1
|
Mak CCY, Klinkhammer H, Choufani S, Reko N, Christman AK, Pisan E, Chui MMC, Lee M, Leduc F, Dempsey JC, Sanchez-Lara PA, Bombei HM, Bernat JA, Faivre L, Mau-Them FT, Palafoll IV, Canham N, Sarkar A, Zarate YA, Callewaert B, Bukowska-Olech E, Jamsheer A, Zankl A, Willems M, Duncan L, Isidor B, Cogne B, Boute O, Vanlerberghe C, Goldenberg A, Stolerman E, Low KJ, Gilard V, Amiel J, Lin AE, Gordon CT, Doherty D, Krawitz PM, Weksberg R, Hsieh TC, Chung BHY. Artificial intelligence-driven genotype-epigenotype-phenotype approaches to resolve challenges in syndrome diagnostics. EBioMedicine 2025; 115:105677. [PMID: 40280028 DOI: 10.1016/j.ebiom.2025.105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Decisions to split two or more phenotypic manifestations related to genetic variations within the same gene can be challenging, especially during the early stages of syndrome discovery. Genotype-based diagnostics with artificial intelligence (AI)-driven approaches using next-generation phenotyping (NGP) and DNA methylation (DNAm) can be utilized to expedite syndrome delineation within a single gene. METHODS We utilized an expanded cohort of 56 patients (22 previously unpublished individuals) with truncating variants in the MN1 gene and attempted different methods to assess plausible strategies to objectively delineate phenotypic differences between the C-Terminal Truncation (CTT) and N-Terminal Truncation (NTT) groups. This involved transcriptomics analysis on available patient fibroblast samples and AI-assisted approaches, including a new statistical method of GestaltMatcher on facial photos and blood DNAm analysis using a support vector machine (SVM) model. FINDINGS RNA-seq analysis was unable to show a significant difference in transcript expression despite our previous hypothesis that NTT variants would induce nonsense mediated decay. DNAm analysis on nine blood DNA samples revealed an episignature for the CTT group. In parallel, the new statistical method of GestaltMatcher objectively distinguished the CTT and NTT groups with a low requirement for cohort number. Validation of this approach was performed on syndromes with known DNAm signatures of SRCAP, SMARCA2 and ADNP to demonstrate the effectiveness of this approach. INTERPRETATION We demonstrate the potential of using AI-based technologies to leverage genotype, phenotype and epigenetics data in facilitating splitting decisions in diagnosis of syndromes with minimal sample requirement. FUNDING The specific funding of this article is provided in the acknowledgements section.
Collapse
Affiliation(s)
- Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Nikola Reko
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Angela K Christman
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Elise Pisan
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université Paris Cité, Paris, 75015, France
| | - Martin M C Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mianne Lee
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fiona Leduc
- CHU Lille, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Lille, F-59000, France
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Pedro A Sanchez-Lara
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pediatrics, Guerin Children's at Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hannah M Bombei
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals, Iowa City, IA, USA
| | - John A Bernat
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals, Iowa City, IA, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Institut GIMI, Hôpital d'Enfants, CHU Dijon-Bourgogne, Dijon, France; Equipe GAD INSERM UMR1231, Université de Bourgogne Franche Comté, Dijon, France
| | - Frederic Tran Mau-Them
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Institut GIMI, Hôpital d'Enfants, CHU Dijon-Bourgogne, Dijon, France; UF 6254 Innovation en diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Irene Valenzuela Palafoll
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron and Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Natalie Canham
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Crown Street, Liverpool, UK
| | - Ajoy Sarkar
- Department of Clinical Genetics, Nottingham University Hospitals National Health Service Trust, Nottingham, NG5 1PB, UK
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72701, USA; Division of Genetics and Metabolism, University of Kentucky, Lexington, KY, USA
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ewelina Bukowska-Olech
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland; Diagnostyka GENESIS, Center for Medical Genetics in Poznan, Poland
| | - Andreas Zankl
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia
| | - Marjolaine Willems
- Unité INSERM U 1051, Département de Génétique Médicale, CHRU de Montpellier, Montpellier, France
| | - Laura Duncan
- Department of Pediatrics at Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bertrand Isidor
- Service de Génétique Médicale and L'institut du Thorax, CHU Nantes, Nantes Université, CNRS, INSERM, Nantes, France
| | - Benjamin Cogne
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Odile Boute
- CHU Lille, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Lille, F-59000, France
| | - Clémence Vanlerberghe
- CHU Lille, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Lille, F-59000, France
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, FHU G4 Génomique, Rouen, F-76000, France
| | | | - Karen J Low
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, UK; Department of Clinical Genetics, UHBW NHS Trust, Bristol, UK
| | - Vianney Gilard
- Department of Pediatric Neurosurgery, Rouen University Hospital, Rouen, 76000, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université Paris Cité, Paris, 75015, France
| | - Angela E Lin
- Medical Genetics, Mass General for Children, Boston, MA, 02114, USA
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université Paris Cité, Paris, 75015, France
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada; Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Ru Y, Ma M, Zhou X, Kriti D, Cohen N, D'Souza S, Schaniel C, Motch Perrine SM, Kuo S, Pichurin O, Pinto D, Housman G, Holmes G, Schadt E, van Bakel H, Zhang B, Jabs EW, Wu M. Integrated transcriptomic analysis of human induced pluripotent stem cell-derived osteogenic differentiation reveals a regulatory role of KLF16. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.11.579844. [PMID: 38405902 PMCID: PMC10888757 DOI: 10.1101/2024.02.11.579844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Osteogenic differentiation is essential for bone development, metabolism, and repair; however, the underlying regulatory relationships among genes remain poorly understood. To elucidate the transcriptomic changes and identify novel regulatory genes involved in osteogenic differentiation, we differentiated mesenchymal stem cells (MSCs) derived from 20 human iPSC lines into preosteoblasts (preOBs) and osteoblasts (OBs). We then performed transcriptome profiling of MSCs, preOBs and OBs. The iPSC-derived MSCs and OBs showed similar transcriptome profiles to those of primary human MSCs and OBs, respectively. Differential gene expression analysis revealed global changes in the transcriptomes from MSCs to preOBs, and then to OBs, including the differential expression of 840 genes encoding transcription factors (TFs). TF regulatory network analysis uncovered a network comprising 451 TFs, organized into five interactive modules. Multiscale embedded gene co-expression network analysis (MEGENA) identified gene co-expression modules and key network regulators (KNRs). From these analyses, KLF16 emerged as an important TF in osteogenic differentiation. We demonstrate that overexpression of Klf16 in vitro inhibited osteogenic differentiation and mineralization, while Klf16 +/- mice exhibited increased bone mineral density, trabecular number, and cortical bone area. Our study underscores the complexity of osteogenic differentiation and identifies novel regulatory genes such as KLF16, which plays an inhibitory role in osteogenic differentiation both in vitro and in vivo.
Collapse
Affiliation(s)
- Ying Ru
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meng Ma
- Mount Sinai Genomics, Sema4, Stamford, CT, 06902, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 2G3, Canada
| | - Ninette Cohen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: Division of Cytogenetics and Molecular Pathology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health Laboratories, Lake Success, NY, 11030, USA
| | - Sunita D'Souza
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Present address: St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sharon Kuo
- Department of Biomedical Sciences, University of Minnesota, Duluth, MN, 55812, USA
- Technological Primates Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Oksana Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Genevieve Housman
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
3
|
Khurana E, Orth J, Pletcher B, Turbin RE, Mazzola CA. Management of an older Marshall-Smith syndrome patient: a review of literature of MSS and craniosynostosis. Childs Nerv Syst 2024; 40:2609-2614. [PMID: 38647663 DOI: 10.1007/s00381-024-06415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Marshall-Smith Syndrome (MSS) is a rare progressive developmental disorder that severely impairs a patient's intellectual development and physical health. The only known cause for MSS is a mutation in the nuclear factor 1 X (NFIX) gene. This mutation affects neuronal development and protein transcription. Historically, most patients with MSS do not survive beyond 3 years of age. Reports of ocular findings are limited. We report a case of a 9-year-old MSS patient with progressive craniosynostosis, elevated intracranial pressure, and catastrophic ocular complications. A comprehensive PubMed literature search from 2018 to August 2022 updating a previous review of older literature produced 72 articles relating to MSS, which are reviewed.
