1
|
Susgun S, Yucesan E, Goncu B, Hasanoglu Sayin S, Kina UY, Ozgul C, Duzenli OF, Kocaturk O, Calik M, Ozbek U, Ugur Iseri SA. Two rare autosomal recessive neurological disorders identified by combined genetic approaches in a single consanguineous family with multiple offspring. Neurol Sci 2024; 45:2271-2277. [PMID: 38012464 DOI: 10.1007/s10072-023-07211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Neurodevelopmental disorders (NDDs) refer to a broad range of diseases including developmental delay, intellectual disability, epilepsy, autism spectrum disorders, and attention-deficit/hyperactivity disorder caused by dysfunctions in tightly controlled brain development. The genetic backgrounds of NDDs are quite heterogeneous; to date, recessive or dominant variations in numerous genes have been implicated. Herein, we present a large consanguineous family from Turkiye, who has been suffering from NDDs with two distinct clinical presentations. METHODS AND RESULTS Combined in-depth genetic approaches led us to identify a homozygous frameshift variant in NALCN related to NDD and expansion of dodecamer repeat in CSTB related to Unverricht-Lundborg disease (ULD). Additionally, we sought to functionally analyze the NALCN variant in terms of mRNA expression level and current alteration. We have both detected a decrease in the level of premature stop codon-bearing mRNA possibly through nonsense-mediated mRNA decay mechanism and also an increased current in patch-clamp recordings for the expressed truncated protein. CONCLUSION In conclusion, increased consanguinity may lead to the revealing of distinct rare neurogenetic diseases in a single family. Exome sequencing is generally considered the first-tier diagnostic test in individuals with NDD. Yet we underline the fact that customized approaches other than exome sequencing may be used as in the case of ULD to aid diagnosis and better genetic counseling.
Collapse
Affiliation(s)
- Seda Susgun
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakif Gureba Cad., 34093, Istanbul, Türkiye
- Graduate School of Health Sciences, Istanbul University, Istanbul, Türkiye
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye
| | - Emrah Yucesan
- Department of Neurogenetics, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Beyza Goncu
- Department of Medical Services and Techniques, Vocational School of Health Sciences, Bezmialem Vakif University, Istanbul, Türkiye
| | | | - Umit Yasar Kina
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Türkiye
| | - Cemil Ozgul
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Omer Faruk Duzenli
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakif Gureba Cad., 34093, Istanbul, Türkiye
- Graduate School of Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Ozcan Kocaturk
- Department of Neurology, Interventional Neurology, Balıkesir Atatürk City Hospital, Balıkesir, Türkiye
| | - Mustafa Calik
- Department of Pediatric Neurology, Faculty of Medicine, Harran University, Sanliurfa, Türkiye
| | - Ugur Ozbek
- IBG-Izmir Biomedicine and Genome Center, Izmir, Türkiye
| | - Sibel Aylin Ugur Iseri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakif Gureba Cad., 34093, Istanbul, Türkiye.
| |
Collapse
|
2
|
Zhang J, Liu H, Wang M, Xu Y, Zhu D, Yang F. Autosomal recessive intellectual disability caused by compound heterozygous variants of the EEF1D gene in a Chinese family. Mol Genet Genomic Med 2024; 12:e2333. [PMID: 38083972 PMCID: PMC10767685 DOI: 10.1002/mgg3.2333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Intellectual disability is a prevalent neurodevelopmental disorder, with the majority of affected children exhibiting global developmental delay before the age of 5 years. In recent years, certain children have been found to carry homozygous variations of the EEF1D gene, leading to autosomal recessive intellectual disability. However, the pathogenicity of compound heterozygous variations in this gene remains largely unknown. METHODS Trio whole-exome sequencing and copy number variation sequencing were done for the genetic etiological diagnosis of a 3-year and 11-month-old Chinese boy who presented with brachycephaly, severe to profound global developmental delay, and hypotonia in the lower limbs. RESULTS In this case, compound heterozygous variants of the EEF1D gene were found in the child through trio whole-exome sequencing; one was a splice variant (NM_032378.6:c.1905+1G>A) inherited from his father, and the other was a nonsense variant (NM_032378.6:c.676C>T) inherited from his mother. The nonsense variant leads to the production of a premature termination (p.Gln226*). These variations have the ability to explain the clinical phenotypes of the child. CONCLUSIONS Our study expands the variation spectrum and provides compelling evidence for EEF1D as a candidate gene for autosomal recessive intellectual disability. However, due to the deficient number of reported cases, researchers need to further study EEF1D and supplement the clinical phenotypes and treatment measures.
