1
|
Ahuja M, Kaidery NA, Dutta D, Attucks OC, Kazakov EH, Gazaryan I, Matsumoto M, Igarashi K, Sharma SM, Thomas B. Harnessing the Therapeutic Potential of the Nrf2/Bach1 Signaling Pathway in Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11091780. [PMID: 36139853 PMCID: PMC9495572 DOI: 10.3390/antiox11091780] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative movement disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although a complex interplay of multiple environmental and genetic factors has been implicated, the etiology of neuronal death in PD remains unresolved. Various mechanisms of neuronal degeneration in PD have been proposed, including oxidative stress, mitochondrial dysfunction, neuroinflammation, α-synuclein proteostasis, disruption of calcium homeostasis, and other cell death pathways. While many drugs individually targeting these pathways have shown promise in preclinical PD models, this promise has not yet translated into neuroprotective therapies in human PD. This has consequently spurred efforts to identify alternative targets with multipronged therapeutic approaches. A promising therapeutic target that could modulate multiple etiological pathways involves drug-induced activation of a coordinated genetic program regulated by the transcription factor, nuclear factor E2-related factor 2 (Nrf2). Nrf2 regulates the transcription of over 250 genes, creating a multifaceted network that integrates cellular activities by expressing cytoprotective genes, promoting the resolution of inflammation, restoring redox and protein homeostasis, stimulating energy metabolism, and facilitating repair. However, FDA-approved electrophilic Nrf2 activators cause irreversible alkylation of cysteine residues in various cellular proteins resulting in side effects. We propose that the transcriptional repressor of BTB and CNC homology 1 (Bach1), which antagonizes Nrf2, could serve as a promising complementary target for the activation of both Nrf2-dependent and Nrf2-independent neuroprotective pathways. This review presents the current knowledge on the Nrf2/Bach1 signaling pathway, its role in various cellular processes, and the benefits of simultaneously inhibiting Bach1 and stabilizing Nrf2 using non-electrophilic small molecules as a novel therapeutic approach for PD.
Collapse
Affiliation(s)
- Manuj Ahuja
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Debashis Dutta
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
| | | | | | - Irina Gazaryan
- Pace University, White Plains, NY 10601, USA
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, 111401 Moscow, Russia
- Faculty of Biology and Biotechnologies, Higher School of Economics, 111401 Moscow, Russia
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
| | - Sudarshana M. Sharma
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29406, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29406, USA
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29406, USA
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29406, USA
- Correspondence:
| |
Collapse
|
2
|
Inhibiting BTB domain and CNC homolog 1 (Bach1) as an alternative to increase Nrf2 activation in chronic diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130129. [DOI: 10.1016/j.bbagen.2022.130129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
|
3
|
Namba F. An experimental animal model of bronchopulmonary dysplasia: Secondary publication. Pediatr Int 2021; 63:504-509. [PMID: 33465831 DOI: 10.1111/ped.14612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a serious complication of preterm delivery and low birthweight infants. The incidence of BPD has not decreased, and there is no effective treatment for the disease. Since the survival rate of premature infants has increased, it has become difficult to obtain pathological tissue samples from BPD death cases. There is also no in vitro experimental system for complex three-dimensional structures, such as alveolarization and pulmonary angiogenesis; thus, the use of animal models is necessary to elucidate the pathology of BPD and develop new treatments. To date, BPD animal models were being developed by exposing immature animal lungs to various stimuli. In the present review, I summarize BPD animal models that use (i) highly concentrated oxygen, (ii) mechanical ventilation, and (iii) infection/inflammation. In addition, with mesenchymal stromal cell (MSC) therapy for BPD as an example, I will discuss the expectations for new treatments that would be applied from animal models to humans.
