1
|
Lun Y, Hu J, Zuming Y. Circular RNAs expression profiles and bioinformatics analysis in bronchopulmonary dysplasia. J Clin Lab Anal 2022; 37:e24805. [PMID: 36514862 PMCID: PMC9833990 DOI: 10.1002/jcla.24805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) has long been considered the most challenging chronic lung disease for neonatologists and researchers due to its complex pathological mechanisms and difficulty in prediction. Growing evidence indicates that BPD is associated with the dysregulation of circular RNAs (circRNAs). Therefore, we aimed to explore the expression profiles of circRNAs and investigate the underlying molecular network associated with BPD. METHODS Peripheral blood was collected from very-low-birth-weight (VLBW) infants at 5-8 days of life to extract PBMCs. Microarray analysis and qRT-PCR tests were performed to determine the differentially expressed circRNAs (DEcircRNAs) between BPD and non-BPD VLBW infants. Simultaneous analysis of GSE32472 was conducted to obtain differentially expressed mRNAs (DEmRNA) from BPD infants. The miRNAs were predicted by DEcircRNAs and DEmRNAs of upregulated, respectively, and then screened for overlapping ones. GO and KEGG analysis was performed following construction of the competing endogenous RNA regulatory network (ceRNA) for further investigation. RESULTS A total of 65 circRNAs (52 upregulated and 13 downregulated) were identified as DEcircRNAs between the two groups (FC >2.0 and p.adj <0.05). As a result, the ceRNA network was constructed based on three upregulated DEcircRNAs validated by qRT-PCR (hsa_circ_0007054, hsa_circ_0057950, and hsa_circ_0120151). Bioinformatics analysis indicated these DEcircRNAs participated in response to stimulus, IL-1 receptor activation, neutrophil activation, and metabolic pathways. CONCLUSIONS In VLBW infants with a high risk for developing BPD, the circRNA expression profiles in PBMCs were significantly altered in the early post-birth period, suggesting immune dysregulation caused by infection and inflammatory response already existed.
Collapse
Affiliation(s)
- Yu Lun
- Department of Neonatal Intensive Care UnitSuzhou Municipal HospitalJiangsu ProvinceChina
| | - Junlong Hu
- Department of Neonatal Intensive Care UnitSuzhou Municipal HospitalJiangsu ProvinceChina
| | - Yang Zuming
- Department of Neonatal Intensive Care UnitSuzhou Municipal HospitalJiangsu ProvinceChina
| |
Collapse
|
2
|
Role of the LRP1-pPyk2-MMP9 pathway in hyperoxia-induced lung injury in neonatal rats. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1289-1294. [PMID: 34911615 PMCID: PMC8690715 DOI: 10.7499/j.issn.1008-8830.2108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the role of the low-density lipoprotein receptor-related protein 1 (LRP1)-proline-rich tyrosine kinase 2 phosphorylation (pPyk2)-matrix metalloproteinases 9 (MMP9) pathway in hyperoxia-induced lung injury in neonatal rats. METHODS A total of 16 neonatal rats were randomly placed in chambers containing room air (air group) or 95% medical oxygen (hyperoxia group) immediately after birth, with 8 rats in each group. All of the rats were sacrificed on day 8 of life. Hematoxylin and eosin staining was used to observe the pathological changes of lung tissue. ELISA was used to measure the levels of soluble LRP1 (sLRP1) and MMP9 in serum and bronchoalveolar lavage fluid (BALF). Western blot was used to measure the protein expression levels of LRP1, MMP9, Pyk2, and pPyk2 in lung tissue. RT-PCR was used to measure the mRNA expression levels of LRP1 and MMP9 in lung tissue. RESULTS The hyperoxia group had significantly higher levels of sLRP1 and MMP9 in serum and BALF than the air group (P<0.05). Compared with the air group, the hyperoxia group had significant increases in the protein expression levels of LRP1, MMP9, and pPyk2 in lung tissue (P<0.05). The hyperoxia group had significantly higher relative mRNA expression levels of LRP1 and MMP9 in lung tissue than the air group (P<0.05). CONCLUSIONS The activation of the LRP1-pPyk2-MMP9 pathway is enhanced in hyperoxia-induced lung injury in neonatal rats, which may be involved in the pathogenesis of bronchopulmonary dysplasia.
Collapse
|
3
|
Revhaug C, Bik-Multanowski M, Zasada M, Rognlien AGW, Günther CC, Ksiązek T, Madetko-Talowska A, Szewczyk K, Grabowska A, Kwinta P, Pietrzyk JJ, Baumbusch LO, Saugstad OD. Immune System Regulation Affected by a Murine Experimental Model of Bronchopulmonary Dysplasia: Genomic and Epigenetic Findings. Neonatology 2019; 116:269-277. [PMID: 31454811 DOI: 10.1159/000501461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 06/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a common cause of abrupted lung development after preterm birth. BPD may lead to increased rehospitalization, more severe and frequent respiratory infections, and life-long reduced lung function. The gene regulation in lungs with BPD is complex, with various genetic and epigenetic factors involved. OBJECTIVES The aim of this study was to examine the regulatory relation between gene expression and the epigenome (DNA methylation) relevant for the immune system after hyperoxia followed by a recovery period in air using a mouse model of BPD. METHODS Newborn mice pups were subjected to an immediate hyperoxic condition from birth and kept at 85% O2 levels for 14 days followed by a 14-day period in room air. Next, mice lung tissue was used for RNA and DNA extraction with subsequent microarray-based assessment of lung transcriptome and supplementary methylome analysis. RESULTS The immune system-related transcriptomeregulation was affected in mouse lungs after hyperoxia. A high proportion of genes relevant in the immune system exhibited significant expression alterations, e.g., B cell-specific genes central to the cytokine-cytokine receptor interaction, the PI3K-AKT, and the B cell receptor signaling pathways. The findings were accompanied by significant DNA hypermethylation observed in the PI3K-AKT pathway and immune system-relevant genes. CONCLUSIONS Oxygen damage could be partly responsible for the increased susceptibility and abnormal response to respiratory viruses and infections seen in premature babies with BPD through dysregulated genes.
Collapse
Affiliation(s)
- Cecilie Revhaug
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway,
| | - Miroslaw Bik-Multanowski
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Zasada
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anne Gro W Rognlien
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | | | - Teofila Ksiązek
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Szewczyk
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Grabowska
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek J Pietrzyk
- Department of Medical Genetics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.,Department of Pediatrics, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Lars O Baumbusch
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Ola D Saugstad
- Department of Pediatric Research, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|