Collapse
Affiliation(s)
- Jiamei Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThird Affiliated Hospital and Institute of Neuroscience of Zhengzhou UniversityZhengzhouChina
| | - Hongxing Liu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThird Affiliated Hospital and Institute of Neuroscience of Zhengzhou UniversityZhengzhouChina
| | - Mingmei Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThird Affiliated Hospital and Institute of Neuroscience of Zhengzhou UniversityZhengzhouChina
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThird Affiliated Hospital and Institute of Neuroscience of Zhengzhou UniversityZhengzhouChina
- Commission Key Laboratory of Birth Defects PreventionHenan Key Laboratory of Population Defects PreventionZhengzhouChina
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThird Affiliated Hospital and Institute of Neuroscience of Zhengzhou UniversityZhengzhouChina
| | | |
Collapse
|
3
|
Bartolomaeus T, Hentschel J, Jamra RA, Popp B. Re-evaluation and re-analysis of 152 research exomes five years after the initial report reveals clinically relevant changes in 18. Eur J Hum Genet 2023; 31:1154-1164. [PMID: 37460657 PMCID: PMC10545662 DOI: 10.1038/s41431-023-01425-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
Iterative re-analysis of NGS results is not well investigated for published research cohorts of rare diseases. We revisited a cohort of 152 consanguineous families with developmental disorders (NDD) reported five years ago. We re-evaluated all reported variants according to diagnostic classification guidelines or our candidate gene scoring system (AutoCaSc) and systematically scored the validity of gene-disease associations (GDA). Sequencing data was re-processed using an up-to-date pipeline for case-level re-analysis. In 28/152 (18%) families, we identified a clinically relevant change. Ten previously reported (likely) pathogenic variants were re-classified as VUS/benign. In one case, the GDA (TSEN15) validity was judged as limited, and in five cases GDAs are meanwhile established. We identified 12 new disease causing variants. Two previously reported variants were missed by our updated pipeline due to alignment or reference issues. Our results support the need to re-evaluate screening studies, not only the negative cases but including supposedly solved ones. This also applies in a diagnostic setting. We highlight that the complexity of computational re-analysis for old data should be weighed against the decreasing re-testing costs. Since extensive re-analysis per case is beyond the resources of most institutions, we recommend a screening procedure that would quickly identify the majority (83%) of new variants.
Collapse
Affiliation(s)
- Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, 04103, Germany.
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, 04103, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Hessische Straße 4A, 10115, Berlin, Germany.