Collapse
Affiliation(s)
- Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
4
|
Liu Y, Wang Y, Lu F, Wang L, Miao L, Wang X. BTB and CNC homology 1 inhibition ameliorates fibrosis and inflammation via blocking ERK pathway in pulmonary fibrosis. Exp Lung Res 2020; 47:67-77. [PMID: 33238752 DOI: 10.1080/01902148.2020.1849448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Patients with idiopathic pulmonary fibrosis (IPF) are still suffering from unfavorable survival. BTB and CNC homology1 (Bach1) is a regulator of oxidative stress and participates in the pathogenesis of multiple lung diseases. Thus, this study aimed to determine the effect of Bach1 knockdown on fibrosis and inflammation in pulmonary fibrosis (PF) mice and cell models. METHODS Bleomycin induced PF mice were constructed and treated with Bach1 siRNA adenovirus (BLM + Bach1 siRNA group), control siRNA adenovirus (BLM + Control siRNA group) or normal saline (BLM group), then lung tissues were collected for Bach1 expression detection, H&E staining and Masson's trichrome staining. Afterwards, collagen type I alpha 1 chain (COL1A1) and interleukin-6 (IL-6) expressions in serum and bronchoalveolar lavage fluid (BALF) were examined. Subsequently, mouse lung fibroblasts (MLFs) were collected from PF mice and treated with TGF-β1 to construct PF cell model, which was treated with Bach1 siRNA adenovirus (TGF-β1 + Bach1 siRNA group) and MAP kinase (ERK) inhibitor U0126 alone (TGF-β1 + U0126 group) or in combination (TGF-β1 + U0126 + Bach1 siRNA group), then alpha-smooth muscle actin (α-SMA), fibronectin 1 (Fn1), COL1A1, IL-6 expressions and cell viability were detected. RESULTS Lung tissue Bach1 mRNA and protein expressions were upregulated in PF mice compared to control mice. Bach1 knockdown reduced lung fibrosis (displayed by Masson's trichrome staining) and inflammation (displayed by H&E staining), then downregulated serum and BALF expressions of COL1A1 and IL-6 in PF mice. Subsequently, in PF cell model, Bach1 knockdown blocked ERK pathway, but did not affect Smads, c-Jun N-terminal kinase (JNK) or thymoma viral proto-oncogene 1 (Akt) pathways. Further experiments revealed that Bach1 knockdown repressed cell viability, α-SMA, Fn1, IL-6 and COL1A1 expressions in PF cell model, then ERK inhibition by U0126 enhanced these effects. CONCLUSIONS Bach1 is involved in the PF pathogenesis via modulating ERK signaling pathway.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Rheumatology, Liuzhou People's Hospital , Liuzhou , China
| | - Yongfu Wang
- Department of Rheumatology, First Affiliated Hospital of Baotou Medical College , Baotou , China
| | - Fuai Lu
- Department of Rheumatology, First Affiliated Hospital of Baotou Medical College , Baotou , China
| | - Le Wang
- Department of Rheumatology, Liuzhou People's Hospital , Liuzhou , China
| | - Liu Miao
- Department of Cardiology, Liuzhou People's Hospital , Liuzhou , China
| | - Xiaoyuan Wang
- Department of Intensive Care Unit, Liuzhou People's Hospital , Liuzhou , China
| |
Collapse
|
5
|
Difference in pyruvic acid metabolism between neonatal and adult mouse lungs exposed to hyperoxia. PLoS One 2020; 15:e0238604. [PMID: 32881962 PMCID: PMC7470327 DOI: 10.1371/journal.pone.0238604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Objective Neonatal lungs are more tolerant to hyperoxic injury than are adult lungs. This study investigated differences in the response to hyperoxic exposure between neonatal and adult mouse lungs using metabolomics analysis with capillary electrophoresis time-of-flight mass spectrometry (CE- TOFMS). Methods Neonatal and adult mice were exposed to 21% or 95% O2 for four days. Subsequently, lung tissue samples were collected and analyzed by CE-TOFMS. Pyruvate dehydrogenase (PDH) enzyme activity was determined using a microplate assay kit. PDH kinase (Pdk) 1, Pdk2, Pdk3, and Pdk4 mRNA expression levels were determined using quantitative reverse transcription-polymerase chain reaction. Pdk4 protein expression was quantified by Western blotting and Pdk4 protein localization was evaluated by immunohistochemistry. Results Levels of 3-phosphoglyceric acid, 2-phosphoglyceric acid, phosphoenolpyruvic acid, and lactic acid were significantly elevated in the lungs of hyperoxia-exposed versus normoxia-exposed adult mice, whereas no significant differences were observed with hyperoxia exposure in neonatal mice. PDH activity was reduced in the lungs of adult mice only. Pdk4 mRNA expression levels after hyperoxic exposure were significantly elevated in adult mice compared with that in neonatal mice. Conversely, gene expression levels of Pdk1, Pdk2, and Pdk3 did not differ after hyperoxic exposure in either neonatal or adult mice. Pdk4 protein levels were also significantly increased in adult mouse lungs exposed to hyperoxia and were localized mainly to the epithelium of terminal bronchiole. Conclusions Specific metabolites associated with glycolysis and gluconeogenesis were altered after hyperoxia exposure in the lungs of adult mice, but not in neonates, which was likely a result of reduced PDH activity due to Pdk4 mRNA upregulation under hyperoxia.
