1
|
Paton MCB, Benders M, Blatch-Williams R, Dallimore E, Edwards A, Elwood N, Facer K, Finch-Edmondson M, Garrity N, Gordon A, Hunt RW, Jenkin G, McDonald CA, Moore J, Nold MF, Novak I, Popat H, Salomon C, Sato Y, Tolcos M, Wixey JA, Yawno T, Zhou L, Malhotra A. Updates on neonatal cell and novel therapeutics: Proceedings of the Second Neonatal Cell Therapies Symposium (2024). Pediatr Res 2025:10.1038/s41390-025-03856-x. [PMID: 39815092 DOI: 10.1038/s41390-025-03856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
Cell therapies as treatments for neonatal conditions have attracted significant research and parent interest over the last two decades. Mesenchymal stromal cells, umbilical cord blood cells and neural stem cells translate from lab, to preclinical and into clinical trials, with contributions being made from all over the world. Effective and timely translation involves frequent reflection and consultation from research-adjacent fields (i.e. cell therapies for cerebral palsy, adult neurology, companies, and regulatory bodies) as well as meaningful involvement of people with lived experience. Progress to date suggests that aligning outcome and data reporting in later phase clinical trials will support our sector, as well as involving industry partners for streamlined solutions in cell manufacturing, commercialisation and regulatory processes. Importantly, our field can also benefit from resource sharing and research collaboration in novel drug therapies, small molecules and extracellular vesicles as we attempt to bridge preclinical and clinical research. In this review, we present highlights and learnings from the second Neonatal Cell Therapies Symposium (2024), held in Sydney, Australia. IMPACT: Multiple cell therapy candidates have advanced through preclinical and clinical trials in neonatology, showing promising feasibility, safety and efficacy. Effective and timely translation is enabled by collaboration across research-adjacent fields, commercial partnerships, harmonising research outcomes and meaningful involvement of people with lived experience. Progress on the potential utility of cell therapies for neonatal conditions and further translational considerations are discussed in this paper.
Collapse
Affiliation(s)
- Madison C B Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Manon Benders
- Wilhemina Children's Hospital, Neonatology Department, Utrecht Brain Center, University Medical Centre, University Utrecht, Utrecht, The Netherlands
| | - Remy Blatch-Williams
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Adam Edwards
- Argenica Therapeutics LTD, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
| | - Ngaire Elwood
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- BMDI Cord Blood Bank, Melbourne, VIC, Australia
| | - Kylie Facer
- Parent with Lived Experience, Sydney, Australia
| | - Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Natasha Garrity
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Adrienne Gordon
- Discipline of Obstetrics, Gynaecology, and Neonatology, The University of Sydney, Sydney, NSW, Australia
| | - Rod W Hunt
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Justin Moore
- Department of Neurosurgery, Monash Health, Melbourne, VIC, Australia
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Himanshu Popat
- The Children's Hospital at Westmead, Sydney, NSW, Australia
- NHMRC Clinical Trial Centre, University of Sydney, Camperdown, VIC, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Julie A Wixey
- Perinatal Research Centre, University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Tamara Yawno
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Boyalı O, Kabatas S, Civelek E, Ozdemir O, Bahar-Ozdemir Y, Kaplan N, Savrunlu EC, Karaöz E. Allogeneic mesenchymal stem cells may be a viable treatment modality in cerebral palsy. World J Clin Cases 2024; 12:1585-1596. [PMID: 38576742 PMCID: PMC10989435 DOI: 10.12998/wjcc.v12.i9.1585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cerebral palsy (CP) describes a group of disorders affecting movement, balance, and posture. Disturbances in motor functions constitute the main body of CP symptoms. These symptoms surface in early childhood and patients are affected for the rest of their lives. Currently, treatment involves various pharmacotherapies for different types of CP, including antiepileptics for epilepsy and Botox A for focal spasticity. However, none of these methods can provide full symptom relief. This has prompted researchers to look for new treatment modalities, one of which is mesenchymal stem cell therapy (MSCT). Despite being a promising tool and offering a wide array of possibilities, mesenchymal stem cells (MSCs) still need to be investigated for their efficacy and safety. AIM To analyze the efficacy and safety of MSCT in CP patients. METHODS Our sample consists of four CP patients who cannot stand or walk without external support. All of these cases received allogeneic MSCT six times as 1 × 106/kg intrathecally, intravenously, and intramuscularly using umbilical cord-derived MSCs (UC-MSC). We monitored and assessed the patients pre- and post-treatment using the Wee Functional Independence Measure (WeeFIM), Gross Motor Function Classification System (GMFCS), and Manual Ability Classification Scale (MACS) instruments. We utilized the Modified Ashworth Scale (MAS) to measure spasticity. RESULTS We found significant improvements in MAS scores after the intervention on both sides. Two months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; four months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046; 12 months: Right χ2 = 4000, P = 0.046, left χ2 = 4000, P = 0.046. However, there was no significant difference in motor functions based on WeeFIM results (P > 0.05). GMFCS and MACS scores differed significantly at 12 months after the intervention (P = 0.046, P = 0.046). Finally, there was no significant change in cognitive functions (P > 0.05). CONCLUSION In light of our findings, we believe that UC-MSC therapy has a positive effect on spasticity, and it partially improves motor functions.
