervous system and animal experiments were excluded. Quality assessment was performed through bias risk evaluation in accordance with Cochrane Handbook 5.1.0 software in the Cochrane Collaboration. The homogeneous studies were analyzed and compared using Revman 5.2.6 software, and then effect model was selected and analyzed. Those papers failed to be included in the meta-analysis were subjected to descriptive analysis. MAIN OUTCOME MEASURES Nervous system injury in preterm infants. RESULTS Ten randomized controlled trials were screened, involving 1,038 subjects. Among them 512 cases received dexamethasone treatment while 526 cases served as placebo control group and blank control group. Meta-analysis results showed that the incidence of cerebral palsy, visual impairment and hearing loss in preterm infants after dexamethasone treatment within 7 days after birth was similar to that in the control group (RR = 1.47, 95%CI: 0.97-2.21; RR = 1.46, 95%CI: 0.97-2.20; RR = 0.80, 95%CI: 0.54-1.18; P > 0.05), but intelligence quotient was significantly decreased compared with the control group (MD = -3.55, 95%CI: -6.59 to -0.51; P = 0.02). Preterm infants treated with dexamethasone 7 days after birth demonstrated an incidence of cerebral palsy and visual impairment, and changes in intelligence quotient similar to those in the control group (RR = 1.26, 95%CI: 0.89-1.79; RR = 1.37, 95%CI: 0.73-2.59; RR = 0.53, 95%CI: 0.32-0.89; RR = 1.66, 95%CI: -4.7 to 8.01; P > 0.05). However, the incidence of hearing loss was significantly increased compared with that in the control group (RR = 0.53, 95%CI: 0.32-0.89; P = 0.02). CONCLUSION Dexamethasone may affect the intelligence of preterm infants in the early stages after birth, but may lead to hearing impairment at later stages after birth. More reliable conclusions should be made through large-size, multi-center, well-designed randomized controlled trials.
Collapse
Affiliation(s)
- Ruolin Zhang
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tao Bo
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Li Shen
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Senlin Luo
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian Li
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
17
|
Shen LK, Huang HM, Yang PC, Huang YK, Wang PDY, Leung TK, Chen CJ, Chang WJ. A static magnetic field attenuates lipopolysaccharide-induced neuro-inflammatory response via IL-6-mediated pathway. Electromagn Biol Med 2013; 33:132-8. [PMID: 23781996 DOI: 10.3109/15368378.2013.794734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An effective method for controlling brain damage and neurodegeneration caused by inflammation remains elusive. Down-expression of the lipopolysaccharide (LPS)-induced inflammatory cytokines resulting in endotoxin tolerance is reported as an alternative anti-infection treatment. Nonetheless, because the dosage and action site are hard to control, endotoxin tolerance caused by low-dose LPS injection in brain tissue may induce side effects. The aim of this study was to test the hypothesis that static magnetic fields (SMF) stimulate endotoxin tolerance in brain tissue. In this study, survival rate and pathological changes in brain tissues of LPS-challenged mice were examined with and without SMF treatment. In addition, the effects of SMF exposure on growth rate and cytokine expression of LPS-challenged BV-2 microglia cells were monitored. Our results showed that SMF pre-exposure had positive effects on the survival rate and histological outcomes of LPS-treated mice. Furthermore, SMF exposure significantly decreased IL-6 expression in BV-2 cells (p < 0.05) by a phenomenon similar to endotoxin tolerance. We suggest that SMF has potential as an alternative simulation source for controlling LPS-induced excess neuro-inflammatory response.
Collapse
Affiliation(s)
- Li-Kuo Shen
- Department of Radiology, Shuang Ho Hospital, Taipei Medical University , New Taipei City , Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Halder SK, Matsunaga H, Ishii KJ, Akira S, Miyake K, Ueda H. Retinal cell type-specific prevention of ischemia-induced damages by LPS-TLR4 signaling through microglia. J Neurochem 2013; 126:243-60. [DOI: 10.1111/jnc.12262] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Sebok K. Halder
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Hayato Matsunaga
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Ken J. Ishii
- Laboratory of Vaccine Science; WPI Immunology Frontier Research Center; Osaka University, Osaka Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center; Department of Host Defense; Research Institute for Microbial Diseases; Osaka University; Osaka Japan
| | - Kensuke Miyake
- Division of Innate Immunity; The Institute of Medical Science; University of Tokyo; Tokyo Japan
| | - Hiroshi Ueda
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| |
Collapse
|
19
|
Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 2013; 35:102-29. [PMID: 23446060 PMCID: PMC4531048 DOI: 10.1159/000346157] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|