Collapse
|
6
|
Suzuki K, Matsumoto M, Katoh Y, Liu L, Ochiai K, Aizawa Y, Nagatomi R, Okuno H, Itoi E, Igarashi K. Bach1 promotes muscle regeneration through repressing Smad-mediated inhibition of myoblast differentiation. PLoS One 2020; 15:e0236781. [PMID: 32776961 PMCID: PMC7416950 DOI: 10.1371/journal.pone.0236781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
It has been reported that Bach1-deficient mice show reduced tissue injuries in diverse disease models due to increased expression of heme oxygenase-1 (HO-1)that possesses an antioxidant function. In contrast, we found that Bach1 deficiency in mice exacerbated skeletal muscle injury induced by cardiotoxin. Inhibition of Bach1 expression in C2C12 myoblast cells using RNA interference resulted in reduced proliferation, myotube formation, and myogenin expression compared with control cells. While the expression of HO-1 was increased by Bach1 silencing in C2C12 cells, the reduced myotube formation was not rescued by HO-1 inhibition. Up-regulations of Smad2, Smad3 and FoxO1, known inhibitors of muscle cell differentiation, were observed in Bach1-deficient mice and Bach1-silenced C2C12 cells. Therefore, Bach1 may promote regeneration of muscle by increasing proliferation and differentiation of myoblasts.
Collapse
Affiliation(s)
- Katsushi Suzuki
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasutake Katoh
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Japan Agency for Medical Research and Development, Chiyoda, Tokyo, Japan
| | - Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuta Aizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Okuno
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Orthopaedic Surgery, Tohoku Rosai Hospital, Sendai, Miyagi, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
7
|
Yao H, Gong J, Peterson AL, Lu X, Zhang P, Dennery PA. Fatty Acid Oxidation Protects against Hyperoxia-induced Endothelial Cell Apoptosis and Lung Injury in Neonatal Mice. Am J Respir Cell Mol Biol 2020; 60:667-677. [PMID: 30571144 DOI: 10.1165/rcmb.2018-0335oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In neonates, hyperoxia or positive pressure ventilation causes continued lung injury characterized by simplified vascularization and alveolarization, which are the hallmarks of bronchopulmonary dysplasia. Although endothelial cells (ECs) have metabolic flexibility to maintain cell function under stress, it is unknown whether hyperoxia causes metabolic dysregulation in ECs, leading to lung injury. We hypothesized that hyperoxia alters EC metabolism, which causes EC dysfunction and lung injury. To test this hypothesis, we exposed lung ECs to hyperoxia (95% O2/5% CO2) followed by air recovery (O2/rec). We found that O2/rec reduced mitochondrial oxidative phosphorylation without affecting mitochondrial DNA copy number or mitochondrial mass and that it specifically decreased fatty acid oxidation (FAO) in ECs. This was associated with increased ceramide synthesis and apoptosis. Genetic deletion of carnitine palmitoyltransferase 1a (Cpt1a), a rate-limiting enzyme for carnitine shuttle, further augmented O2/rec-induced apoptosis. O2/rec-induced ceramide synthesis and apoptosis were attenuated when the FAO was enhanced by l-carnitine. Newborn mice were exposed to hyperoxia (>95% O2) between Postnatal Days 1 and 4 and were administered l-carnitine (150 and 300 mg/kg, i.p.) or etomoxir, a specific Cpt1 inhibitor (30 mg/kg, i.p.), daily between Postnatal Days 10 and 14. Etomoxir aggravated O2/rec-induced apoptosis and simplified alveolarization and vascularization in mouse lungs. Similarly, arrested alveolarization and reduced vessel numbers were further augmented in EC-specific Cpt1a-knockout mice compared with wild-type littermates in response to O2/rec. Treatment with l-carnitine (300 mg/kg) attenuated O2/rec-induced lung injury, including simplified alveolarization and decreased vessel numbers. Altogether, enhancing FAO protects against hyperoxia-induced EC apoptosis and lung injury in neonates.