Collapse
Affiliation(s)
- Osman Boyalı
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Istanbul 34360, Turkey
| | - Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Omer Ozdemir
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Istanbul 34360, Turkey
| | - Yeliz Bahar-Ozdemir
- Department of Physical Medicine and Rehabilitation, Health Sciences University Sultan Abdulhamid Han Training and Research Hospital, Istanbul 34668, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Tekirdağ 59860, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Turkey
| | - Erdal Karaöz
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Liv Hospital, Istanbul 34340, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, İstanbul 34010, Turkey
- Center for Stem Cell and Tissue Engineering Research and Practice, Istinye University, Istanbul 34340, Turkey
| |
Collapse
|
3
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
4
|
Javvaji CK, Vagha JD, Meshram RJ, Taksande A. Assessment Scales in Cerebral Palsy: A Comprehensive Review of Tools and Applications. Cureus 2023; 15:e47939. [PMID: 38034189 PMCID: PMC10685081 DOI: 10.7759/cureus.47939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/28/2023] [Indexed: 12/02/2023] Open
Abstract
Cerebral palsy (CP) is a complex neurological condition characterized by motor dysfunction affecting millions worldwide. This comprehensive review delves into the critical role of assessment in managing CP. Beginning with exploring its definition and background, we elucidate the diverse objectives of CP assessment, ranging from diagnosis and goal setting to research and epidemiology. We examine standard assessment scales and tools, discuss the challenges inherent in CP assessment, and highlight emerging trends, including integrating technology, personalized medicine, and neuroimaging. The applications of CP assessment in clinical diagnosis, treatment planning, research, and education are underscored. Recommendations for the future encompass standardization, interdisciplinary collaboration, research priorities, and professional training. In conclusion, we emphasize the importance of assessment as a compass guiding the care of individuals with CP, issuing a call to action for improved assessment practices to shape a brighter future for those affected by this condition.
Collapse
Affiliation(s)
- Chaitanya Kumar Javvaji
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayant D Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Tsuji M, Mukai T, Sato Y, Azuma Y, Yamamoto S, Cayetanot F, Bodineau L, Onoda A, Nagamura-Inoue T, Coq JO. Umbilical cord-derived mesenchymal stromal cell therapy to prevent the development of neurodevelopmental disorders related to low birth weight. Sci Rep 2023; 13:3841. [PMID: 36882440 PMCID: PMC9992354 DOI: 10.1038/s41598-023-30817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Low birth weight (LBW) increases the risk of neurodevelopmental disorders (NDDs) such as attention-deficit/hyperactive disorder and autism spectrum disorder, as well as cerebral palsy, for which no prophylactic measure exists. Neuroinflammation in fetuses and neonates plays a major pathogenic role in NDDs. Meanwhile, umbilical cord-derived mesenchymal stromal cells (UC-MSCs) exhibit immunomodulatory properties. Therefore, we hypothesized that systemic administration of UC-MSCs in the early postnatal period may attenuate neuroinflammation and thereby prevent the emergence of NDDs. The LBW pups born to dams subjected to mild intrauterine hypoperfusion exhibited a significantly lesser decrease in the monosynaptic response with increased frequency of stimulation to the spinal cord preparation from postnatal day 4 (P4) to P6, suggesting hyperexcitability, which was improved by intravenous administration of human UC-MSCs (1 × 105 cells) on P1. Three-chamber sociability tests at adolescence revealed that only LBW males exhibited disturbed sociability, which tended to be ameliorated by UC-MSC treatment. Other parameters, including those determined via open-field tests, were not significantly improved by UC-MSC treatment. Serum or cerebrospinal fluid levels of pro-inflammatory cytokines were not elevated in the LBW pups, and UC-MSC treatment did not decrease these levels. In conclusion, although UC-MSC treatment prevents hyperexcitability in LBW pups, beneficial effects for NDDs are marginal.
Collapse
Affiliation(s)
- Masahiro Tsuji
- Department of Food and Nutrition, Kyoto Women's University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto, 605-8501, Japan.
| | - Takeo Mukai
- Department of Cell Processing and Transfusion, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yasue Azuma
- Department of Food and Nutrition, Kyoto Women's University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto, 605-8501, Japan
| | - Saki Yamamoto
- Department of Food and Nutrition, Kyoto Women's University, 35 Kitahiyoshi-cho, Imakumano, Higashiyama-ku, Kyoto, 605-8501, Japan
| | - Florence Cayetanot
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Laurence Bodineau
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Université, Paris, France
| | - Atsuto Onoda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jacques-Olivier Coq
- Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (ISM) UMR7287, Aix Marseille Université, 163 avenue de Luminy, CC 910, 13288, Marseille Cedex 09, France.
| |
Collapse
|
6
|
Yousif NG, Yousif MG, Mohsen AAU, El-Bakaa HS, Younise MH, Altimimi AN, Nöth UA, Hassan AM. PROSPECTIVE SINGLE CENTER ANALYSIS OF OUTCOME STEM CELLS TRANSPLANTS IN PATIENTS WITH CEREBRAL PALSY. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:339-345. [PMID: 37756453 DOI: 10.36740/merkur202304107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
OBJECTIVE Aim: To evaluate efficacy and safety of autologous bone marrow-derived mononuclear stem cell transplantation intrathecal in children with cerebral palsy. PATIENTS AND METHODS Materials and Methods: 35 children have levels I-V cerebral palsy aged 8-months to 8-years-old were enrolled from September (2021-2022) at Iraqi private hospital. Gross Motor Function was assessed by a pediatrician and neurologist specialist, 5 mcg/kg/day of G-CSF subcutaneous single injection daily for three consecutive days. Bone marrow harvested from posterior iliac crest under light general anesthesia. Bone marrow mononuclear cells (BMMNCs) separation was performed using density gradient centrifugation with Ficoll, the cell viability checked by propidium iodide dye in a TALI machine (Invitrogen) in average 98%. The viable BMMNCs injected intrathecal in L4-L5 over a period of 5-10 min. RESULTS Results: Males accounted for 57.14% (20/35) while female 42.86% (15/35), and main neurological symptoms included spastic disorder spastic disorder (quadriplegia 24 (68.6), tetraplegia 2 (5.7), diplegia 5 (14.28), hemiplegia4 (11.42)). Gross Motor Function Classification System and Gross Motor Function Measure-66 (GMFM-66) showed II 10 (28.58), III 11(31.42) and IV 14 (40). On mean follow-up of 3 months post-stem cell transplant improvement was observed in 80% cases. The improvement showed in gross motor function (6/8) p=0.01, and speech (2/4) p=0.04, neck holding (5/5) p=0.0003, sitting balance (4/4) p=0.04, postural tone (5/5) p=0.0003, as well as significant reduction in seizure frequency (2/3) p=0.04 and improvement in cognition (6/7) p=0.01 were observed. CONCLUSION Conclusion: Stem cell therapy for cerebral palsy shows a significant positive effect on the gross motor function, without long adverse effects.