Collapse
Affiliation(s)
- Eeshan Khurana
- Department of Neurosurgery, New Jersey Pediatric Neuroscience Institute, Morristown, NJ, USA.
| | - Jennifer Orth
- Department of Neurosurgery, New Jersey Pediatric Neuroscience Institute, Morristown, NJ, USA
| | - Beth Pletcher
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Roger E Turbin
- Department of Ophthalmology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Catherine A Mazzola
- Department of Neurosurgery, New Jersey Pediatric Neuroscience Institute, Morristown, NJ, USA
| |
Collapse
|
4
|
林 雪, 全 昱, 贺 海, 彭 镜. [ NFIX gene mutation causes Marshall-Smith syndrome in a pair of identical twins and literature review]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:750-756. [PMID: 39014953 PMCID: PMC11562048 DOI: 10.7499/j.issn.1008-8830.2401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/04/2024] [Indexed: 07/18/2024]
Abstract
This article reports on the clinical and genetic characteristics of monozygotic twins with Marshall-Smith syndrome (MRSHSS) due to a mutation in the NFIX gene, along with a review of related literature. Both patients presented with global developmental delays, a prominent forehead, shallow eye sockets, and pectus excavatum. Genetic testing revealed a heterozygous splicing site mutation c.697+1G>A in both children, with parents showing wild-type at this locus. According to the guidelines of the American College of Medical Genetics and Genomics, this mutation is considered likely pathogenic and has not been previously reported in the literature. A review of the literature identified 32 MRSHSS patients with splicing/frameshift mutations. Accelerated bone maturation and moderate to severe global developmental delay/intellectual disability are the primary clinical manifestations of patients with MRSHSS. Genetic testing results are crucial for the diagnosis of this condition.
Collapse
Affiliation(s)
| | | | | | - 镜 彭
- 湖南省儿童脑发育障碍性疾病临床医学研究中心,湖南长沙410008
| |
Collapse
|
5
|
Kooblall KG, Stevenson M, Heilig R, Stewart M, Wright B, Lockstone H, Buck D, Fischer R, Wells S, Lines KE, Teboul L, Hennekam RC, Thakker RV. Identification of cellular retinoic acid binding protein 2 (CRABP2) as downstream target of nuclear factor I/X (NFIX): implications for skeletal dysplasia syndromes. JBMR Plus 2024; 8:ziae060. [PMID: 38827116 PMCID: PMC11144382 DOI: 10.1093/jbmrpl/ziae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Indexed: 06/04/2024] Open
Abstract
Nuclear factor I/X (NFIX) mutations are associated with 2 skeletal dysplasias, Marshall-Smith (MSS) and Malan (MAL) syndromes. NFIX encodes a transcription factor that regulates expression of genes, including Bobby sox (BBX) and glial fibrillary acidic protein (GFAP) in neural progenitor cells and astrocytes, respectively. To elucidate the role of NFIX mutations in MSS, we studied their effects in fibroblast cell lines obtained from 5 MSS unrelated patients and 3 unaffected individuals. The 5 MSS NFIX frameshift mutations in exons 6-8 comprised 3 deletions (c.819-732_1079-948del, c.819-471_1079-687del, c.819-592_1079-808del), an insertion (c.1037_1038insT), and a duplication (c.1090dupG). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses using MSS and unrelated control fibroblasts and in vitro expression studies in monkey kidney fibroblast (COS-7) cells showed that frameshift mutations in NFIX exons 6-8 generated mutant transcripts that were not cleared by nonsense-mediated-decay mechanisms and encoded truncated NFIX proteins. Moreover, BBX or GFAP expression was unaffected in the majority of MSS fibroblasts. To identify novel NFIX downstream target genes, RNA sequencing and proteomics analyses were performed on mouse embryonic fibroblast (MEF) cells derived from control Nfix+/+, Nfix+/Del2, Nfix+/Del24, NfixDel24/Del24, Nfix+/Del140, and NfixDel140/Del140 mice, compared with NfixDel2/Del2 mice which had developmental, skeletal, and neural abnormalities. This identified 191 transcripts and 815 proteins misregulated in NfixDel2/Del2 MEFs with ≥2-fold-change (P <0 .05). Validation studies using qRT-PCR and western blot analyses confirmed that 2 genes, cellular retinoic acid binding protein 2 (Crabp2) and vascular cell adhesion molecule 1 (Vcam1), were misregulated at the RNA and protein levels in NfixDel2/Del2 MEFs, and that CRABP2 and VCAM1 expressions were altered in 60%-100% of MSS fibroblast cells. Furthermore, in vitro luciferase reporter assays confirmed that NFIX directly regulates CRABP2 promoter activity. Thus, these altered genes and pathways may represent possible targets for drugs as potential treatments and therapies for MSS.
Collapse
Affiliation(s)
- Kreepa G Kooblall
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom
| | - Mark Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom
| | - Raphael Heilig
- Target Discovery Unit, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Michelle Stewart
- MRC Harwell, Mary Lyon Centre, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Benjamin Wright
- Oxford Genomics Centre, The Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Helen Lockstone
- Oxford Genomics Centre, The Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - David Buck
- Oxford Genomics Centre, The Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Roman Fischer
- Target Discovery Unit, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Sara Wells
- MRC Harwell, Mary Lyon Centre, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Kate E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom
| | - Lydia Teboul
- MRC Harwell, Mary Lyon Centre, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom
| | - Raoul C Hennekam
- Department of Pediatrics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom
| |
Collapse
|
6
|
Bartek V, Szabó I, Harmath Á, Rudas G, Steiner T, Fintha A, Ács N, Beke A. Prenatal and Postnatal Diagnosis and Genetic Background of Corpus Callosum Malformations and Neonatal Follow-Up. CHILDREN (BASEL, SWITZERLAND) 2024; 11:797. [PMID: 39062246 PMCID: PMC11274835 DOI: 10.3390/children11070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION The corpus callosum is one of the five main cerebral commissures. It is key to combining sensory and motor functions. Its structure can be pathological (dysgenesis) or completely absent (agenesis). The corpus callosum dys- or agenesis is a rare disease (1:4000 live births), but it can have serious mental effects. METHODS In our study, we processed the data of 64 pregnant women. They attended a prenatal diagnostic center and genetic counseling from 2005 to 2019 at the Department of Obstetrics and Gynecology at Semmelweis University. RESULTS The pregnancies had the following outcomes: 52 ended in delivery, 1 in spontaneous abortion, and 11 in termination of pregnancy (TOP) cases (n = 64). The average time of detection with imaging tests was 25.24 gestational weeks. In 16 cases, prenatal magnetic resonance imaging (MRI) was performed. If the abnormality was detected before the 20th week, a genetic test was performed on an amniotic fluid sample obtained from a genetic amniocentesis. Karyotyping and cytogenetic tests were performed in 15 of the investigated cases. Karyotyping gave normal results in three cases (46,XX or XY). In one of these cases, postnatally chromosomal microarray (CMA) was later performed, which confirmed Aicardi syndrome (3q21.3-21.1 microdeletion). In one case, postnatally, the test found Wiedemann-Rautenstrauch syndrome. In other cases, it found X ring, Di George syndrome, 46,XY,del(13q)(q13q22) and 46,XX,del(5p)(p13) (Cri-du-chat syndrome). Edwards syndrome was diagnosed in six cases, and Patau syndrome in one case. CONCLUSIONS We found that corpus callosum abnormalities are often linked to chromosomal problems. We recommend that a cytogenetic test be performed in all cases to rule out inherited diseases. Also, the long-term outcome does not just depend on the disease's severity and the associated other conditions, and hence proper follow-up and early development are also key. For this reason, close teamwork between neonatology, developmental neurology, and pediatric surgery is vital.