Collapse
Affiliation(s)
- Hongwei Yao
- 1 Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, and
| | - Jiannan Gong
- 1 Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, and.,2 Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; and
| | - Abigail L Peterson
- 1 Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, and
| | - Xuexin Lu
- 1 Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, and
| | - Peng Zhang
- 3 Cardiology Division, Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Phyllis A Dennery
- 1 Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, and.,4 Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
8
|
Arai Y, Ito M, Tanaka K, Ozawa J, Motojima Y, Matsuoka K, Igarashi K, Namba F. Increased expression of heme oxygenase-1 suppresses airway branching morphogenesis in fetal mouse lungs exposed to inflammation. Pediatr Res 2020; 87:494-500. [PMID: 31578032 DOI: 10.1038/s41390-019-0588-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intrauterine inflammation affects fetal lung development. BTB and CNC homology 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1) and interleukin-6 (IL-6) genes. We investigated the role of Bach1 in the development of fetal mouse lungs exposed to lipopolysaccharide (LPS) using a whole fetal lung tissue culture system. METHODS We isolated and cultured embryonic day 12.5 fetal mouse lungs from pregnant Bach1 knockout (-/-) and wild-type (WT) mice. Airway branching morphogenesis was assessed by microscopically counting peripheral lung buds after incubation with/without LPS. Expression levels of genes related to inflammation and oxidative stress were evaluated using quantitative PCR. Zinc protoporphyrin, HO-1-specific inhibitor, was used. RESULTS Branching morphogenesis was observed in Bach1-/- and WT fetal mice lungs without LPS exposure; after exposure to LPS, the number of peripheral lung buds was suppressed in Bach1-/- group only. Basal messenger RNA (mRNA) and protein expression of HO-1 was significantly higher in Bach1-/- group than in WT group; IL-6 and monocyte chemoattractant protein-1 mRNA expression was significantly increased after LPS exposure in both groups. Zinc protoporphyrin mitigated the LPS-induced suppression of branching morphogenesis in Bach1-/- mice. CONCLUSION The ablation of Bach1 suppresses airway branching morphogenesis after LPS exposure by increased basal expression levels of HO-1.
Collapse
Affiliation(s)
- Yukio Arai
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Masato Ito
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Akita, 010-8543, Japan
| | - Kosuke Tanaka
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Junichi Ozawa
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Yukiko Motojima
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Kikumi Matsuoka
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, 350-8550, Japan.
| |
Collapse
|
9
|
Nishizawa H, Matsumoto M, Shindo T, Saigusa D, Kato H, Suzuki K, Sato M, Ishii Y, Shimokawa H, Igarashi K. Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J Biol Chem 2020; 295:69-82. [PMID: 31740582 PMCID: PMC6952604 DOI: 10.1074/jbc.ra119.009548] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Indexed: 01/10/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death event, whose regulation and physiological significance remain to be elucidated. Analyzing transcriptional responses of mouse embryonic fibroblasts exposed to the ferroptosis inducer erastin, here we found that a set of genes related to oxidative stress protection is induced upon ferroptosis. We considered that up-regulation of these genes attenuates ferroptosis induction and found that the transcription factor BTB domain and CNC homolog 1 (BACH1), a regulator in heme and iron metabolism, promotes ferroptosis by repressing the transcription of a subset of the erastin-induced protective genes. We noted that these genes are involved in the synthesis of GSH or metabolism of intracellular labile iron and include glutamate-cysteine ligase modifier subunit (Gclm), solute carrier family 7 member 11 (Slc7a11), ferritin heavy chain 1 (Fth1), ferritin light chain 1 (Ftl1), and solute carrier family 40 member 1 (Slc40a1). Ferroptosis has also been previously shown to induce cardiomyopathy, and here we observed that Bach1-/- mice are more resistant to myocardial infarction than WT mice and that the severity of ischemic injury is decreased by the iron-chelator deferasirox, which suppressed ferroptosis. Our findings suggest that BACH1 represses genes that combat labile iron-induced oxidative stress, and ferroptosis is stimulated at the transcriptional level by BACH1 upon disruption of the balance between the transcriptional induction of protective genes and accumulation of iron-mediated damage. We propose that BACH1 controls the threshold of ferroptosis induction and may represent a therapeutic target for alleviating ferroptosis-related diseases, including myocardial infarction.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Seiryo-machi 2-1, Sendai 980-8573, Japan
| | - Hiroki Kato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Katsushi Suzuki
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Masaki Sato
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Yusho Ishii
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan.
