1
|
Kelly SB, Tran NT, Polglase GR, Hunt RW, Nold MF, Nold-Petry CA, Olson DM, Chemtob S, Lodygensky GA, Robertson SA, Gunn AJ, Galinsky R. A systematic review of immune-based interventions for perinatal neuroprotection: closing the gap between animal studies and human trials. J Neuroinflammation 2023; 20:241. [PMID: 37864272 PMCID: PMC10588248 DOI: 10.1186/s12974-023-02911-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Rodney W Hunt
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - David M Olson
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada
| | - Sylvain Chemtob
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Gregory A Lodygensky
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Sarah A Robertson
- The University of Adelaide, Robinson Research Institute, North Adelaide, SA, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
3
|
Pierre WC, Londono I, Quiniou C, Chemtob S, Lodygensky GA. Modulatory effect of IL‐1 inhibition following lipopolysaccharide‐induced neuroinflammation in neonatal microglia and astrocytes. Int J Dev Neurosci 2022; 82:243-260. [DOI: 10.1002/jdn.10179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wyston C. Pierre
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| | - Irène Londono
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Christiane Quiniou
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
| | - Sylvain Chemtob
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
- Department of Pharmacology and Therapeutics McGill University Montréal Canada
| | - Gregory A. Lodygensky
- Sainte‐Justine Hospital and Research Center, Department of Pediatrics Université de Montréal Montréal, Québec Canada
- Department of Pharmacology and Physiology Université de Montréal Montréal Canada
| |
Collapse
|
4
|
Wisnowski JL, Wintermark P, Bonifacio SL, Smyser CD, Barkovich AJ, Edwards AD, de Vries LS, Inder TE, Chau V. Neuroimaging in the term newborn with neonatal encephalopathy. Semin Fetal Neonatal Med 2021; 26:101304. [PMID: 34736808 PMCID: PMC9135955 DOI: 10.1016/j.siny.2021.101304] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neuroimaging is widely used to aid in the diagnosis and clinical management of neonates with neonatal encephalopathy (NE). Yet, despite widespread use clinically, there are few published guidelines on neuroimaging for neonates with NE. This review outlines the primary patterns of brain injury associated with hypoxic-ischemic injury in neonates with NE and their frequency, associated neuropathological features, and risk factors. In addition, it provides an overview of neuroimaging methods, including the most widely used scoring systems used to characterize brain injury in these neonates and their utility as predictive biomarkers. Last, recommendations for neuroimaging in neonates with NE are presented.
Collapse
Affiliation(s)
- Jessica L Wisnowski
- Departments of Radiology and Pediatrics (Neonatology), Children's Hospital Los Angeles, 4650 Sunset Blvd. MS #81, Los Angeles CA 90027, USA.
| | - Pia Wintermark
- Department of Pediatrics (Neonatology), McGill University/Montreal Children's Hospital, Division of Newborn Medicine, Research Institute of the McGill University Health Centre, 1001 boul. Décarie, Site Glen Block E, EM0.3244, Montréal, QC H4A 3J1, Canada.
| | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics (Neonatology), Lucile Packard Children's Hospital, Stanford University School of Medicine, 750 Welch Road, Suite 315, Palo Alto, CA 94304, USA.
| | - Christopher D Smyser
- Departments of Neurology, Radiology, and Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO 63110-1093, USA.
| | - A James Barkovich
- Department of Radiology, UCSF Benioff Children's Hospital, University of California San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
| | - A David Edwards
- Evelina London Children's Hospital, Centre for Developing Brain, King's College London, Westminster Bridge Road, London, SE1 7EH, United Kingdom.
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands.