Collapse
Affiliation(s)
- Virág Bartek
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - István Szabó
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - Ágnes Harmath
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - Gábor Rudas
- Heim Pál National Pediatric Institute, 1089 Budapest, Hungary;
| | - Tidhar Steiner
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - Attila Fintha
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary;
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| | - Artúr Beke
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary; (V.B.); (I.S.); (Á.H.); (T.S.); (N.Á.)
| |
Collapse
|
7
|
Zhao J, Longo N, Lewis RG, Nicholas TJ, Boyden SE, Andrews A, Larson A, Undiagnosed Diseases Network, Bayrak-Toydemir P, Botto LD, Mao R. Novel molecular mechanism in Malan syndrome uncovered through genome sequencing reanalysis, exon-level Array, and RNA sequencing. Am J Med Genet A 2024; 194:e63516. [PMID: 38168088 PMCID: PMC11003828 DOI: 10.1002/ajmg.a.63516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
The NFIX gene encodes a DNA-binding protein belonging to the nuclear factor one (NFI) family of transcription factors. Pathogenic variants of NFIX are associated with two autosomal dominant Mendelian disorders, Malan syndrome (MIM 614753) and Marshall-Smith syndrome (MIM 602535), which are clinically distinct due to different disease-causing mechanisms. NFIX variants associated with Malan syndrome are missense variants mostly located in exon 2 encoding the N-terminal DNA binding and dimerization domain or are protein-truncating variants that trigger nonsense-mediated mRNA decay (NMD) resulting in NFIX haploinsufficiency. NFIX variants associated with Marshall-Smith syndrome are protein-truncating and are clustered between exons 6 and 10, including a recurrent Alu-mediated deletion of exons 6 and 7, which can escape NMD. The more severe phenotype of Marshall-Smith syndrome is likely due to a dominant-negative effect of these protein-truncating variants that escape NMD. Here, we report a child with clinical features of Malan syndrome who has a de novo NFIX intragenic duplication. Using genome sequencing, exon-level microarray analysis, and RNA sequencing, we show that this duplication encompasses exons 6 and 7 and leads to NFIX haploinsufficiency. To our knowledge, this is the first reported case of Malan Syndrome caused by an intragenic NFIX duplication.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Nicola Longo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Robert G Lewis
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Thomas J Nicholas
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Steven E Boyden
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Ashley Andrews
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Austin Larson
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Pinar Bayrak-Toydemir
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Akintoye SO, Adisa AO, Okwuosa CU, Mupparapu M. Craniofacial disorders and dysplasias: Molecular, clinical, and management perspectives. Bone Rep 2024; 20:101747. [PMID: 38566929 PMCID: PMC10985038 DOI: 10.1016/j.bonr.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
There is a wide spectrum of craniofacial bone disorders and dysplasias because embryological development of the craniofacial region is complex. Classification of craniofacial bone disorders and dysplasias is also complex because they exhibit complex clinical, pathological, and molecular heterogeneity. Most craniofacial disorders and dysplasias are rare but they present an array of phenotypes that functionally impact the orofacial complex. Management of craniofacial disorders is a multidisciplinary approach that involves the collaborative efforts of multiple professionals. This review provides an overview of the complexity of craniofacial disorders and dysplasias from molecular, clinical, and management perspectives.
Collapse
Affiliation(s)
- Sunday O. Akintoye
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Akinyele O. Adisa
- University of Ibadan and University College Hospital Ibadan, Ibadan, Nigeria
| | - Chukwubuzor U. Okwuosa
- Department of Oral Pathology & Oral Medicine, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| | - Mel Mupparapu
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
9
|
Uzman CY, Gürsoy S, Hazan F. A rare cause of intellectual disability: Novel mutations of NFIX gene in two patients with clinical features of Marshall-Smith syndrome and Malan syndrome. Int J Dev Neurosci 2023. [PMID: 37336770 DOI: 10.1002/jdn.10280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023] Open
Abstract
Marshall-Smith syndrome (MSS) and Malan syndrome (MS) are both allelic disorders caused by mutations in the NFIX gene. MS is characterized by overgrowth, intellectual disability, distinctive facial features, and accelerated skeletal maturation. On the other hand, clinical features of MSS consist of advanced bone age, dysmorphic features, intellectual disability, and failure to thrive at birth. In this study, we presented the clinical and molecular findings of two different patients with MS and MSS as a rare cause of intellectual disability and reported two novel variants in the NFIX gene. NFIX gene sequencing revealed a novel heterozygous c.1287delC (p.G430Vfs*34) mutation in patient 1 whose clinical diagnosis was compatible with Marshall-Smith syndrome, and in the second patient, physical features consistent with Malan syndrome, was detected a heterozygous one nucleotide duplication, c.303dupC (pCys102LeufsTer17).
Collapse
Affiliation(s)
- Ceren Yılmaz Uzman
- Department of Pediatric Genetics, S.B.Ü. Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Semra Gürsoy
- Department of Pediatric Genetics, S.B.Ü. Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Filiz Hazan
- Department of Medical Genetics, S.B.Ü. Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| |
Collapse
|
10
|
Chaand M, Fiore C, Johnston B, D'Ippolito A, Moon DH, Carulli JP, Shearstone JR. Erythroid lineage chromatin accessibility maps facilitate identification and validation of NFIX as a fetal hemoglobin repressor. Commun Biol 2023; 6:640. [PMID: 37316562 DOI: 10.1038/s42003-023-05025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Human genetics has validated de-repression of fetal gamma globin (HBG) in adult erythroblasts as a powerful therapeutic paradigm in diseases involving defective adult beta globin (HBB)1. To identify factors involved in the switch from HBG to HBB expression, we performed Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)2 on sorted erythroid lineage cells derived from bone marrow (BM) or cord blood (CB), representing adult and fetal states, respectively. BM to CB cell ATAC-seq profile comparisons revealed genome-wide enrichment of NFI DNA binding motifs and increased NFIX promoter chromatin accessibility, suggesting that NFIX may repress HBG. NFIX knockdown in BM cells increased HBG mRNA and fetal hemoglobin (HbF) protein levels, coincident with increased chromatin accessibility and decreased DNA methylation at the HBG promoter. Conversely, overexpression of NFIX in CB cells reduced HbF levels. Identification and validation of NFIX as a new target for HbF activation has implications in the development of therapeutics for hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeffrey R Shearstone
- Syros Pharmaceuticals, Cambridge, MA, USA
- Scientific and Medical Writing Partners, Cambridge, MA, USA
| |
Collapse
|
11
|
Kooblall KG, Stevenson M, Stewart M, Harris L, Zalucki O, Dewhurst H, Butterfield N, Leng H, Hough TA, Ma D, Siow B, Potter P, Cox RD, Brown SD, Horwood N, Wright B, Lockstone H, Buck D, Vincent TL, Hannan FM, Bassett JD, Williams GR, Lines KE, Piper M, Wells S, Teboul L, Hennekam RC, Thakker RV. A Mouse Model with a Frameshift Mutation in the Nuclear Factor I/X ( NFIX) Gene Has Phenotypic Features of Marshall-Smith Syndrome. JBMR Plus 2023; 7:e10739. [PMID: 37283649 PMCID: PMC10241085 DOI: 10.1002/jbm4.10739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kreepa G. Kooblall
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
| | - Mark Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
| | - Michelle Stewart
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | | | - Oressia Zalucki
- The School of Biomedical Sciences and The Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Hannah Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
| | - Natalie Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
| | - Houfu Leng
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Medical Sciences Division University of OxfordOxfordUK
| | - Tertius A. Hough
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Da Ma
- Department of Internal MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | | | - Paul Potter
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Roger D. Cox
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Stephen D.M. Brown