Collapse
Affiliation(s)
- Nasser Ghaly Yousif
- DEPARTMENT OF MEDICINE, MEDICAL COLLEGE, AL MUTHANNA UNIVERSITY, SAMAWAH, IRAQ
| | - Maitham G Yousif
- DEPARTMENT OF BIOLOGY, COLLEGE OF SCIENCE, AL-QADISIYAH UNIVERSITY, IRAQ
| | - Ahmed Abd Ulhadi Mohsen
- DEPARTMENT OF PEDIATRIC, COLLEGE OF MEDICINE, JABIR IBN HAYYAN MEDICAL UNIVERSITY, KUFA, IRAQ
| | | | | | - Ahmed N Altimimi
- DEPARTMENT OF BIOLOGY, ALHAKEEM HOSPITAL, MINISTRY OF HEALTH, AL NAJAF, IRAQ
| | - Ulrich Aran Nöth
- DEPARTMENT OF REGENERATIVE RESEARCH, COLLEGE OF MEDICINE, COLORADO UNIVERSITY, AURORA, USA
| | - Alaa Manea Hassan
- DEPARTMENT OF DRUG CONTROL AND RESEARCH LABORATORY (DCRL), MINISTRY OF HEALTH, AL NAJAF, IRAQ
| |
Collapse
|
7
|
Qu J, Zhou L, Zhang H, Han D, Luo Y, Chen J, Li L, Zou Z, He Z, Zhang M, Ye J. Efficacy and safety of stem cell therapy in cerebral palsy: A systematic review and meta-analysis. Front Bioeng Biotechnol 2022; 10:1006845. [PMID: 36588957 PMCID: PMC9794999 DOI: 10.3389/fbioe.2022.1006845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Aim: Although the efficacy and safety of stem cell therapy for cerebral palsy has been demonstrated in previous studies, the number of studies is limited and the treatment protocols of these studies lack consistency. Therefore, we included all relevant studies to date to explore factors that might influence the effectiveness of treatment based on the determination of safety and efficacy. Methods: The data source includes PubMed/Medline, Web of Science, EMBASE, Cochrane Library, from inception to 2 January 2022. Literature was screened according to the PICOS principle, followed by literature quality evaluation to assess the risk of bias. Finally, the outcome indicators of each study were extracted for combined analysis. Results: 9 studies were included in the current analysis. The results of the pooled analysis showed that the improvements in both primary and secondary indicators except for Bayley Scales of Infant and Toddler Development were more skewed towards stem cell therapy than the control group. In the subgroup analysis, the results showed that stem cell therapy significantly increased Gross Motor Function Measure (GMFM) scores of 3, 6, and 12 months. Besides, improvements in GMFM scores were more skewed toward umbilical cord mesenchymal stem cells, low dose, and intrathecal injection. Importantly, there was no significant difference in the adverse events (RR = 1.13; 95% CI = [0.90, 1.42]) between the stem cell group and the control group. Conclusion: The results suggested that stem cell therapy for cerebral palsy was safe and effective. Although the subgroup analysis results presented guiding significance in the selection of clinical protocols for stem cell therapy, high-quality RCTs validations are still needed.
Collapse
Affiliation(s)
- Jiayang Qu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,School of Rehabilitation Medicine Gannan Medical University, GanZhou City, Jiangxi, China,The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hao Zhang
- The First Clinical College of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongmiao Han
- School of Rehabilitation Medicine Gannan Medical University, GanZhou City, Jiangxi, China
| | - Yaolin Luo
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Chen
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,School of Rehabilitation Medicine Gannan Medical University, GanZhou City, Jiangxi, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhengyi He
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Minhong Zhang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Clinical Medicine Research Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China,Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, China,Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,*Correspondence: Junsong Ye,
| |
Collapse
|
8
|
Cell-Based and Gene-Based Therapy Approaches in Neuro-orthopedic Disorders: a Literature Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Lyu H, Sun DM, Ng CP, Cheng WS, Chen JF, He YZ, Lam SY, Zheng ZY, Huang GD, Wang CC, Young W, Poon WS. Umbilical Cord Blood Mononuclear Cell Treatment for Neonatal Rats With Hypoxic Ischemia. Front Cell Neurosci 2022; 16:823320. [PMID: 35308119 PMCID: PMC8924590 DOI: 10.3389/fncel.2022.823320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) occurs when an infant’s brain has not received adequate oxygen and blood supply, resulting in ischemic and hypoxic damage. Currently, supportive care and hypothermia therapy have been the standard treatment for HIE. However, there are still over 20% of treated infants died and 19–30% survived with significant disability. HIE animal model was first established by Rice et al., involving the ligation of one common carotid artery followed by hypoxia. In this study, we investigated human umbilical cord blood (HUCB) and its two components mononuclear cell (MNC) and red cell fraction (RCF) in both short and long term study using a modified HIE rat model. Methods In this modified HIE model, both common carotid arteries were occluded, breathing 8% oxygen in a hypoxic chamber for 60-min, followed by the release of the common carotid arteries ligature, mimicking reperfusion injury. For cell therapeutic study, cells were intravenously injected to HIE rat pups, and both behavioral and histological changes were assessed at selected time points. Result Statistically significant behavioral improvements were demonstrated on Day 7 and 1 month between saline treated HIE rats and UCB/MNC treated rats. However, at 3 months, the therapeutic improvements were only showed between saline treated HIE animals and MNC treated HIE rats. For histological analysis 1 month after cell injection, the number of functional neurons were statistically increased between saline treated HIE and UCB/MNC/RCF treated HIE rats. At 3 months, the significant increase in functional neurons was only present in MNC treated HIE rats. Conclusion We have used a bilateral temporary occlusion of 60 min, a moderately brain damaged model, for cell therapeutic studies. HUCB mononuclear cell (MNC) therapy showed benefits in neonatal HIE rats in both short and long term behavioral and histological assessments.