| |
Collapse
|
4
|
Averdunk L, Al-Thihli K, Surowy H, Lüdecke HJ, Drechsler M, Yigit G, Smorag L, Al Hallak B, Li Y, Altmüller J, Guthoff T, Wallot M, Nürnberg P, Wollnik B, Jamra RA, Al-Maawali A, Wieczorek D. Expanding the spectrum of EEF1D neurodevelopmental disorders: Biallelic variants in the guanine exchange domain. Clin Genet 2023; 103:484-491. [PMID: 36576126 DOI: 10.1111/cge.14290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Protein translation is an essential cellular process and dysfunctional protein translation causes various neurodevelopmental disorders. The eukaryotic translation elongation factor 1A (eEF1A) delivers aminoacyl-tRNA to the ribosome, while the eEF1B complex acts as a guanine exchange factor (GEF) of GTP for GDP indirectly catalyzing the release of eEF1A from the ribosome. The gene EEF1D encodes the eEF1Bδ subunit of the eEF1B complex. EEF1D is alternatively spliced giving rise to one long and three short isoforms. Two different homozygous, truncating variants in EEF1D had been associated with severe intellectual disability and microcephaly in two families. The published variants only affect the long isoform of EEF1D that acts as a transcription factor of heat shock element proteins. By exome sequencing, we identified two different homozygous variants in EEF1D in two families with severe developmental delay, severe microcephaly, spasticity, and failure to thrive with optic atrophy, poor feeding, and recurrent aspiration pneumonia. The EEF1D variants reported in this study are localized in the C-terminal GEF domain, suggesting that a disturbed protein translation machinery might contribute to the neurodevelopmental phenotype. Pathogenic variants localized in both the alternatively spliced domain or the GEF domain of EEF1D cause a severe neurodevelopmental disorder with microcephaly and spasticity.
Collapse
Affiliation(s)
- Luisa Averdunk
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Khalid Al-Thihli
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Harald Surowy
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Hermann-Josef Lüdecke
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Matthias Drechsler
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, University Medical Center Göttingen, Göttingen, Germany
| | - Lukasz Smorag
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | | | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany
- BIH/MDC Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tanja Guthoff
- Department of Ophthalmology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Wallot
- Department of Pediatrics, Bethanien Hospital, Moers, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Dagmar Wieczorek
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
5
|
Ma X, Li L, Li Z, Huang Z, Yang Y, Liu P, Guo D, Li Y, Wu T, Luo R, Xu J, Ye W, Jiang B, Shi L. eEF2 in the prefrontal cortex promotes excitatory synaptic transmission and social novelty behavior. EMBO Rep 2022; 23:e54543. [PMID: 35993189 PMCID: PMC9535807 DOI: 10.15252/embr.202154543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 08/24/2023] Open
Abstract
Regulation of mRNA translation is essential for brain development and function. Translation elongation factor eEF2 acts as a molecular hub orchestrating various synaptic signals to protein synthesis control and participates in hippocampus-dependent cognitive functions. However, whether eEF2 regulates other behaviors in different brain regions has been unknown. Here, we construct a line of Eef2 heterozygous (HET) mice, which show a reduction in eEF2 and protein synthesis mainly in excitatory neurons of the prefrontal cortex. The mice also show lower spine density, reduced excitability, and AMPAR-mediated synaptic transmission in pyramidal neurons of the medial prefrontal cortex (mPFC). While HET mice exhibit normal learning and memory, they show defective social behavior and elevated anxiety. Knockdown of Eef2 in excitatory neurons of the mPFC specifically is sufficient to impair social novelty preference. Either chemogenetic activation of excitatory neurons in the mPFC or mPFC local infusion of the AMPAR potentiator PF-4778574 corrects the social novelty deficit of HET mice. Collectively, we identify a novel role for eEF2 in promoting prefrontal AMPAR-mediated synaptic transmission underlying social novelty behavior.