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Nicole Horwood
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Medical Sciences Division University of OxfordOxfordUK
| | - Benjamin Wright
- Oxford Genomics Centre, The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Helen Lockstone
- Oxford Genomics Centre, The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - David Buck
- Oxford Genomics Centre, The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Tonia L. Vincent
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Medical Sciences Division University of OxfordOxfordUK
| | - Fadil M. Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College LondonHammersmith HospitalLondonUK
| | - Kate E. Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
| | - Michael Piper
- The School of Biomedical Sciences and The Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Sara Wells
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Lydia Teboul
- MRC Harwell, Mary Lyon CentreHarwell Science and Innovation CampusOxfordshireUK
| | - Raoul C. Hennekam
- Department of Pediatrics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM)University of OxfordOxfordUK
| |
Collapse
|
12
|
Marinella G, Conti E, Buchignani B, Sgherri G, Pasquariello R, Giordano F, Cristofani P, Battini R, Battaglia A. Further characterization of NFIB-associated phenotypes: Report of two new individuals. Am J Med Genet A 2023; 191:540-545. [PMID: 36321570 PMCID: PMC10091694 DOI: 10.1002/ajmg.a.63018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/13/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Nuclear Factor I B (NFIB) haploinsufficiency has recently been identified as a cause of intellectual disability (ID) and macrocephaly. Here we report on two new individuals carrying a microdeletion in the chromosomal region 9p23-p22.3 containing NFIB. The first is a 7-year 9-month old boy with developmental delays, ID, definite facial anomalies, and brain and spinal cord magnetic resonance imaging findings including periventricular nodular heterotopia, hypoplasia of the corpus callosum, arachnoid cyst in the left middle cranial fossa, syringomyelia in the thoracic spinal cord and distal tract of the conus medullaris, and a stretched appearance of the filum terminale. The second is a 32-year-old lady (the proband' mother) with dysmorphic features, and a history of learning disability, hypothyroidism, poor growth, left inguinal hernia, and panic attacks. Her brain magnetic resonance imaging findings include a dysmorphic corpus callosum, and a small cyst in the left choroidal fissure that marks the hippocampal head. Array-based comparative genomic hybridization identified, in both, a 232 Kb interstitial deletion at 9p23p22.3 including several exons of NFIB and no other known genes. Our two individuals add to the knowledge of this rare disorder through the addition of new brain and spinal cord MRI findings and dysmorphic features. We propose that NFIB haploinsufficiency causes a clinically recognizable malformation-ID syndrome.
Collapse
Affiliation(s)
- Gemma Marinella
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Eugenia Conti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Bianca Buchignani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Pisa, Italy
| | - Giada Sgherri
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Rosa Pasquariello
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Flavio Giordano
- Department of Neurosurgery, Children's Hospital A. Meyer-University of Florence, Firenze, Florence, Italy
| | - Paola Cristofani
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Pisa, Italy
| | - Agatino Battaglia
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| |
Collapse
|
13
|
Harkins D, Harvey TJ, Atterton C, Miller I, Currey L, Oishi S, Kasherman M, Davila RA, Harris L, Green K, Piper H, Parton RG, Thor S, Cooper HM, Piper M. Hydrocephalus in Nfix−/− Mice Is Underpinned by Changes in Ependymal Cell Physiology. Cells 2022; 11:cells11152377. [PMID: 35954220 PMCID: PMC9368351 DOI: 10.3390/cells11152377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear factor one X (NFIX) is a transcription factor required for normal ependymal development. Constitutive loss of Nfix in mice (Nfix−/−) is associated with hydrocephalus and sloughing of the dorsal ependyma within the lateral ventricles. Previous studies have implicated NFIX in the transcriptional regulation of genes encoding for factors essential to ependymal development. However, the cellular and molecular mechanisms underpinning hydrocephalus in Nfix−/− mice are unknown. To investigate the role of NFIX in hydrocephalus, we examined ependymal cells in brains from postnatal Nfix−/− and control (Nfix+/+) mice using a combination of confocal and electron microscopy. This revealed that the ependymal cells in Nfix−/− mice exhibited abnormal cilia structure and disrupted localisation of adhesion proteins. Furthermore, we modelled ependymal cell adhesion using epithelial cell culture and revealed changes in extracellular matrix and adherens junction gene expression following knockdown of NFIX. Finally, the ablation of Nfix from ependymal cells in the adult brain using a conditional approach culminated in enlarged ventricles, sloughing of ependymal cells from the lateral ventricles and abnormal localisation of adhesion proteins, which are phenotypes observed during development. Collectively, these data demonstrate a pivotal role for NFIX in the regulation of cell adhesion within ependymal cells of the lateral ventricles.
Collapse
Affiliation(s)
- Danyon Harkins
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Tracey J. Harvey
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Cooper Atterton
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Ingrid Miller
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Laura Currey
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Sabrina Oishi
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Maria Kasherman
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Raul Ayala Davila
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Lucy Harris
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia; (L.H.); (K.G.); (R.G.P.)
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia; (L.H.); (K.G.); (R.G.P.)
| | - Hannah Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Robert G. Parton
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia; (L.H.); (K.G.); (R.G.P.)
- Institute for Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
| | - Helen M. Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia;
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia; (D.H.); (T.J.H.); (C.A.); (I.M.); (L.C.); (S.O.); (M.K.); (R.A.D.); (H.P.); (S.T.)
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia;
- Correspondence:
| |
Collapse
|
14
|
Matlosz S, Sigurgeirsson B, Franzdóttir SR, Pálsson A, Jónsson ZO. DNA methylation differences during development distinguish sympatric morphs of Arctic charr (Salvelinus alpinus). Mol Ecol 2022; 31:4739-4761. [PMID: 35848921 DOI: 10.1111/mec.16620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Changes in DNA methylation in specific coding or non-coding regions can influence development and potentially divergence in traits within species and groups. While the impact of epigenetic variation on developmental pathways associated with evolutionary divergence is the focus of intense investigation, few studies have looked at recently diverged systems. Phenotypic diversity between closely related populations of Arctic charr (Salvelinus alpinus), which diverged within the last 10 000 years, offers an interesting ecological model to address such effects. Using bisulfite sequencing, we studied general DNA methylation patterns during development in the four sympatric morphs of Arctic charr from Lake Thingvallavatn. The data revealed strong differences between developmental timepoints and between morphs (mainly along the benthic - limnetic axis), both at single CpG sites and in 1,000bp-regions. Genes located close to differentially methylated CpG sites were involved in nucleosome assembly, regulation of osteoclast differentiation, and cell-matrix adhesion. Differentially methylated regions were enriched in tRNA and rRNA sequences, and half of them were located close to transcription start sites. The expression of 14 genes showing methylation differences over time or between morphs was further investigated by qPCR and nine of these were found to be differentially expressed between morphs. Four genes (ARHGEF37-like, H3-like, MPP3 and MEGF9) showed a correlation between methylation and expression. Lastly, histone gene clusters displayed interesting methylation differences between timepoints and morphs, as well as intragenic methylation variation. The results presented here provide a motivation for further studies on the contribution of epigenetic traits, such as DNA methylation, to phenotypic diversity and developmental mechanisms.