Collapse
Affiliation(s)
- Hao Lyu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, The Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dong Ming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Chi Ping Ng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wendy S. Cheng
- Mononuclear Therapeutics Limited, Hong Kong, Hong Kong SAR, China
| | - Jun Fan Chen
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yu Zhong He
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhi Yuan Zheng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Neurosurgery, Hainan Hospital of People’s Liberation Army General Hospital, Sanya, China
| | - Guo Dong Huang
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, The Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Shatin, Hong Kong SAR, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Wise Young,
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Wise Young,
| |
Collapse
|
10
|
Liu L, Fang L, Duan B, Wang Y, Cui Z, Yang L, Wu D. Multi-Hit White Matter Injury-Induced Cerebral Palsy Model Established by Perinatal Lipopolysaccharide Injection. Front Pediatr 2022; 10:867410. [PMID: 35733809 PMCID: PMC9207278 DOI: 10.3389/fped.2022.867410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral palsy (CP) is a group of permanent, but not unchanging, disorders of movement and/or posture and motor function. Since the major brain injury associated with CP is white matter injury (WMI), especially, in preterm infants, we established a "multi-hit" rat model to mimic human WMI in symptomatology and at a histological level. In our WMI model, pups suffering from limb paresis, incoordination, and direction difficulties fit the performance of CP. Histologically, they present with fewer neural cells, inordinate fibers, and more inflammatory cell infiltration, compared to the control group. From the electron microscopy results, we spotted neuronal apoptosis, glial activation, and myelination delay. Besides, the abundant appearance of IBA1-labeled microglia also implied that microglia play a role during neuronal cell injury. After activation, microglia shift between the pro-inflammatory M1 type and the anti-inflammatory M2 type. The results showed that LPS/infection stimulated IBA1 + (marked activated microglia) expression, downregulated CD11c + (marked M1 phenotype), and upregulated Arg 1 + (marked M2 phenotype) protein expression. It indicated an M1 to M2 transition after multiple infections. In summary, we established a "multi-hit" WMI-induced CP rat model and demonstrated that the microglial activation correlates tightly with CP formation, which may become a potential target for future studies.
Collapse
Affiliation(s)
- Le Liu
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Pediatrics, Maternal and Child Health Hospital, The Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liwei Fang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Boyang Duan
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenzhen Cui
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Department of Pediatrics, Pediatric Neurorehabilitation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Amanat M, Majmaa A, Zarrabi M, Nouri M, Akbari MG, Moaiedi AR, Ghaemi O, Zamani F, Najafi S, Badv RS, Vosough M, Hamidieh AA, Salehi M, Montazerlotfelahi H, Tavasoli AR, Heidari M, Mohebi H, Fatemi A, Garakani A, Ashrafi MR. Clinical and imaging outcomes after intrathecal injection of umbilical cord tissue mesenchymal stem cells in cerebral palsy: a randomized double-blind sham-controlled clinical trial. Stem Cell Res Ther 2021; 12:439. [PMID: 34362453 PMCID: PMC8343813 DOI: 10.1186/s13287-021-02513-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This study assessed the safety and efficacy of intrathecal injection of umbilical cord tissue mesenchymal stem cells (UCT-MSC) in individuals with cerebral palsy (CP). The diffusion tensor imaging (DTI) was performed to evaluate the alterations in white-matter integrity. METHODS Participants (4-14 years old) with spastic CP were assigned in 1:1 ratio to receive either UCT-MSC or sham procedure. Single-dose (2 × 107) cells were administered in the experimental group. Small needle pricks to the lower back were performed in the sham-control arm. All individuals were sedated to prevent awareness. The primary endpoints were the mean changes in gross motor function measure (GMFM)-66 from baseline to 12 months after procedures. The mean changes in the modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also assessed. Secondary endpoints were the mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR). RESULTS There were 36 participants in each group. The mean GMFM-66 scores after 12 months of intervention were significantly higher in the UCT-MSC group compared to baseline (10.65; 95%CI 5.39, 15.91) and control (β 8.07; 95%CI 1.62, 14.52; Cohen's d 0.92). The increase was also seen in total PEDI scores (vs baseline 8.53; 95%CI 4.98, 12.08; vs control: β 6.87; 95%CI 1.52, 12.21; Cohen's d 0.70). The mean change in MAS scores after 12 months of cell injection reduced compared to baseline (-1.0; 95%CI -1.31, -0.69) and control (β -0.72; 95%CI -1.18, -0.26; Cohen's d 0.76). Regarding CP-QoL, mean changes in domains including friends and family, participation in activities, and communication were higher than the control group with a large effect size. The DTI analysis in the experimental group showed that mean FA increased (CST 0.032; 95%CI 0.02, 0.03. PTR 0.024; 95%CI 0.020, 0.028) and MD decreased (CST -0.035 × 10-3; 95%CI -0.04 × 10-3, -0.02 × 10-3. PTR -0.045 × 10-3; 95%CI -0.05 × 10-3, -0.03 × 10-3); compared to baseline. The mean changes were significantly higher than the control group. CONCLUSIONS The UCT-MSC transplantation was safe and may improve the clinical and imaging outcomes. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov ( NCT03795974 ).