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Vann Chau
- Department of Pediatrics (Neurology), The Hospital for Sick Children, University of Toronto, 555 University Avenue, Room 6513, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
5
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
6
|
Pierre WC, Legault L, Londono I, McGraw S, Lodygensky GA. Alteration of the brain methylation landscape following postnatal inflammatory injury in rat pups. FASEB J 2020; 34:432-445. [PMID: 31914673 PMCID: PMC6972494 DOI: 10.1096/fj.201901461r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
Abstract
Preterm infants are vulnerable to inflammation-induced white matter injury (WMI), which is associated with neurocognitive impairment and increased risk of neuropsychiatric diseases in adulthood. Epigenetic mechanisms, particularly DNA methylation, play a role in normal development and modulate the response to pathological challenges. Our aims were to determine how WMI triggered DNA methylation alterations in brains of neonatal rats and if such changes persisted over time. We used a robust model of WMI by injecting lipopolysaccharide (LPS) or sterile saline in the corpus callosum of 3-day-old (P3) rat pups. Brains were collected 24 hours (P4) and 21 days post-injection (P24). We extracted genomic DNA from the brain to establish genome-wide quantitative DNA methylation profiles using reduced representation bisulfite sequencing. Neonatal LPS exposure induced a persistent increased methylation of genes related to nervous system development and a reduced methylation of genes associated with inflammatory pathways. These findings suggest that early-life neuroinflammatory exposure impacts the cerebral methylation landscape with determining widespread epigenetic modifications especially in genes related to neurodevelopment.
Collapse
Affiliation(s)
- Wyston C. Pierre
- Department of PediatricsUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
| | - Lisa‐Marie Legault
- Department of Biochemistry and Molecular MedicineUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
| | - Irene Londono
- Department of PediatricsUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
| | - Serge McGraw
- Department of Biochemistry and Molecular MedicineUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
- Department of Obstetrics & GynecologyUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
| | - Gregory A. Lodygensky
- Department of PediatricsUniversité de MontréalResearch Center of the CHU Sainte‐JustineMontréalQCCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQCCanada
| |
Collapse
|
7
|
Le Page LM, Guglielmetti C, Najac CF, Tiret B, Chaumeil MM. Hyperpolarized 13 C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice. NMR IN BIOMEDICINE 2019; 32:e4164. [PMID: 31437326 PMCID: PMC6817388 DOI: 10.1002/nbm.4164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 05/04/2023]
Abstract
Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13 C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1-13 C] pyruvate has shown potential in assessing neuroinflammation-linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS-induced neuroinflammatory changes using HP [1-13 C] pyruvate and HP 13 C urea. 2D chemical shift imaging following simultaneous intravenous injection of HP [1-13 C] pyruvate and HP 13 C urea was performed at baseline (day 0) and at days 3 and 7 post-intracranial injection of LPS (n = 6) or saline (n = 5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1-13 C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS-treated mouse brain, but not in either the contralateral side or saline-injected animals. HP 13 C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS-injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post-LPS injection. In conclusion, we can detect LPS-induced changes in the mouse brain using HP 13 C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13 C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation.
Collapse
Affiliation(s)
- Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chloé F Najac
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
8
|
Pierre WC, Akakpo L, Londono I, Pouliot P, Chemtob S, Lesage F, Lodygensky GA. Assessing therapeutic response non-invasively in a neonatal rat model of acute inflammatory white matter injury using high-field MRI. Brain Behav Immun 2019; 81:348-360. [PMID: 31247289 DOI: 10.1016/j.bbi.2019.06.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/20/2019] [Accepted: 06/22/2019] [Indexed: 12/19/2022] Open
Abstract
Perinatal infection and inflammatory episodes in preterm infants are associated with diffuse white matter injury (WMI) and adverse neurological outcomes. Inflammation-induced WMI was previously shown to be linked with later hippocampal atrophy as well as learning and memory impairments in preterm infants. Early evaluation of injury load and therapeutic response with non-invasive tools such as multimodal magnetic resonance imaging (MRI) would greatly improve the search of new therapeutic approaches in preterm infants. Our aim was to evaluate the potential of multimodal MRI to detect the response of interleukin-1 receptor antagonist (IL-1Ra) treatment, known for its neuroprotective properties, during the acute phase of injury on a model of neonatal WMI. Rat pups at postnatal day 3 (P3) received intracerebral injection of lipopolysaccharide with systemic IL-1Ra therapy. 24 h later (P4), rats were imaged with multimodal MRI to assess microstructure by diffusion tensor imaging (DTI) and neurochemical profile of the hippocampus with 1H-magnetic resonance spectroscopy. Astrocyte and microglial activation, apoptosis and the mRNA expression of pro-inflammatory and necroptotic markers were assessed. During the acute phase of injury, neonatal LPS exposure altered the concentration of hippocampus metabolites related to neuronal integrity, neurotransmission and membrane integrity and induced diffusivity restriction. Just 24 h after initiation of therapy, early indication of IL-1Ra neuroprotective effect could be detected in vivo by non-invasive spectroscopy and DTI, and confirmed with immunohistochemical evaluation and mRNA expression of inflammatory markers and cell death. In conclusion, multimodal MRI, particularly DTI, can detect not only injury but also the acute therapeutic effect of IL-1Ra suggesting that MRI could be a useful non-invasive tool to follow, at early time points, the therapeutic response in preterm infants.