Collapse
Affiliation(s)
- Sebastien Matlosz
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | | | | | - Arnar Pálsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Zophonías O Jónsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
15
|
Alfieri P, Macchiaiolo M, Collotta M, Montanaro FAM, Caciolo C, Cumbo F, Galassi P, Panfili FM, Cortellessa F, Zollino M, Accadia M, Seri M, Tartaglia M, Bartuli A, Mammì C, Vicari S, Priolo M. Characterization of Cognitive, Language and Adaptive Profiles of Children and Adolescents with Malan Syndrome. J Clin Med 2022; 11:jcm11144078. [PMID: 35887841 PMCID: PMC9316998 DOI: 10.3390/jcm11144078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Malan Syndrome (MS) is an ultra-rare overgrowth genetic syndrome due to heterozygous variants or deletions in the Nuclear Factor I X (NFIX) gene. It is characterized by an unusual facial phenotype, generalized overgrowth, intellectual disability (ID) and behavioral problems. Even though limitations in cognitive and adaptive functioning have been previously described, systematic studies on MS cohorts are still lacking. Here, we aim to define the cognitive and adaptive behavior profile of MS children and adolescents, providing quantitative data from standardized evaluations. Subjects included in this study were evaluated from October 2020 to January 2022 and the study is based on a retrospective data archive: fifteen MS individuals were recruited and underwent evaluation with Wechsler Intelligence Scales, Leiter International Performance Scales and Griffith Mental Development Scales for cognitive profiles and with Vineland Adaptive Behavior Scales-II Edition (VABS-II) for adaptive functioning. Language skills and visuomotor integration abilities were assessed too. Comparisons and correlations between scales and subtests were performed. All the assessed MS individuals showed both low cognitive and adaptive functioning. One subject presented with mild ID, five had moderate ID and eight showed severe ID. One female toddler received a diagnosis of psychomotor delay. Linguistic skills were impaired in all individuals, with language comprehension relatively more preserved. Results revealed significant differences between VABS-II subdomains and a strong relationship between cognitive and adaptive functioning. All subjects exhibited mild to moderate ID and adaptive behavior lower than normal, with communication skills being the most affected. Regarding the daily living skills domain, personal and community subscale scores were dramatically lower than for the domestic subdomain, highlighting the importance of considering behavior within developmental and environmental contexts. Our cognitive and adaptive MS characterization provides a more accurate quantitative MS profiling, which is expected to help clinicians to better understand the complexity of this rare disorder.
Collapse
Affiliation(s)
- Paolo Alfieri
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.); (F.A.M.M.); (C.C.); (F.C.); (P.G.); (S.V.)
- Correspondence: ; Tel.: +39-668-594-721
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.M.); (F.C.); (A.B.)
| | - Martina Collotta
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.); (F.A.M.M.); (C.C.); (F.C.); (P.G.); (S.V.)
| | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.); (F.A.M.M.); (C.C.); (F.C.); (P.G.); (S.V.)
| | - Cristina Caciolo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.); (F.A.M.M.); (C.C.); (F.C.); (P.G.); (S.V.)
| | - Francesca Cumbo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.); (F.A.M.M.); (C.C.); (F.C.); (P.G.); (S.V.)
| | - Paolo Galassi
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.); (F.A.M.M.); (C.C.); (F.C.); (P.G.); (S.V.)
| | - Filippo Maria Panfili
- Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Fabiana Cortellessa
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.M.); (F.C.); (A.B.)
| | - Marcella Zollino
- Genetica Medica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, 00168 Roma, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital “Cardinale G. Panico”, 73039 Tricase, Italy;
| | - Marco Seri
- Unit of Medical Genetics, Azienda Ospedaliero Universitaria di Bologna, IRCCS, 40126 Bologna, Italy;
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.M.); (F.C.); (A.B.)
| | - Corrado Mammì
- Operative Unit of Medical Genetics Bianchi-Melacrino-Morelli Great Metropolitan Hospital, 89133 Reggio Calabria, Italy; (C.M.); (M.P.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.); (F.A.M.M.); (C.C.); (F.C.); (P.G.); (S.V.)
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Manuela Priolo
- Operative Unit of Medical Genetics Bianchi-Melacrino-Morelli Great Metropolitan Hospital, 89133 Reggio Calabria, Italy; (C.M.); (M.P.)
| |
Collapse
|
16
|
Macchiaiolo M, Panfili FM, Vecchio D, Gonfiantini MV, Cortellessa F, Caciolo C, Zollino M, Accadia M, Seri M, Chinali M, Mammì C, Tartaglia M, Bartuli A, Alfieri P, Priolo M. A deep phenotyping experience: up to date in management and diagnosis of Malan syndrome in a single center surveillance report. Orphanet J Rare Dis 2022; 17:235. [PMID: 35717370 PMCID: PMC9206304 DOI: 10.1186/s13023-022-02384-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malan syndrome (MALNS) is a recently described ultrarare syndrome lacking guidelines for diagnosis, management and monitoring of evolutive complications. Less than 90 patients are reported in the literature and limited clinical information are available to assure a proper health surveillance.
Results A multidisciplinary team with high expertise in MALNS has been launched at the “Ospedale Pediatrico Bambino Gesù”, Rome, Italy. Sixteen Italian MALNS individuals with molecular confirmed clinical diagnosis of MALNS were enrolled in the program. For all patients, 1-year surveillance in a dedicated outpatient Clinic was attained. The expert panel group enrolled 16 patients and performed a deep phenotyping analysis directed to clinically profiling the disorder and performing critical revision of previously reported individuals. Some evolutive complications were also assessed. Previously unappreciated features (e.g., high risk of bone fractures in childhood, neurological/neurovegetative symptoms, noise sensitivity and Chiari malformation type 1) requiring active surveillance were identified. A second case of neoplasm was recorded. No major cardiovascular anomalies were noticed. An accurate clinical description of 9 new MALNS cases was provided. Conclusions Deep phenotyping has provided a more accurate characterization of the main clinical features of MALNS and allows broadening the spectrum of disease. A minimal dataset of clinical evaluations and follow-up timeline has been proposed for proper management of patients affected by this ultrarare disorder. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02384-9.
Collapse
Affiliation(s)
- Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy.
| | - Filippo M Panfili
- University of Rome Tor Vergata, Rome, Italy.,Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Davide Vecchio
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Michaela V Gonfiantini
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Fabiana Cortellessa
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Cristina Caciolo
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marcella Zollino
- Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Marco Seri
- Unit of Medical Genetics, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Marcello Chinali
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital IRCSS, Rome, Italy
| | - Corrado Mammì
- Operative Unit of Medical Genetics, Bianchi-Melacrino-Morelli Hospital, V. Melacrino, 89100, Reggio Calabria, Italy
| | - Marco Tartaglia
- Genetics and Rare Disease Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, University-Hospital Pediatric Department (DPUO), Bambino Gesù Children's Hospital, IRCSS, Piazza di Sant'Onofrio, 4, 00165, Rome, Italy
| | - Paolo Alfieri
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuela Priolo
- Operative Unit of Medical Genetics, Bianchi-Melacrino-Morelli Hospital, V. Melacrino, 89100, Reggio Calabria, Italy.
| |
Collapse
|
17
|
Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature. Am J Hum Genet 2021; 108:1053-1068. [PMID: 33909990 PMCID: PMC8206150 DOI: 10.1016/j.ajhg.2021.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as “non-FLHS SRCAP-related NDD.” All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.