Collapse
Affiliation(s)
- Man Amanat
- Department of Science and Research Branch, AJA University of Medical Sciences, Tehran, Iran
| | - Anahita Majmaa
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Moaiedi
- Department of Pediatric Neurology, Clinical Research Development Center of Children Hospital, Hormozgan University of Medical Sciences, Bandar Abass, Iran
| | - Omid Ghaemi
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zamani
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharif Najafi
- Clinical Biomechanics and Ergonomics Research Center, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatrics Center of Excellence Pediatric Hematology, Oncology and Stem Cell Transplantation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Salehi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Montazerlotfelahi
- Department of Pediatrics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Reza Tavasoli
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mohebi
- Department of Pediatric Neurology, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Amir Garakani
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mahmoud Reza Ashrafi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Sun JM, Kurtzberg J. Stem cell therapies in cerebral palsy and autism spectrum disorder. Dev Med Child Neurol 2021; 63:503-510. [PMID: 33398874 DOI: 10.1111/dmcn.14789] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
Across disciplines, there is great anticipation that evolving cell therapies may finally provide a therapeutic option for conditions in dire need. These conditions are typically complex and their pathophysiology incompletely understood, hindering the development of robust preclinical models and the precise assessment of therapeutic effects in human studies. This article provides an overview of the status of cell therapy investigations in two common neurodevelopmental disorders, cerebral palsy and autism spectrum disorder. Challenges facing this line of study, including inherent heterogeneity, knowledge gaps, and unrealistic expectations, are discussed. Much progress has been made in the past decade, but to definitively determine if cell therapies have a role in the treatment of neurodevelopmental disorders, both fields will need to evolve together. WHAT THIS PAPER ADDS: The safety profile of reported cell therapies in children with neurodevelopmental disorders is encouraging. Efficacy trials in cerebral palsy and autism spectrum disorder are ongoing in the United States and Asia. Unresolved issues pertain to the properties of the cells being studied and the characteristics of the neurodevelopmental conditions themselves.
Collapse
Affiliation(s)
- Jessica M Sun
- The Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joanne Kurtzberg
- The Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| |
Collapse
|
13
|
Abstract
Cerebral palsy is the most common disease in children associated with lifelong disability in many countries. Clinical research has demonstrated that traditional physiotherapy and rehabilitation therapies cannot alone cure cerebral palsy. Stem cell transplantation is an emerging therapy that has been applied in clinical trials for a variety of neurological diseases because of the regenerative and unlimited proliferative capacity of stem cells. In this review, we summarize the design schemes and results of these clinical trials. Our findings reveal great differences in population characteristics, stem cell types and doses, administration methods, and evaluation methods among the included clinical trials. Furthermore, we also assess the safety and efficacy of these clinical trials. We anticipate that our findings will advance the rational development of clinical trials of stem cell therapy for cerebral palsy and contribute to the clinical application of stem cells.
Collapse
Affiliation(s)
- Zhong-Yue Lv
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Ying Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
14
|
Ogawa Y, Tanaka E, Sato Y, Tsuji M. Brain damage caused by neonatal hypoxia-ischemia and the effects of hypothermia in severe combined immunodeficient (SCID) mice. Exp Neurol 2020; 337:113577. [PMID: 33359474 DOI: 10.1016/j.expneurol.2020.113577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of brain damage in newborns. Although therapeutic hypothermia has been shown to be neuroprotective against neonatal HIE in clinical trials, its effect is not satisfactory. Cell-based therapies have attracted much attention as novel treatments for HIE. Preclinical studies on a variety of human cell transplantation methods have been performed in immunodeficient/immunosuppressed animals, such as severe combined immunodeficient (SCID) mice, which lack functional T and B lymphocytes. The detailed characteristics of neonatal HIE in SCID mice, however, have not been delineated. In preclinical studies, novel therapies for neonatal HIE should be evaluated in combination with hypothermia, which has become a standard treatment for neonatal HIE. However, the effects of hypothermia in SCID mice have not been delineated. In the present study, we compared neonatal hypoxic-ischemic (HI) brain damage in SCID mice and wild-type mice treated with or without hypothermia. Male and female mouse pups were subjected to HI insult induced by unilateral common carotid artery ligation combined with systemic hypoxia on postnatal day 12. In the first 4 h after HI insult, body temperature was maintained at 36 °C for the normothermia groups or 32 °C for the hypothermia groups. The severity of brain damage in SCID mice did not differ from that in wild-type mice based on most evaluations, i.e., cerebral blood flow, hemiparesis, muscle strength, spontaneous activity, cerebral hemispheric volume, neuropathological injury, and serum cytokine levels, although spleen weight, brain weight, leukocyte counts and the levels of some cytokines in the peripheral blood were different between genotypes. The effects of hypothermia in SCID mice were comparable to those in wild-type mice based on most evaluations. Taken together, these findings indicate that SCID mice can be used as an appropriate preclinical model for cell therapies for neonatal HIE.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan.
| | - Emi Tanaka
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal - Neonatal Care, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan.
| |
Collapse
|
15
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Chin EM, Gwynn HE, Robinson S, Hoon AH. Principles of Medical and Surgical Treatment of Cerebral Palsy. Neurol Clin 2020; 38:397-416. [PMID: 32279717 DOI: 10.1016/j.ncl.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cerebral palsy is the most common cause of childhood motor disability, affecting 2 to 3/1000 children worldwide. Clinical abnormalities in tone, posture, and movement are the result of brain dysgenesis or injury early in life, and impairment varies in type, distribution, and in severity. The underlying brain disorder may also lead to other associated neurologic and systemic impairments. Variability in functional impairments, which can change during development, necessitates an individualized treatment plan. Treatment options are primarily symptomatic and directed toward optimizing independence, function, and/or ease of care-while limiting side effects. New promising disease-preventing and modifying treatments are emerging.
Collapse
Affiliation(s)
- Eric M Chin
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA.