Collapse
Affiliation(s)
- Wyston C Pierre
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montréal, Canada
| | - Luis Akakpo
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; École Polytechnique de Montréal, Montreal, QC, Canada
| | - Irène Londono
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Philippe Pouliot
- École Polytechnique de Montréal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montréal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Frédéric Lesage
- École Polytechnique de Montréal, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Gregory A Lodygensky
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada; Department of Pharmacology, Université de Montréal, Montréal, Canada; Montreal Heart Institute, Montreal, QC, Canada.
| |
Collapse
|
9
|
Nguyen AL, Ding Y, Suffren S, Londono I, Luck D, Lodygensky GA. The brain's kryptonite: Overview of punctate white matter lesions in neonates. Int J Dev Neurosci 2019; 77:77-88. [DOI: 10.1016/j.ijdevneu.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Annie L.A. Nguyen
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Yang Ding
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Sabrina Suffren
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Irène Londono
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - David Luck
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| | - Gregory A. Lodygensky
- Sainte‐Justine Hospital Research CenterDepartment of PediatricsUniversity of MontrealMontrealH3T 1C5Canada
- Department of Pharmacology and PhysiologyUniversity of MontrealMontrealH3T 1J4Canada
- The Canadian Neonatal Brain Platform (CNBP)Canada
| |
Collapse
|
10
|
Demina EP, Pierre WC, Nguyen ALA, Londono I, Reiz B, Zou C, Chakraberty R, Cairo CW, Pshezhetsky AV, Lodygensky GA. Persistent reduction in sialylation of cerebral glycoproteins following postnatal inflammatory exposure. J Neuroinflammation 2018; 15:336. [PMID: 30518374 PMCID: PMC6282350 DOI: 10.1186/s12974-018-1367-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The extension of sepsis encompassing the preterm newborn's brain is often overlooked due to technical challenges in this highly vulnerable population, yet it leads to substantial long-term neurodevelopmental disabilities. In this study, we demonstrate how neonatal neuroinflammation following postnatal E. coli lipopolysaccharide (LPS) exposure in rat pups results in persistent reduction in sialylation of cerebral glycoproteins. METHODS Male Sprague-Dawley rat pups at postnatal day 3 (P3) were injected in the corpus callosum with saline or LPS. Twenty-four hours (P4) or 21 days (P24) following injection, brains were extracted and analyzed for neuraminidase activity and expression as well as for sialylation of cerebral glycoproteins and glycolipids. RESULTS At both P4 and P24, we detected a significant increase of the acidic neuraminidase activity in LPS-exposed rats. It correlated with significantly increased neuraminidase 1 (Neu1) mRNA in LPS-treated brains at P4 and with neuraminidases 1 and 4 at P24 suggesting that these enzymes were responsible for the rise of neuraminidase activity. At both P4 and P24, sialylation of N-glycans on brain glycoproteins decreased according to both mass-spectrometry analysis and lectin blotting, but the ganglioside composition remained intact. Finally, at P24, analysis of brain tissues by immunohistochemistry showed that neurons in the upper layers (II-III) of somatosensory cortex had a reduced surface content of polysialic acid. CONCLUSIONS Together, our data demonstrate that neonatal LPS exposure results in specific and sustained induction of Neu1 and Neu4, causing long-lasting negative changes in sialylation of glycoproteins on brain cells. Considering the important roles played by sialoglycoproteins in CNS function, we speculate that observed re-programming of the brain sialome constitutes an important part of pathophysiological consequences in perinatal infectious exposure.
Collapse
Affiliation(s)
- Ekaterina P Demina
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Wyston C Pierre
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Annie L A Nguyen
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Irene Londono
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Bela Reiz
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Chunxia Zou
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Radhika Chakraberty
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Alexey V Pshezhetsky
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, H3A0C7, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Gregory A Lodygensky
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada. .,Department of Pharmacology and Physiology, Université de Montréal, Montreal, H3T 1J4, QC, Canada. .,Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
11
|
Enguix V, Ding Y, Lodygensky GA. Recent advances in preclinical and clinical multimodal MR in the newborn brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:149-154. [PMID: 29731237 DOI: 10.1016/j.jmr.2018.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 05/20/2023]
Abstract
Aside from injury identification, MRI of the newborn brain has given us insight into cortical and white matter development, identified windows of vulnerabilities, enabled the introduction of therapeutic hypothermia which has become the standard of care in neonatal asphyxia, and is fostering leapfrogging discoveries in the field of neuro-genetics. This article reviews the main advances in recent years in newborn brain imaging both in preclinical and clinical research.