Collapse
|
18
|
Deconte D, dos Santos CBL, de Morais CO, Yonamine TM, Nogueira LT, Ferreira MAT, Franceschi VB, Longhi ALS, Villacis RAR, Rogatto SR, Ligabue-Braun R, Zen PRG, Rosa RFM, Fiegenbaum M. Unusual features in a child with Marshall-Smith syndrome due to a novel NFIX variant: Evidence for an abnormal protein function. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Knie B, Morota N, Ihara S, Tamada I. Fronto-orbital advancement in a patient with Marshall-Smith syndrome: a case report and review of the literature. Childs Nerv Syst 2021; 37:677-682. [PMID: 32617711 DOI: 10.1007/s00381-020-04741-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present report aimed to document the clinical features of a case of Marshall-Smith syndrome (MSS), an extremely rare embryonic developmental disorder with associated craniosynostosis. PATIENT AND METHOD We presented herein a case of a 2-year-old female patient with MSS who underwent fronto-orbital advancement for multisuture craniosynostosis. RESULTS The patient's proptosis improved after surgery, and no further surgical intervention was required for corneal exposure. A second FOA followed by revision tarsorrhaphy further improved eye closure. CONCLUSION Surgical procedures to correct dysplastic features and limit neurological impairment are a worthwhile supportive treatment for improving the quality of life and general condition of patients with MSS.
Collapse
Affiliation(s)
- Bettina Knie
- Department of Neurosurgery, Vivantes Klinikum im Friedrichshain, Berlin, Germany.
- Division of Neurosurgery, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.
| | - Nobuhito Morota
- Division of Neurosurgery, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Division of Pediatric Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Satoshi Ihara
- Division of Neurosurgery, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Ikkei Tamada
- Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| |
Collapse
|
20
|
Yu MHC, Chau JFT, Au SLK, Lo HM, Yeung KS, Fung JLF, Mak CCY, Chung CCY, Chan KYK, Chung BHY, Kan ASY. Evaluating the Clinical Utility of Genome Sequencing for Cytogenetically Balanced Chromosomal Abnormalities in Prenatal Diagnosis. Front Genet 2021; 11:620162. [PMID: 33584815 PMCID: PMC7873444 DOI: 10.3389/fgene.2020.620162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Balanced chromosomal abnormalities (BCAs) are changes in the localization or orientation of a chromosomal segment without visible gain or loss of genetic material. BCAs occur at a frequency of 1 in 500 newborns and are associated with an increased risk of multiple congenital anomalies and/or neurodevelopmental disorders, especially if it is a de novo mutation. In this pilot project, we used short read genome sequencing (GS) to retrospectively re-sequence ten prenatal subjects with de novo BCAs and compared the performance of GS with the original karyotyping. GS characterized all BCAs found by conventional karyotyping with the added benefit of precise sub-band delineation. By identifying BCA breakpoints at the nucleotide level using GS, we found disruption of OMIM genes in three cases and identified cryptic gain/loss at the breakpoints in two cases. Of these five cases, four cases reached a definitive genetic diagnosis while the other one case had a BCA interpreted as unknown clinical significance. The additional information gained from GS can change the interpretation of the BCAs and has the potential to improve the genetic counseling and perinatal management by providing a more specific genetic diagnosis. This demonstrates the added clinical utility of using GS for the diagnosis of BCAs.
Collapse
Affiliation(s)
- Mullin Ho Chung Yu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jeffrey Fong Ting Chau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sandy Leung Kuen Au
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
| | - Hei Man Lo
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
| | - Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jasmine Lee Fong Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Claudia Ching Yan Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China.,Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong, China.,Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Hong Kong, China
| | - Brian Hon Yin Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anita Sik Yau Kan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China.,Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong, China.,Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Hong Kong, China
| |
Collapse
|
21
|
Sihombing NRB, Winarni TI, van Bokhoven H, van der Burgt I, de Leeuw N, Faradz SMH. Pathogenic variant in NFIX gene affecting three sisters due to paternal mosaicism. Am J Med Genet A 2020; 182:2731-2736. [PMID: 32945093 DOI: 10.1002/ajmg.a.61835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022]
Abstract
We present a family with three girls presenting similar dysmorphic features, including overgrowth, intellectual disability, macrocephaly, prominent forehead, midface retrusion, strabismus, and scoliosis. Both parents were unaffected, suggesting the presence of an autosomal recessive syndrome. Following exome sequencing, a heterozygous nonsense variant was identified in the NFIX gene in all three siblings. The father appeared to have a low-grade (7%) mosaicism for this variant in his blood. Previously, de novo pathogenic variants in NFIX have been identified in Marshall-Smith syndrome and Malan syndrome, which share distinctive phenotypic features shared with the patients of the present family. This case emphasizes the importance of further molecular analysis especially in familial cases, to exclude the possibility of parental mosaicism.
Collapse
Affiliation(s)
- Nydia Rena Benita Sihombing
- Doctoral Program of Medical and Health Sciences, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Tri Indah Winarni
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ineke van der Burgt
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sultana M H Faradz
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
22
|
Secretory Carcinoma of the Skin: Report of 6 Cases, Including a Case With a Novel NFIX-PKN1 Translocation. Am J Surg Pathol 2020; 43:1092-1098. [PMID: 31045890 DOI: 10.1097/pas.0000000000001261] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Secretory carcinoma of the skin is a rare adnexal carcinoma, which is morphologically and immunohistochemically identical to secretory carcinoma of the breast and is associated with the presence of t (12;15) translocation, resulting in the ETV6-NTRK3 gene fusion. Nineteen cases of primary cutaneous secretory carcinoma have been previously published in the literature. In this study, we describe 6 new cases of secretory carcinoma of the skin. The study group consisted of 5 female patients and 1 male patient, ranging in age from 57 to 98 years (mean: 74.2, median: 74). Locations included the axilla (2), neck, eyelid, thigh, and nipple base, each one. Microscopically, all but 1 tumor were well circumscribed and nonencapsulated and exhibited characteristic abundant secretions within the microcystic and tubular spaces comprised by bland oval, round to cuboidal neoplastic cells. In addition, solid areas and focal pseudopapillae were seen, and, in 1 case, a focal mucinous component with small lakes of mucin containing small tumor nests or tubules of the neoplastic cells was present. The remaining neoplasm was mostly solid and papillary, with only few characteristic lumina containing secretions. Immunohistochemically, all cases expressed S-100 protein, mammaglobin, STAT5, GATA3, and NTRK. ETV6-NTRK3 gene fusion was detected in 5 cases, whereas, in the remaining tumor, a novel NFIX-PKN1 gene fusion was found.
Collapse
|
23
|
Bellucco FT, de Mello CB, Meloni VA, Melaragno MI. Malan syndrome in a patient with 19p13.2p13.12 deletion encompassing NFIX and CACNA1A genes: Case report and review of the literature. Mol Genet Genomic Med 2019; 7:e997. [PMID: 31574590 PMCID: PMC6900369 DOI: 10.1002/mgg3.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Background Malan syndrome is a recently introduced overgrowth disorder described in a limited number of individuals. Haploinsufficiency and also point mutations of NFIX gene have been proposed as its leading causative mechanism, however, due to the limited number of cases and different deletion sizes, genotype/phenotype correlations are still limited. Methods Here, we report the first Brazilian case of Malan syndrome caused by a 990 kb deletion in 19p13.2p13.12, focusing on clinical and behavioral aspects of the syndrome. Results The patient presented with macrocephaly, facial dysmorphisms, hypotonia, developmental delay, moderate thoracolumbar scoliosis, and seizures. The intellectual and behavioral assessments showed severe cognitive, language, and adaptive functions impairments. The 19p deleted region of our patient encompasses NFIX, CACNA1A, which seems to be related to a higher frequency of seizures among individuals with microdeletions in 19p13.2, and 15 other coding genes, including CC2D1A and NACC1, both known to be involved in neurobiological process and pathways. Conclusion Deletions involving NFIX gene should be considered in patients with overgrowth during childhood, macrocephaly, developmental delay, and seizures, as well as severe intellectual disability.