| | - Hilary E Gwynn
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA
| | - Shenandoah Robinson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Phipps Building Rm 101, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Alexander H Hoon
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Vankeshwaram V, Maheshwary A, Mohite D, Omole JA, Khan S. Is Stem Cell Therapy the New Savior for Cerebral Palsy Patients? A Review. Cureus 2020; 12:e10214. [PMID: 33042660 PMCID: PMC7535865 DOI: 10.7759/cureus.10214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cerebral Palsy (CP) is one of the foremost causes of childhood motor disability and disrupts the individual's development and ability to function. Several factors contribute to the development of CP such as preterm delivery, low birth weight, infection/inflammation, and additional pregnancy complications, both in preterm and term infants. As there is no specific treatment for CP, rehabilitation is the current option for the management of patients. The serious nature of this condition creates deficits that last a lifetime. We collected studies that were published in the past 10 years, using PubMed as our main database. We chose studies that were relevant to CP and stem cell therapy. We mainly focused on various types of stem cells that can be used in treatment, mechanism of action (MOA) of stem cells, routes, dosage, and adverse effects, their efficacy, and safety in CP patients. Of all the 38 studies we reviewed, we found that five articles discussed the utilization of human umbilical cord blood [hUCB], four articles discussed autologous bone marrow stem cells, and one discussed allogeneic umbilical cord blood usage. One article discussed neural stem-like cells (NSLCs) derived from bone marrow and the remaining 27 articles were about CP and its treatment. We reviewed detailed information about the possible stem cell therapies and their benefits in patients with CP. We found that immune modulation is the major mechanism of action of stem cells, and among all the types of stem cells. Autologous umbilical cord mesenchymal stem cells appear to be safe and most effective in treatment compared to other stem cell treatments. Among all symptoms, motor symptoms are best corrected by stem cell therapy. Still, it did not show any marked improvement in treating other symptoms like speech defects, sensory or cognitive defects, or visual impairment.
Collapse
Affiliation(s)
- Varun Vankeshwaram
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Medicine, Zaporozhye State Medical University, Zaporozhye, UKR
| | - Ankush Maheshwary
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Medicine, Government Medical College, Amritsar, IND
| | - Divya Mohite
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Janet A Omole
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
18
|
Malhotra A, Novak I, Miller SL, Jenkin G. Autologous transplantation of umbilical cord blood-derived cells in extreme preterm infants: protocol for a safety and feasibility study. BMJ Open 2020; 10:e036065. [PMID: 32398336 PMCID: PMC7223148 DOI: 10.1136/bmjopen-2019-036065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Preterm brain injury continues to be an important complication of preterm birth, especially in extremely premature infants. Umbilical cord blood-derived cells (UCBCs) are increasingly being evaluated for their neuroprotective and neuroreparative properties in preclinical and clinical studies. There remains a paucity of information on the feasibility and safety of autologous UCBC transplantation in extremely premature infants. METHODS AND ANALYSIS A single centre safety and feasibility study in preterm babies born before 28 weeks gestation. Cord blood will be collected after birth and if sufficient blood is obtained, UCB mononuclear cells will be harvested from the cord blood, characterised and stored. After excluding infants who have already suffered severe preterm brain injury, based on cranial ultrasounds in first week of life, preterm infants will be infused with autologous UCBCs via the intravenous route at a dose of 25-50 million UCBCs/kg body weight of live cells, with the cell number being the maximum available up to 50 million cells/kg. A minimum of 20 infants will be administered autologous UCBCs. Primary outcomes will include feasibility and safety. Feasibility will be determined by access to sufficient cord blood at collection and UCBCs following processing. Safety will be determined by lack of adverse events directly related to autologous UCBC administration in the first few days after cell administration. Secondary outcomes studied will include neonatal and neurodevelopmental morbidities till 2 years of life. Additional outcomes will include cell characteristics of all collected cord blood, and cytokine responses to cell administration in transplanted infants till 36 weeks' corrected age. ETHICS AND DISSEMINATION Monash Health Human Research Ethics Committee approved this study in December 2019. Recruitment is to commence in July 2020 and is expected to take around 12 months. The findings of this study will be disseminated via peer-reviewed journals and at conferences. TRIAL REGISTRATION NUMBER ACTRN12619001637134.
Collapse
Affiliation(s)
- Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Iona Novak
- Cerebral Palsy Alliance, Sydney, New South Wales, Australia
| | - Suzanne Lee Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Tsuji M, Sawada M, Watabe S, Sano H, Kanai M, Tanaka E, Ohnishi S, Sato Y, Sobajima H, Hamazaki T, Mori R, Oka A, Ichiba H, Hayakawa M, Kusuda S, Tamura M, Nabetani M, Shintaku H. Autologous cord blood cell therapy for neonatal hypoxic-ischaemic encephalopathy: a pilot study for feasibility and safety. Sci Rep 2020; 10:4603. [PMID: 32165664 PMCID: PMC7067794 DOI: 10.1038/s41598-020-61311-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 02/02/2023] Open
Abstract
Neonatal hypoxic-ischaemic encephalopathy (HIE) is a serious condition; many survivors develop neurological impairments, including cerebral palsy and intellectual disability. Preclinical studies show that the systemic administration of umbilical cord blood cells (UCBCs) is beneficial for neonatal HIE. We conducted a single-arm clinical study to examine the feasibility and safety of intravenous infusion of autologous UCBCs for newborns with HIE. When a neonate was born with severe asphyxia, the UCB was collected, volume-reduced, and divided into three doses. The processed UCB was infused at 12–24, 36–48, and 60–72 hours after the birth. The designed enrolment was six newborns. All six newborns received UCBC therapy strictly adhering to the study protocol together with therapeutic hypothermia. The physiological parameters and peripheral blood parameters did not change much between pre- and postinfusion. There were no serious adverse events that might be related to cell therapy. At 30 days of age, the six infants survived without circulatory or respiratory support. At 18 months of age, neurofunctional development was normal without any impairment in four infants and delayed with cerebral palsy in two infants. This pilot study shows that autologous UCBC therapy is feasible and safe.
Collapse
Affiliation(s)
- Masahiro Tsuji
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, 605-8501, Japan.,Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, 565-8565, Japan
| | - Mariko Sawada
- Department of Pediatrics, Kurashiki Central Hospital, Kurashiki, 710-8602, Japan
| | - Shinichi Watabe
- Department of Pediatrics, Kurashiki Central Hospital, Kurashiki, 710-8602, Japan
| | - Hiroyuki Sano
- Department of Pediatrics, Yodogawa Christian Hospital, Osaka, 533-0024, Japan
| | - Masayo Kanai
- Division of Neonatology, Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, 350-8850, Japan
| | - Emi Tanaka
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Satoshi Ohnishi
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, 466-8560, Japan
| | - Hisanori Sobajima
- Division of Neonatology, Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, 350-8850, Japan
| | - Takashi Hamazaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Rintaro Mori
- Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Akira Oka
- Department of Pediatrics, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Hiroyuki Ichiba
- Department of Neonatology, Osaka City General Hospital, Osaka, 534-0021, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, 466-8560, Japan
| | - Satoshi Kusuda
- Department of Pediatrics, Kyorin University, Mitaka, 181-8611, Japan
| | - Masanori Tamura
- Division of Neonatology, Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, 350-8850, Japan
| | - Makoto Nabetani
- Department of Pediatrics, Yodogawa Christian Hospital, Osaka, 533-0024, Japan.