Collapse
Affiliation(s)
- Vicente Enguix
- Department of Pediatrics, University of Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Yang Ding
- Department of Pediatrics, University of Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Gregory A Lodygensky
- Department of Pediatrics, University of Montréal, Research Center, CHU Sainte-Justine, Montréal, Québec, Canada; Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
12
|
Akakpo L, Pierre WC, Jin C, Londono I, Pouliot P, Lodygensky GA. User-independent diffusion tensor imaging analysis pipelines in a rat model presenting ventriculomegalia: A comparison study. NMR IN BIOMEDICINE 2017; 30:e3793. [PMID: 28841761 DOI: 10.1002/nbm.3793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Automated analysis of diffusion tensor imaging (DTI) data is an appealing way to process large datasets in an unbiased manner. However, automation can sometimes be linked to a lack of interpretability. Two whole-brain, automated and voxelwise methods exist: voxel-based analysis (VBA) and tract-based spatial statistics (TBSS). In VBA, the amount of smoothing has been shown to influence the results. TBSS is free of this step, but a projection procedure is introduced to correct for residual misalignments. This projection assigns the local highest fractional anisotropy (FA) value to the mean FA skeleton, which represents white matter tract centers. For both methods, the normalization procedure has a major impact. These issues are well documented in humans but, to our knowledge, not in rodents. In this study, we assessed the quality of three different registration algorithms (ANTs SyN, DTI-TK and FNIRT) using study-specific templates and their impact on automated analysis methods (VBA and TBSS) in a rat pup model of diffuse white matter injury presenting large unilateral deformations. VBA and TBSS results were stable and anatomically coherent across the three pipelines. For VBA, in regions around the large deformations, interpretability was limited because of the increased partial volume effect. With TBSS, two of the three pipelines found a significant decrease in axial diffusivity (AD) at the known injury site. These results demonstrate that automated voxelwise analyses can be used in an animal model with large deformations.
Collapse
Affiliation(s)
- Luis Akakpo
- École Polytechnique de Montréal, Montreal, QC, Canada
| | - Wyston C Pierre
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Chen Jin
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Irène Londono
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Philippe Pouliot
- École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Montreal, QC, Canada
| | - Gregory A Lodygensky
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
13
|
Guevara E, Pierre WC, Tessier C, Akakpo L, Londono I, Lesage F, Lodygensky GA. Altered Functional Connectivity Following an Inflammatory White Matter Injury in the Newborn Rat: A High Spatial and Temporal Resolution Intrinsic Optical Imaging Study. Front Neurosci 2017; 11:358. [PMID: 28725174 PMCID: PMC5495836 DOI: 10.3389/fnins.2017.00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/08/2017] [Indexed: 12/05/2022] Open
Abstract
Very preterm newborns have an increased risk of developing an inflammatory cerebral white matter injury that may lead to severe neuro-cognitive impairment. In this study we performed functional connectivity (fc) analysis using resting-state optical imaging of intrinsic signals (rs-OIS) to assess the impact of inflammation on resting-state networks (RSN) in a pre-clinical model of perinatal inflammatory brain injury. Lipopolysaccharide (LPS) or saline injections were administered in postnatal day (P3) rat pups and optical imaging of intrinsic signals were obtained 3 weeks later. (rs-OIS) fc seed-based analysis including spatial extent were performed. A support vector machine (SVM) was then used to classify rat pups in two categories using fc measures and an artificial neural network (ANN) was implemented to predict lesion size from those same fc measures. A significant decrease in the spatial extent of fc statistical maps was observed in the injured group, across contrasts and seeds (*p = 0.0452 for HbO2 and **p = 0.0036 for HbR). Both machine learning techniques were applied successfully, yielding 92% accuracy in group classification and a significant correlation r = 0.9431 in fractional lesion volume prediction (**p = 0.0020). Our results suggest that fc is altered in the injured newborn brain, showing the long-standing effect of inflammation.