Collapse
Affiliation(s)
- Fernanda T Bellucco
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudia B de Mello
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera A Meloni
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Brioude F, Toutain A, Giabicani E, Cottereau E, Cormier-Daire V, Netchine I. Overgrowth syndromes - clinical and molecular aspects and tumour risk. Nat Rev Endocrinol 2019; 15:299-311. [PMID: 30842651 DOI: 10.1038/s41574-019-0180-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Overgrowth syndromes are a heterogeneous group of rare disorders characterized by generalized or segmental excessive growth commonly associated with additional features, such as visceromegaly, macrocephaly and a large range of various symptoms. These syndromes are caused by either genetic or epigenetic anomalies affecting factors involved in cell proliferation and/or the regulation of epigenetic markers. Some of these conditions are associated with neurological anomalies, such as cognitive impairment or autism. Overgrowth syndromes are frequently associated with an increased risk of cancer (embryonic tumours during infancy or carcinomas during adulthood), but with a highly variable prevalence. Given this risk, syndrome-specific tumour screening protocols have recently been established for some of these conditions. Certain specific clinical traits make it possible to discriminate between different syndromes and orient molecular explorations to determine which molecular tests to conduct, despite the syndromes having overlapping clinical features. Recent advances in molecular techniques using next-generation sequencing approaches have increased the number of patients with an identified molecular defect (especially patients with segmental overgrowth). This Review discusses the clinical and molecular diagnosis, tumour risk and recommendations for tumour screening for the most prevalent generalized and segmental overgrowth syndromes.
Collapse
Affiliation(s)
- Frédéric Brioude
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France.
| | - Annick Toutain
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, INSERM UMR1253, iBrain, Université de Tours, Faculté de Médecine, Tours, France
| | - Eloise Giabicani
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| | - Edouard Cottereau
- CHU de Tours, Hôpital Bretonneau, Service de Génétique, Tours, France
| | - Valérie Cormier-Daire
- Service de génétique clinique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants Malades, Paris, France
| | - Irene Netchine
- Sorbonne Université, INSERM UMR_S938, Centre de Recherche Saint Antoine, AP-HP Hôpital Trousseau, Paris, France
| |
Collapse
|
25
|
Marques P, Korbonits M. Pseudoacromegaly. Front Neuroendocrinol 2019; 52:113-143. [PMID: 30448536 DOI: 10.1016/j.yfrne.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023]
Abstract
Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly - usually affecting the face and extremities -, or gigantism - accelerated growth/tall stature - will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
26
|
Burkardt DD, Graham JM. Abnormal Body Size and Proportion. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS AND GENOMICS 2019:81-143. [DOI: 10.1016/b978-0-12-812536-6.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Rai A, Narayanan DL, Phadke SR. Malan syndrome: Extension of genotype and phenotype spectrum. Am J Med Genet A 2018; 176:2896-2900. [PMID: 30548146 DOI: 10.1002/ajmg.a.40663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/09/2018] [Accepted: 09/18/2018] [Indexed: 01/02/2023]
Abstract
Malan syndrome and Marshall-Smith syndrome (MSS) are allelic disorders caused by mutation in NFIX gene. We report a 3-year- 6 months- old female with clinical features suggestive of Malan syndrome with mutation in exon 2 of NFIX gene. NFIX gene, where most of the mutations in Malan syndrome are located. She did not have advanced bone age. The radiographs of long bones showed metaphyseal changes which were not reported previously. This study reports the first mutation proven case from India and highlights the overlap between MSS and Malan syndrome.
Collapse
Affiliation(s)
- Archana Rai
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Schanze I, Bunt J, Lim JWC, Schanze D, Dean RJ, Alders M, Blanchet P, Attié-Bitach T, Berland S, Boogert S, Boppudi S, Bridges CJ, Cho MT, Dobyns WB, Donnai D, Douglas J, Earl DL, Edwards TJ, Faivre L, Fregeau B, Genevieve D, Gérard M, Gatinois V, Holder-Espinasse M, Huth SF, Izumi K, Kerr B, Lacaze E, Lakeman P, Mahida S, Mirzaa GM, Morgan SM, Nowak C, Peeters H, Petit F, Pilz DT, Puechberty J, Reinstein E, Rivière JB, Santani AB, Schneider A, Sherr EH, Smith-Hicks C, Wieland I, Zackai E, Zhao X, Gronostajski RM, Zenker M, Richards LJ. NFIB Haploinsufficiency Is Associated with Intellectual Disability and Macrocephaly. Am J Hum Genet 2018; 103:752-768. [PMID: 30388402 PMCID: PMC6218805 DOI: 10.1016/j.ajhg.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.
Collapse
Affiliation(s)
- Ina Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jonathan W C Lim
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Ryan J Dean
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Patricia Blanchet
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Tania Attié-Bitach
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, Paris 75015, France
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Steven Boogert
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Sangamitra Boppudi
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Caitlin J Bridges
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | | | - William B Dobyns
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Jessica Douglas
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Dawn L Earl
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laurence Faivre
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Genevieve
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Marion Gérard
- Service de Génétique, CHU de Caen - Hôpital Clémenceau, Caen Cedex 14000, France
| | - Vincent Gatinois
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Muriel Holder-Espinasse
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France; Department of Clinical Genetics, Guy's Hospital, London SE1 9RT, UK
| | - Samuel F Huth
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kosuke Izumi
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Elodie Lacaze
- Department of genetics, Le Havre Hospital, 76600 Le Havre, France
| | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sian M Morgan
- All Wales Genetics Laboratory, Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Catherine Nowak
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Hilde Peeters
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven 3000, Belgium
| | - Florence Petit
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France
| | - Daniela T Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Jacques Puechberty
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Eyal Reinstein
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba 4428164, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jean-Baptiste Rivière
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Avni B Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anouck Schneider
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Elaine Zackai
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaonan Zhao
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany.
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
29
|
Priolo M, Schanze D, Tatton-Brown K, Mulder PA, Tenorio J, Kooblall K, Acero IH, Alkuraya FS, Arias P, Bernardini L, Bijlsma EK, Cole T, Coubes C, Dapia I, Davies S, Di Donato N, Elcioglu NH, Fahrner JA, Foster A, González NG, Huber I, Iascone M, Kaiser AS, Kamath A, Liebelt J, Lynch SA, Maas SM, Mammì C, Mathijssen IB, McKee S, Menke LA, Mirzaa GM, Montgomery T, Neubauer D, Neumann TE, Pintomalli L, Pisanti MA, Plomp AS, Price S, Salter C, Santos-Simarro F, Sarda P, Segovia M, Shaw-Smith C, Smithson S, Suri M, Valdez RM, Van Haeringen A, Van Hagen JM, Zollino M, Lapunzina P, Thakker RV, Zenker M, Hennekam RC. Further delineation of Malan syndrome. Hum Mutat 2018; 39:1226-1237. [PMID: 29897170 PMCID: PMC6175110 DOI: 10.1002/humu.23563] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023]
Abstract
Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype‐phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall‐Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall–Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.