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan.
| |
Collapse
|
20
|
|
21
|
Malhotra A, Castillo-Melendez M, Allison BJ, Sutherland AE, Nitsos I, Pham Y, McDonald CA, Fahey MC, Polglase GR, Jenkin G, Miller SL. Neurovascular effects of umbilical cord blood-derived stem cells in growth-restricted newborn lambs : UCBCs for perinatal brain injury. Stem Cell Res Ther 2020; 11:17. [PMID: 31915068 PMCID: PMC6947982 DOI: 10.1186/s13287-019-1526-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Background Neonatal ventilation exacerbates brain injury in lambs with fetal growth restriction (FGR), characterized by neuroinflammation and reduced blood-brain barrier integrity, which is normally maintained by the neurovascular unit. We examined whether umbilical cord blood stem cell (UCBC) treatment stabilized the neurovascular unit and reduced brain injury in preterm ventilated FGR lambs. Methods Surgery was performed in twin-bearing pregnant ewes at 88 days’ gestation to induce FGR in one fetus. At 127 days, FGR and appropriate for gestational age (AGA) lambs were delivered, carotid artery flow probes and umbilical lines inserted, lambs intubated and commenced on gentle ventilation. Allogeneic ovine UCBCs (25 × 106 cells/kg) were administered intravenously to lambs at 1 h of life. Lambs were ventilated for 24 h and then euthanized. Results FGR (n = 6) and FGR+UCBC (n = 6) lambs were growth restricted compared to AGA (n = 6) and AGA+UCBC (n = 6) lambs (combined weight, FGR 2.3 ± 0.4 vs. AGA 3.0 ± 0.3 kg; p = 0.0002). UCBC therapy did not alter mean arterial blood pressure or carotid blood flow but decreased cerebrovascular resistance in FGR+UCBC lambs. Circulating TNF-α cytokine levels were lower in FGR+UCBC vs. FGR lambs (p < 0.05). Brain histopathology showed decreased neuroinflammation and oxidative stress, increased endothelial cell proliferation, pericyte stability, and greater integrity of the neurovascular unit in FGR+UCBC vs. FGR lambs. Conclusions Umbilical cord blood stem cell therapy mitigates perinatal brain injury due to FGR and ventilation, and the neuroprotective benefits may be mediated by stabilization of the neurovascular unit.
Collapse
Affiliation(s)
- Atul Malhotra
- Monash Newborn, Monash Children's Hospital, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia. .,Department of Paediatrics, Monash University, Melbourne, Australia. .,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Melbourne, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| |
Collapse
|
22
|
Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells. Gene Ther 2019; 26:324-337. [PMID: 31239537 DOI: 10.1038/s41434-019-0084-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/19/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Advancement of stem cell-based treatment will involve next-generation approaches to enhance therapeutic efficacy which is often modest, particularly in the context of myocardial regenerative therapy. Our group has previously demonstrated the beneficial effect of genetic modification of cardiac stem cells with Pim-1 kinase overexpression to rejuvenate aged cells as well as potentiate myocardial repair. Despite these encouraging findings, concerns were raised regarding potential for oncogenic risk associated with Pim-1 kinase overexpression. Testing of Pim-1 engineered c-kit+ cardiac interstitial cells (cCIC) derived from heart failure patient samples for indices of oncogenic risk was undertaken using multiple assessments including soft agar colony formation, micronucleation, gamma-Histone 2AX foci, and transcriptome profiling. Collectively, findings demonstrate comparable phenotypic and biological properties of cCIC following Pim-1 overexpression compared with using baseline control cells with no evidence for oncogenic phenotype. Using a highly selective and continuous sensor for quantitative assessment of PIM1 kinase activity revealed a sevenfold increase in Pim-1 engineered vs. control cells. Kinase activity profiling using a panel of sensors for other kinases demonstrates elevation of IKKs), AKT/SGK, CDK1-3, p38, and ERK1/2 in addition to Pim-1 consistent with heightened kinase activity correlating with Pim-1 overexpression that may contribute to Pim-1-mediated effects. Enhancement of cellular survival, proliferation, and other beneficial properties to augment stem cell-mediated repair without oncogenic risk is a feasible, logical, and safe approach to improve efficacy and overcome current limitations inherent to cellular adoptive transfer therapeutic interventions.