Collapse
Affiliation(s)
- Edgar Guevara
- Terahertz Science and Technology National Lab, CONACYT-Universidad Autónoma de San Luis Potosí, Coordinación para la Innovación y Aplicación de la Ciencia y la TecnologíaSan Luis Potosí, Mexico
| | - Wyston C Pierre
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de MontréalMontreal, QC, Canada
| | - Camille Tessier
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de MontréalMontreal, QC, Canada
| | - Luis Akakpo
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de MontréalMontreal, QC, Canada
| | - Irène Londono
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de MontréalMontreal, QC, Canada
| | - Frédéric Lesage
- Montreal Heart Institute, Research CenterMontreal, QC, Canada.,Department of Electrical Engineering, École Polytechnique de MontréalMontreal, QC, Canada
| | - Gregory A Lodygensky
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de MontréalMontreal, QC, Canada.,Montreal Heart Institute, Research CenterMontreal, QC, Canada.,Department of Pharmacology, Université de MontréalMontreal, QC, Canada.,Department of Neuroscience, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
14
|
Drommelschmidt K, Serdar M, Bendix I, Herz J, Bertling F, Prager S, Keller M, Ludwig AK, Duhan V, Radtke S, de Miroschedji K, Horn PA, van de Looij Y, Giebel B, Felderhoff-Müser U. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 2017; 60:220-232. [PMID: 27847282 DOI: 10.1016/j.bbi.2016.11.011] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/04/2016] [Accepted: 11/12/2016] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Preterm brain injury is a major cause of disability in later life, and may result in motor, cognitive and behavioural impairment for which no treatment is currently available. The aetiology is considered as multifactorial, and one underlying key player is inflammation leading to white and grey matter injury. Extracellular vesicles secreted by mesenchymal stem/stromal cells (MSC-EVs) have shown therapeutic potential in regenerative medicine. Here, we investigated the effects of MSC-EV treatment on brain microstructure and maturation, inflammatory processes and long-time outcome in a rodent model of inflammation-induced brain injury. METHODS 3-Day-old Wistar rats (P3) were intraperitoneally injected with 0.25mg/kg lipopolysaccharide or saline and treated with two repetitive doses of 1×108 cell equivalents of MSC-EVs per kg bodyweight. Cellular degeneration and reactive gliosis at P5 and myelination at P11 were evaluated by immunohistochemistry and western blot. Long-term cognitive and motor function was assessed by behavioural testing. Diffusion tensor imaging at P125 evaluated long-term microstructural white matter alterations. RESULTS MSC-EV treatment significantly ameliorated inflammation-induced neuronal cellular degeneration reduced microgliosis and prevented reactive astrogliosis. Short-term myelination deficits and long-term microstructural abnormalities of the white matter were restored by MSC-EV administration. Morphological effects of MSC-EV treatment resulted in improved long-lasting cognitive functions INTERPRETATION: MSC-EVs ameliorate inflammation-induced cellular damage in a rat model of preterm brain injury. MSC-EVs may serve as a novel therapeutic option by prevention of neuronal cell death, restoration of white matter microstructure, reduction of gliosis and long-term functional improvement.
Collapse
Affiliation(s)
- Karla Drommelschmidt
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Meray Serdar
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Josephine Herz
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frederik Bertling
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Prager
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Keller
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna-Kristin Ludwig
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vikas Duhan
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Radtke
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109, USA
| | - Kyra de Miroschedji
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yohan van de Looij
- Division of Child Growth and Development, Department of Paediatrics, University of Geneva, Geneva, Switzerland; Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ursula Felderhoff-Müser
- Department of Paediatrics I/Neonatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
15
|
Pierre WC, Smith PLP, Londono I, Chemtob S, Mallard C, Lodygensky GA. Neonatal microglia: The cornerstone of brain fate. Brain Behav Immun 2017; 59:333-345. [PMID: 27596692 DOI: 10.1016/j.bbi.2016.08.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/30/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Microglia, mainly known for their role in innate immunity and modulation of neuroinflammation, play an active role in central nervous system development and homeostasis. Depending on the context and environmental stimuli, microglia adopt a broad spectrum of activation status from pro-inflammatory, associated with neurotoxicity, to anti-inflammatory linked to neuroprotection. Pro-inflammatory microglial activation is a key hallmark of white matter injury in preterm infants and is involved in developmental origin of adult neurological diseases. Characterization of neonatal microglia function in brain development and inflammation has allowed the investigation of promising therapeutic targets with potential long-lasting neuroprotective effects. True prevention of neuro-degenerative diseases might eventually occur as early as the perinatal period.