| |
Collapse
|
10
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
11
|
Chu XY, Cai C, Zhang XY, Zhou HL, Sun JF, Weng BW. [Effect of hyperoxic exposure on the expression of heme oxygenase-1 and glutamate-L-cysteine ligase catalytic subunit in lung tissue of preterm rats]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:594-600. [PMID: 31208516 PMCID: PMC7389583 DOI: 10.7499/j.issn.1008-8830.2019.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the effect of hyperoxic exposure on the dynamic expression of heme oxygenase-1 (HO-1) and glutamate-L-cysteine ligase catalytic subunit (GCLC) in the lung tissue of preterm neonatal rats. METHODS Cesarean section was performed for rats on day 21 of gestation to obtain 80 preterm rats, which were randomly divided into air group and hyperoxia group after one day of feeding. The rats in the air group were housed in room air under atmospheric pressure, and those in the hyperoxia group were placed in an atmospheric oxygen tank (oxygen concentration 85%-95%) in the same room. Eight rats each were selected from each group on days 1, 4, 7, 10, and 14, and lung tissue samples were collected. Hematoxylin and eosin staining was used to observe the pathological changes of lung tissue at different time points after air or hyperoxic exposure. Western blot and RT-qPCR were used to measure the protein and mRNA expression of HO-1 and GCLC in the lung tissue of preterm rats at different time points after air or hyperoxic exposure. RESULTS Compared with the air group, the hyperoxia group had a significant reduction in the body weight (P<0.05). Compared with the air group, the hyperoxia group had structural disorder, widening of alveolar septa, a reduction in the number of alveoli, and simplification of the alveoli on the pathological section of lung tissue. Compared with the air group, the hyperoxia group had significantly lower relative mRNA expression of HO-1 in the lung tissue on day 7 and significantly higher expression on days 10 and 14 (P<0.05). Compared with the air group, the hyperoxia group had significantly lower mRNA expression of GCLC in the lung tissue on days 1, 4, and 7 and significantly higher expression on day 10 (P<0.05). Compared with the air group, the hyperoxia group had significantly higher protein expression of HO-1 in the lung tissue on all days, and the protein expression of GCLC had same results as HO-1, except on day 1 (P<0.05). CONCLUSIONS Hyperoxia exposure may lead to growth retardation and lung developmental retardation in preterm rats. Changes in the protein and mRNA expression of HO-1 and GCLC in the lung tissue of preterm rats may be associated with the pathogenesis of hyperoxia-induced lung injury in preterm rats.
Collapse
Affiliation(s)
- Xiao-Yun Chu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China.