Collapse
Affiliation(s)
- Manuela Priolo
- Unità Operativa di Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Katrin Tatton-Brown
- Division of Genetics and Epidemiology, Institute of Cancer Research, London and South West Thames Regional Genetics Service, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Paul A Mulder
- Autism Team Northern-Netherlands, Jonx Department of Youth Mental Health, Lentis Psychiatric Institute, Groningen, The Netherlands
| | - Jair Tenorio
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Kreepa Kooblall
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Fowzan S Alkuraya
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, and Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Pedro Arias
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Laura Bernardini
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, Italy
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Trevor Cole
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Christine Coubes
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier, Montpellier, France
| | - Irene Dapia
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Sally Davies
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | | | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, and Eastern Mediterranean University, Mersin, Turkey
| | - Jill A Fahrner
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alison Foster
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Ann-Sophie Kaiser
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Arveen Kamath
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Jan Liebelt
- South Australian Clinical Genetics Services, SA Pathology, North Adelaide, Australia
| | - Sally Ann Lynch
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, and Clinical Genetics, Temple Street Children's University Hospital, Dublin, Ireland
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Corrado Mammì
- Unità Operativa di Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Inge B Mathijssen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Shane McKee
- Belfast HSC Trust, Northern Ireland Regional Genetics Service, Belfast, Northern Ireland
| | - Leonie A Menke
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, and Department of Human Genetics, University of Washington, Seattle, Washington
| | - Tara Montgomery
- Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Dorothee Neubauer
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | | | - Letizia Pintomalli
- Unità Operativa di Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | | | - Astrid S Plomp
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Sue Price
- Department of Clinical Genetics, Northampton General Hospital NHS Trust, Northampton, UK
| | - Claire Salter
- Wessex Clinical Genetics Service, Princess Ann Hospital, Southampton, UK
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Pierre Sarda
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier, Montpellier, France
| | - Mabel Segovia
- CENAGEM, Centro Nacional de Genética, Buenos Aires, Argentina
| | | | | | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rita Maria Valdez
- Genetics Unit, Hospital Militar Central "Cirujano Mayor Dr. Cosme Argerich,", Buenos Aires, Argentina
| | - Arie Van Haeringen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Johanna M Van Hagen
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam, The Netherlands
| | - Marcela Zollino
- Department of Laboratory Medicine, Institute of Medical Genetics, Catholic University, Rome, Italy
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
31
|
19p13 microduplications encompassing NFIX are responsible for intellectual disability, short stature and small head circumference. Eur J Hum Genet 2017; 26:85-93. [PMID: 29184170 DOI: 10.1038/s41431-017-0037-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023] Open
Abstract
Syndromes caused by copy number variations are described as reciprocal when they result from deletions or duplications of the same chromosomal region. When comparing the phenotypes of these syndromes, various clinical features could be described as reversed, probably due to the opposite effect of these imbalances on the expression of genes located at this locus. The NFIX gene codes for a transcription factor implicated in neurogenesis and chondrocyte differentiation. Microdeletions and loss of function variants of NFIX are responsible for Sotos syndrome-2 (also described as Malan syndrome), a syndromic form of intellectual disability associated with overgrowth and macrocephaly. Here, we report a cohort of nine patients harboring microduplications encompassing NFIX. These patients exhibit variable intellectual disability, short stature and small head circumference, which can be described as a reversed Sotos syndrome-2 phenotype. Strikingly, such a reversed phenotype has already been described in patients harboring microduplications encompassing NSD1, the gene whose deletions and loss-of-function variants are responsible for classical Sotos syndrome. Even though the type/contre-type concept has been criticized, this model seems to give a plausible explanation for the pathogenicity of 19p13 microduplications, and the common phenotype observed in our cohort.
Collapse
|
32
|
A novel mutation of NFIX causes Sotos-like syndrome (Malan syndrome) complicated with thoracic aortic aneurysm and dissection. Hum Genome Var 2017; 4:17022. [PMID: 28584646 PMCID: PMC5451486 DOI: 10.1038/hgv.2017.22] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/07/2017] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
Malan syndrome has recently been characterized to present Sotos-like phenotypes, such as intellectual disability and macrocephaly, with mutations in the NFIX gene. Herein, we report a 38-year-old patient with a novel single adenine insertion mutation in exon 2 of the NFIX gene (c.290_291insA). He developed early-onset thoracic aortic aneurysm and dissection, which was a rare complication but deserves particular attention in relatively long-lived patients with Sotos-like phenotypes.
Collapse
|
33
|
Lu Y, Chong PF, Kira R, Seto T, Ondo Y, Shimojima K, Yamamoto T. Mutations in NSD1 and NFIX in Three Patients with Clinical Features of Sotos Syndrome and Malan Syndrome. J Pediatr Genet 2017; 6:234-237. [PMID: 29142766 DOI: 10.1055/s-0037-1603194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Mutations in nuclear receptor SET domain-containing protein 1 gene ( NSD1 ) are related to Sotos syndrome, which is characterized by overgrowth, macrocephaly, distinctive features, and neurodevelopmental disabilities. On the other hand, mutations in the nuclear factor I/X gene ( NFIX ) can lead to Malan syndrome, also known as Sotos-like syndrome, or to the Marshall-Smith syndrome. In this study, using next generation sequencing (NGS), we identified de novo mutations in NSD1 and NFIX in three patients with developmental disabilities associated with overgrowth or macrocephaly. Overall, we confirmed that clinical entities of congenital malformation syndromes can be expanded by molecular diagnoses via NGS.
Collapse
Affiliation(s)
- Yongping Lu
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Toshiyuki Seto
- Department of Pediatrics, Osaka City University, Osaka, Japan
| | - Yumiko Ondo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
34
|
Marshall-Smith syndrome: Novel pathogenic variant and previously unreported associations with precocious puberty and aortic root dilatation. Eur J Med Genet 2017; 60:391-394. [PMID: 28442439 DOI: 10.1016/j.ejmg.2017.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/23/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
Abstract
Marshall-Smith Syndrome (MRSHSS) is a very rare genetic disorder characterized by failure to thrive and characteristic dysmorphic features associated with accelerated osseous maturation. We present a nine-year-old girl who was diagnosed with MRSHSS based on characteristic clinical features supported by the identification of a novel de novo pathogenic variant in the NFIX gene. The patient also presented with precocious puberty diagnosed at five years of age and had an abnormal GnRH stimulation test indicative of central precocious puberty. Central precocious puberty has not been described in association with MRSHSS previously in the medical literature and broadens our knowledge of the natural history of MRSHSS. The causes of advanced bone age in this syndrome are also reviewed. Additionally, the patient showed progressive dilatation of the aortic root. Although connective tissue abnormalities have been described in association with MRSHSS, aortic root dilatation has not. Understanding the mechanism of comorbidities such as advanced bone age and aortic root dilatation in MRSHSS patients enables future development of anticipatory guidance, preventative care measures, and treatment guidelines.
Collapse
|
35
|
Dong HY, Zeng H, Hu YQ, Xie L, Wang J, Wang XY, Yang YF, Tan ZP. 19p13.2 Microdeletion including NFIX associated with overgrowth and intellectual disability suggestive of Malan syndrome. Mol Cytogenet 2016; 9:71. [PMID: 27688808 PMCID: PMC5034553 DOI: 10.1186/s13039-016-0282-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/13/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Overgrowth syndromes represent clinically and genetically heterogeneous conditions characterized by a wide spectrum of malformations, tall stature, intellectual disability and/or macrocephaly. RESULTS In a cohort of four clinically characterized patients with overgrowth syndrome without known causative gene mutation, we performed an Illumina SNP-array analysis to identify the pathogenic copy number variations. We identified two rare copy number variations harboring overgrowth syndrome related genes. Patient 1 was Malan syndrome with a 1.4 Mb 19p13.2-13.13 microdeletion including NFIX, and Patient 2 was identified as Sotos syndrome with a 1.6 Mb 5q35.2 microdeletion encompassing NSD1. CONCLUSIONS We identified two patients associated with Manlan syndrome and Sotos syndrome respectively. We also discuss the use of the microarrays-based candidate gene strategy in Mendelian disease-gene identification.
Collapse
Affiliation(s)
- Hai-Yun Dong
- Intensive Care Unit, Central South University, Changsha, Hunan Province 410011 China
| | - Hui Zeng
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| | - Yi-Qiao Hu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan Province 410011 China
| | - Li Xie
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| | - Jian Wang
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| | - Xiu-Ying Wang
- Department of Pediatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410011 China
| | - Yi-Feng Yang
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| | - Zhi-Ping Tan
- Clinical Center for Gene Diagnosis and Therapy of State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, 139# Renmin Road, Changsha, Hunan 410011 China ; Department of Cardiothoracic Surgery, Central South University, Changsha, Hunan Province 410011 China
| |
Collapse
|