Collapse
Affiliation(s)
- Wyston C Pierre
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada
| | - Peter L P Smith
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Irène Londono
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada
| | - Sylvain Chemtob
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada; Departments of Ophtalmology, Université de Montréal, Montreal, Quebec, Canada; Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gregory A Lodygensky
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada; Montreal Heart Institute, 5000 Rue Bélanger, Montreal, Quebec, Canada; Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada; Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Abstract
Lactoferrin (Lf) is the major whey protein in milk, with multiple beneficial health effects including direct antimicrobial activities, anti-inflammatory effects, and iron homeostasis. Oral Lf supplementation in human preterm infants has been shown to reduce the incidence of sepsis and necrotizing enterocolitis. In preclinical models of antenatal stress and perinatal brain injury, bovine Lf protected the developing brain from neuronal loss, improved connectivity, increased neurotrophic factors, and decreased inflammation. It also supported brain development and cognition. Further, Lf can prevent preterm delivery by reducing proinflammatory factors and inhibiting premature cervix maturation. We review here the latest research on Lf in the field of neonatology.
Collapse
Affiliation(s)
- Theresa J Ochoa
- a Department of Pediatrics, Universidad Peruana Cayetano Heredia, Lima, Peru.,b Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stéphane V Sizonenko
- c Division of Child Development and Growth, Department of Child and Adolescent, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
17
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
18
|
Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer's disease models. Sci Rep 2016; 6:19880. [PMID: 26813748 PMCID: PMC4728482 DOI: 10.1038/srep19880] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/18/2015] [Indexed: 11/26/2022] Open
Abstract
Microglia activation has emerged as a potential key factor in the pathogenesis of Alzheimer’s disease. Metabolite levels assessed by magnetic resonance spectroscopy (MRS) are used as markers of neuroinflammation in neurodegenerative diseases, but how they relate to microglial activation in health and chronic disease is incompletely understood. Using MRS, we monitored the brain metabolic response to lipopolysaccharides (LPS)-induced microglia activation in vivo in a transgenic mouse model of Alzheimer’s disease (APP/PS1) and healthy controls (wild-type (WT) littermates) over 4 hours. We assessed reactive gliosis by immunohistochemistry and correlated metabolic and histological measures. In WT mice, LPS induced a microglial phenotype consistent with activation, associated with a sustained increase in macromolecule and lipid levels (ML9). This effect was not seen in APP/PS1 mice, where LPS did not lead to a microglial response measured by histology, but induced a late increase in the putative inflammation marker myoinositol (mI) and metabolic changes in total creatine and taurine previously reported to be associated with amyloid load. We argue that ML9 and mI distinguish the response of WT and APP/PS1 mice to immune mediators. Lipid and macromolecule levels may represent a biomarker of activation of healthy microglia, while mI may not be a glial marker.
Collapse
|
19
|
Jin C, Londono I, Mallard C, Lodygensky GA. New means to assess neonatal inflammatory brain injury. J Neuroinflammation 2015; 12:180. [PMID: 26407958 PMCID: PMC4583178 DOI: 10.1186/s12974-015-0397-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/10/2015] [Indexed: 01/23/2023] Open
Abstract
Preterm infants are especially vulnerable to infection-induced white matter injury, associated with cerebral palsy, cognitive and psychomotor impairment, and other adverse neurological outcomes. The etiology of such lesions is complex and multifactorial. Furthermore, timing and length of exposure to infection also influence neurodevelopmental outcomes. Different mechanisms have been posited to mediate the observed brain injury including microglial activation followed by subsequent release of pro-inflammatory species, glutamate-induced excitotoxicity, and vulnerability of developing oligodendrocytes to cerebral insults. The prevalence of such neurological impairments requires an urgent need for early detection and effective neuroprotective strategies. Accordingly, noninvasive methods of monitoring disease progression and therapy effectiveness are essential. While diagnostic tools using biomarkers from bodily fluids may provide useful information regarding potential risks of developing neurological diseases, the use of magnetic resonance imaging/spectroscopy has emerged as a promising candidate for such purpose. Various pharmacological agents have demonstrated protective effects in the immature brain in animal models; however, few studies have progressed to clinical trials with promising results.