| | | | | | | | | | | |
Collapse
|
12
|
Li YY, Liu CY, Liu M, Sun KY. Protective effects of HO-1 pathway on lung injury subsequent to limb ischemia reperfusion. Kaohsiung J Med Sci 2019; 35:417-424. [PMID: 30977589 DOI: 10.1002/kjm2.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
Limb ischemia reperfusion (LIR) can activate endogenous cytoprotective mechanisms by generating specific proteins against reperfusion injury in remote organs. The present study investigated the roles of heme oxygenase-1 (HO-1) pathway and the molecular mechanisms underlying the regulation of this pathway on lung injury following LIR. LIR was induced by ischemia for 4 hours followed by reperfusion for 6 hours (LIR 6 hours) or 16 hours (LIR 16 hours) in male Sprague-Dawley rats. HO-1 inducer cobalt protoporphyrin (Copp) or HO-1 inhibitor zinc protoporphyrin (Znpp) was intravenously injected 24 hours before ischemia. The animals were randomly divided into nine groups, including normal control, LIR 6 hours, LIR 16 hours, Copp, Copp + LIR 6 hours, Copp + LIR 16 hours, and Znpp, Znpp+ LIR 6 hours, and Znpp + LIR 16 hours groups (each group included four samples). Lung injury was examined through histopathology. Quantitative real-time PCR, immunohistochemistry and Western blot were applied to detect the mRNA and protein levels of HO-1, Nrf2, and Bach1. Our study showed that LIR induced Nrf2 upregulation but Bach1 downregulation to promote HO-1 expression in lung tissues. Activation of HO-1 pathway by Copp potentially enhanced Nrf2 expression but inhibition of the pathway by Znpp promoted Bach1 expression. Inducer of HO-1 pathway, Copp injection improved the lung injury. Nevertheless, Znpp injection aggravated the lung injury following LIR. Our findings suggested that activated HO-1 pathway might exert protective effects on the lung injury following LIR.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Chun-Yan Liu
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Mei Liu
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Ke-Yu Sun
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Li H, Wang G, Lin S, Wang C, Zha J. Loss of interleukin-6 enhances the inflammatory response associated with hyperoxia-induced lung injury in neonatal mice. Exp Ther Med 2019; 17:3101-3107. [PMID: 30936981 PMCID: PMC6434258 DOI: 10.3892/etm.2019.7315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
In bronchopulmonary dysplasia (BPD), decreased angiogenesis and alveolarization is associated with pulmonary cell death and inflammation. It is commonly observed in premature infants who required mechanical ventilation and oxygen therapy. Since enhanced interleukin-6 (IL-6) expression has been reported in infants with BPD, it was hypothesized that a decrease in IL-6 may enhance lung inflammation and decrease hyperoxia-induced neonatal lung injury in mice. In the current study, newborn wild-type (WT) and IL-6 null mice were treated with 85% O2 (hyperoxia) or 21% O2 (normoxia) for 96 h. Although the increased volume and decreased quantity of alveoli was triggered by hyperoxia in WT and IL-6 null mice, transcription and translation of proinflammatory cytokines (monocyte chemoattractant protein-1, IL-10, IL-12 and tumor necrosis factor-α) and pulmonary cell death (caspase stimulation and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling staining) were significantly enhanced in IL-6 null mice compared with WT mice. These results suggest that the crosstalk between inflammation and cell death may be involved in hyperoxia-induced lung injury in BPD. Future treatment approaches for bronchopulmonary dysplasia should be based on the suppression of cytokine expression.
Collapse
Affiliation(s)
- Hengtao Li
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Genzai Wang
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Shuzhu Lin
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Chunyan Wang
- Department of Pediatrics, Fengcheng Hospital, Shanghai 201411, P.R. China
| | - Jianzhong Zha
- Department of Pediatrics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
14
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
15
|
Role of the Nrf2/HO-1 axis in bronchopulmonary dysplasia and hyperoxic lung injuries. Clin Sci (Lond) 2017; 131:1701-1712. [PMID: 28667068 DOI: 10.1042/cs20170157] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic illness that usually originates in preterm newborns. Generally, BPD is a consequence of respiratory distress syndrome (RDS) which, in turn, comes from the early arrest of lung development and the lack of pulmonary surfactant. The need of oxygen therapy to overcome premature newborns' compromised respiratory function generates an increasing amount of reactive oxygen species (ROS), the onset of sustained oxidative stress (OS) status, and inflammation in the pulmonary alveoli deputies to respiratory exchanges. BPD is a severe and potentially life-threatening disorder that in the most serious cases, can open the way to neurodevelopmental delay. More importantly, there is no adequate intervention to hamper or treat BPD. This perspective article seeks to review the most recent and relevant literature describing the very early stages of BPD and hyperoxic lung injuries focussing on nuclear factor erythroid derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis. Indeed, Nrf2/HO1 activation in response to OS induced lung injury in preterm concurs to the induction of certain number of antioxidant, anti-inflammatory, and detoxification pathways that seem to be more powerful than the activation of one single antioxidant gene. These elicited protective effects are able to counteract/mitigate all multifaceted aspects of the disease and may support novel approaches for the management of BPD.
Collapse
|