Collapse
|
23
|
Yellowhair TR, Noor S, Mares B, Jose C, Newville JC, Maxwell JR, Northington FJ, Milligan ED, Robinson S, Jantzie LL. Chorioamnionitis in Rats Precipitates Extended Postnatal Inflammatory Lymphocyte Hyperreactivity. Dev Neurosci 2019; 40:1-11. [PMID: 30921800 PMCID: PMC6765467 DOI: 10.1159/000497273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Preterm birth is an important cause of perinatal brain injury (PBI). Neurological injury in extremely preterm infants often begins in utero with chorioamnionitis (CHORIO) or inflammation/infection of the placenta and concomitant placental insufficiency. Studies in humans have shown dysregulated inflammatory signaling throughout the placental-fetal brain axis and altered peripheral immune responses in children born preterm with cerebral palsy (CP). We hypothesized that peripheral immune responses would be altered in our well-established rat model of CP. Specifically, we proposed that isolated peripheral blood mononuclear cells (PBMCs) would be hyperresponsive to a second hit of inflammation throughout an extended postnatal time course. Pregnant Sprague-Dawley dams underwent a laparotomy on embryonic day 18 (E18) with occlusion of the uterine arteries (for 60 min) followed by intra-amniotic injection of lipopolysaccharide (LPS, 4 μg/sac) to induce injury in utero. Shams underwent laparotomy only, with equivalent duration of anesthesia. Laparotomies were then closed, and the rat pups were born at E22. PBMCs were isolated from pups on postnatal day 7 (P7) and P21, and subsequently stimulated in vitro with LPS for 3 or 24 h. A secreted inflammatory profile analysis of conditioned media was performed using multiplex electrochemiluminescent immunoassays, and the composition of inflammatory cells was assayed with flow cytometry (FC). Results indicate that CHORIO PBMCs challenged with LPS are hyperreactive and secrete significantly more tumor necrosis factor α (TNFα) and C-X-C chemokine ligand 1 at P7. FC confirmed increased intracellular TNFα in CHORIO pups at P7 following LPS stimulation, in addition to increased numbers of CD11b/c immunopositive myeloid cells. Notably, TNFα secretion was sustained until P21, with increased interleukin 6, concomitant with increased expression of integrin β1, suggesting both sustained peripheral immune hyperreactivity and a heightened activation state. Taken together, these data indicate that in utero injury primes the immune system and augments enhanced inflammatory signaling. The insidious effects of primed peripheral immune cells may compound PBI secondary to CHORIO and/or placental insufficiency, and thereby render the brain susceptible to future chronic neurological disease. Further understanding of inflammatory mechanisms in PBI may yield clinically important biomarkers and facilitate individualized repair strategies and treatments.
Collapse
Affiliation(s)
- Tracylyn R Yellowhair
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Brittney Mares
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Clement Jose
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jessie C Newville
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jessie R Maxwell
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Frances J Northington
- Division of Newborn Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lauren L Jantzie
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA,
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA,
- Division of Newborn Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
24
|
Jiao Y, Li XY, Liu J. A New Approach to Cerebral Palsy Treatment: Discussion of the Effective Components of Umbilical Cord Blood and its Mechanisms of Action. Cell Transplant 2018; 28:497-509. [PMID: 30384766 PMCID: PMC7103597 DOI: 10.1177/0963689718809658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral palsy (CP) includes a group of persistent non-progressive disorders
affecting movement, muscle tone, and/or posture. The total economic loss during
the life-span of an individual with CP places a heavy financial burden on such
patients and their families worldwide; however, a complete cure is still
lacking. Umbilical cord blood (UCB)-based interventions are emerging as a
scientifically plausible treatment and possible cure for CP. Stem cells have
been used in many experimental CP animal models and achieved good results.
Compared with other types of stem cells, those from UCB have advantages in terms
of treatment safety and efficacy, ethics, non-neoplastic proliferation,
accessibility, ease of preservation, and regulation of immune responses, based
on findings in animal models and clinical trials. Currently, the use of
UCB-based interventions for CP is limited as the components of UCB are complex
and possess different therapeutic mechanisms. These can be categorized by three
aspects: homing and neuroregeneration, trophic factor secretion, and
neuroprotective effects. Our review summarizes the features of active components
of UCB and their therapeutic mechanism of action. This review highlights current
research findings and clinical evidence regarding UCB that contribute to
treatment suggestions, inform decision-making for therapeutic interventions, and
help to direct future research.
Collapse
Affiliation(s)
- Yang Jiao
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiao-Yan Li
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jing Liu
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
25
|
Jantzie LL, Oppong AY, Conteh FS, Yellowhair TR, Kim J, Fink G, Wolin AR, Northington FJ, Robinson S. Repetitive Neonatal Erythropoietin and Melatonin Combinatorial Treatment Provides Sustained Repair of Functional Deficits in a Rat Model of Cerebral Palsy. Front Neurol 2018; 9:233. [PMID: 29706928 PMCID: PMC5908903 DOI: 10.3389/fneur.2018.00233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cerebral palsy (CP) is the leading cause of motor impairment for children worldwide and results from perinatal brain injury (PBI). To test novel therapeutics to mitigate deficits from PBI, we developed a rat model of extreme preterm birth (<28 weeks of gestation) that mimics dual intrauterine injury from placental underperfusion and chorioamnionitis. We hypothesized that a sustained postnatal treatment regimen that combines the endogenous neuroreparative agents erythropoietin (EPO) and melatonin (MLT) would mitigate molecular, sensorimotor, and cognitive abnormalities in adults rats following prenatal injury. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague–Dawley rats. Uterine artery occlusion was performed for 60 min to induce placental insufficiency via transient systemic hypoxia-ischemia, followed by intra-amniotic injections of lipopolysaccharide, and laparotomy closure. On postnatal day 1 (P1), approximately equivalent to 30 weeks of gestation, injured rats were randomized to an extended EPO + MLT treatment regimen, or vehicle (sterile saline) from P1 to P10. Behavioral assays were performed along an extended developmental time course (n = 6–29). Open field testing shows injured rats exhibit hypermobility and disinhibition and that combined neonatal EPO + MLT treatment repairs disinhibition in injured rats, while EPO alone does not. Furthermore, EPO + MLT normalizes hindlimb deficits, including reduced paw area and paw pressure at peak stance, and elevated percent shared stance after prenatal injury. Injured rats had fewer social interactions than shams, and EPO + MLT normalized social drive. Touchscreen operant chamber testing of visual discrimination and reversal shows that EPO + MLT at least partially normalizes theses complex cognitive tasks. Together, these data indicate EPO + MLT can potentially repair multiple sensorimotor, cognitive, and behavioral realms following PBI, using highly translatable and sophisticated developmental testing platforms.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, United States.,Department of Neurosciences, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Akosua Y Oppong
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Fatu S Conteh
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Tracylyn R Yellowhair
- Department of Pediatrics, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joshua Kim
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Gabrielle Fink
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Adam R Wolin
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Frances J Northington
- Neonatology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
26
|
Affiliation(s)
- Shenandoah Robinson
- Division of Pediatric Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren L Jantzie
- Departments of Pediatrics and Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|