Collapse
Affiliation(s)
- Chen Jin
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Irene Londono
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Gregory A Lodygensky
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada. .,Montreal Heart Institute, 5000 Rue Bélanger, Montréal, Québec, Canada. .,Department of Neuroscience and Pharmacology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Empie K, Rangarajan V, Juul SE. Is the ferret a suitable species for studying perinatal brain injury? Int J Dev Neurosci 2015; 45:2-10. [PMID: 26102988 PMCID: PMC4793918 DOI: 10.1016/j.ijdevneu.2015.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/09/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022] Open
Abstract
Ferret brain architecture, composition, and development are similar to humans. Postnatal ferret brain development is comparable to that of premature infants. Ferrets have potential to model preterm and term neonatal brain injury. Ferrets may fulfill the need for an intermediate model species of neurodevelopment. Many opportunities exist to expand the use of ferrets as research subjects.
Complications of prematurity often disrupt normal brain development and/or cause direct damage to the developing brain, resulting in poor neurodevelopmental outcomes. Physiologically relevant animal models of perinatal brain injury can advance our understanding of these influences and thereby provide opportunities to develop therapies and improve long-term outcomes. While there are advantages to currently available small animal models, there are also significant drawbacks that have limited translation of research findings to humans. Large animal models such as newborn pig, sheep and nonhuman primates have complex brain development more similar to humans, but these animals are expensive, and developmental testing of sheep and piglets is limited. Ferrets (Mustela putorius furo) are born lissencephalic and undergo postnatal cortical folding to form complex gyrencephalic brains. This review examines whether ferrets might provide a novel intermediate animal model of neonatal brain disease that has the benefit of a gyrified, altricial brain in a small animal. It summarizes attributes of ferret brain growth and development that make it an appealing animal in which to model perinatal brain injury. We postulate that because of their innate characteristics, ferrets have great potential in neonatal neurodevelopmental studies.
Collapse
Affiliation(s)
- Kristen Empie
- Department of Neonatology, University of Washington, Seattle, USA
| | | | - Sandra E Juul
- Department of Neonatology, University of Washington, Seattle, USA.
| |
Collapse
|
21
|
van de Looij Y, Dean JM, Gunn AJ, Hüppi PS, Sizonenko SV. Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury. Int J Dev Neurosci 2015; 45:29-38. [PMID: 25818582 DOI: 10.1016/j.ijdevneu.2015.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are widely used in the field of brain development and perinatal brain injury. Due to technical progress the magnetic field strength (B0) of MR systems has continuously increased, favoring (1)H-MRS with quantification of up to 18 metabolites in the brain and short echo time (TE) MRI sequences including phase and susceptibility imaging. For longer TE techniques including diffusion imaging modalities, the benefits of higher B0 have not been clearly established. Nevertheless, progress has also been made in new advanced diffusion models that have been developed to enhance the accuracy and specificity of the derived diffusion parameters. In this review, we will describe the latest developments in MRS and MRI techniques, including high-field (1)H-MRS, phase and susceptibility imaging, and diffusion imaging, and discuss their application in the study of cerebral development and perinatal brain injury.
Collapse
Affiliation(s)
- Yohan van de Looij
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland; Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Petra S Hüppi
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Stéphane V Sizonenko
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, Fleiss B, Titomanlio L, Gressens P. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci 2015; 9:40. [PMID: 25741233 PMCID: PMC4330788 DOI: 10.3389/fnins.2015.00040] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data.
Collapse
Affiliation(s)
- Raffaella Moretti
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; S. Maria della Misericordia Hospital, Università degli Studi di Udine Udine, Italy
| | - Julien Pansiot
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France
| | - Donatella Bettati
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France
| | - Nathalie Strazielle
- Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292 - Lyon University Lyon, France ; Brain-i Lyon, France
| | | | - Giuseppe Damante
- S. Maria della Misericordia Hospital, Università degli Studi di Udine Udine, Italy
| | - Bobbi Fleiss
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St. Thomas' Hospital London, UK
| | - Luigi Titomanlio
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Pediatric Emergency Department, APHP, Robert Debré Hospital Paris, France
| | - Pierre Gressens
- INSERM U1141, Robert Debre's Hospital Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141-PROTECT Paris, France ; PremUP Paris, France ; Department of Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, St. Thomas' Hospital London, UK
| |
Collapse
|