Collapse
Affiliation(s)
- Xuanyue Ma
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Liuren Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ziming Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhengyi Huang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Yaorong Yang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Peng Liu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Daji Guo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Clinical Neuroscience InstituteThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yueyao Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Tianying Wu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ruixiang Luo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Junyu Xu
- Department of Neurobiology and Department of Rehabilitation of the Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Wen‐Cai Ye
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Lei Shi
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
6
|
Hiz Kurul S, Oktay Y, Töpf A, Szabó NZ, Güngör S, Yaramis A, Sonmezler E, Matalonga L, Yis U, Schon K, Paramonov I, Kalafatcilar İP, Gao F, Rieger A, Arslan N, Yilmaz E, Ekinci B, Edem PP, Aslan M, Özgör B, Lochmüller A, Nair A, O'Heir E, Lovgren AK, Maroofian R, Houlden H, Polavarapu K, Roos A, Müller JS, Hathazi D, Chinnery PF, Laurie S, Beltran S, Lochmüller H, Horvath R. High diagnostic rate of trio exome sequencing in consanguineous families with neurogenetic diseases. Brain 2022; 145:1507-1518. [PMID: 34791078 PMCID: PMC9128813 DOI: 10.1093/brain/awab395] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/02/2023] Open
Abstract
Consanguineous marriages have a prevalence rate of 24% in Turkey. These carry an increased risk of autosomal recessive genetic conditions, leading to severe disability or premature death, with a significant health and economic burden. A definitive molecular diagnosis could not be achieved in these children previously, as infrastructures and access to sophisticated diagnostic options were limited. We studied the cause of neurogenetic disease in 246 children from 190 consanguineous families recruited in three Turkish hospitals between 2016 and 2020. All patients underwent deep phenotyping and trio whole exome sequencing, and data were integrated in advanced international bioinformatics platforms. We detected causative variants in 119 known disease genes in 72% of families. Due to overlapping phenotypes 52% of the confirmed genetic diagnoses would have been missed on targeted diagnostic gene panels. Likely pathogenic variants in 27 novel genes in 14% of the families increased the diagnostic yield to 86%. Eighty-two per cent of causative variants (141/172) were homozygous, 11 of which were detected in genes previously only associated with autosomal dominant inheritance. Eight families carried two pathogenic variants in different disease genes. De novo (9.3%), X-linked recessive (5.2%) and compound heterozygous (3.5%) variants were less frequent compared to non-consanguineous populations. This cohort provided a unique opportunity to better understand the genetic characteristics of neurogenetic diseases in a consanguineous population. Contrary to what may be expected, causative variants were often not on the longest run of homozygosity and the diagnostic yield was lower in families with the highest degree of consanguinity, due to the high number of homozygous variants in these patients. Pathway analysis highlighted that protein synthesis/degradation defects and metabolic diseases are the most common pathways underlying paediatric neurogenetic disease. In our cohort 164 families (86%) received a diagnosis, enabling prevention of transmission and targeted treatments in 24 patients (10%). We generated an important body of genomic data with lasting impacts on the health and wellbeing of consanguineous families and economic benefit for the healthcare system in Turkey and elsewhere. We demonstrate that an untargeted next generation sequencing approach is far superior to a more targeted gene panel approach, and can be performed without specialized bioinformatics knowledge by clinicians using established pipelines in populations with high rates of consanguinity.
Collapse
Affiliation(s)
- Semra Hiz Kurul
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Medical Biology, School of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Nóra Zs Szabó
- Epilepsy-Neurology Polyclinic of Buda Children's Hospital, New Saint John's Hospital and Northern -Buda United Hospitals, Budapest 1023, Hungary
| | - Serdal Güngör
- Department of Paediatric Neurology, Faculty of Medicine, Turgut Ozal Research Center, Inonu University, Malatya 44210, Turkey
| | - Ahmet Yaramis
- Pediatric Neurology Clinic, Diyarbakir 21070, Turkey
| | - Ece Sonmezler
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Uluc Yis
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Katherine Schon
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Ida Paramonov
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - İpek Polat Kalafatcilar
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Fei Gao
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Aliz Rieger
- Rehabilitation Centre for the Physically Handicapped, Budapest 1528, Hungary
| | - Nur Arslan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Department of Paediatric Nutrition and Metabolism, School of Medicine, Dokuz Eylul University, Izmir 1528, Turkey
| | - Elmasnur Yilmaz
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Burcu Ekinci
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Pinar Pulat Edem
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Mahmut Aslan
- Department of Paediatric Neurology, Faculty of Medicine, Turgut Ozal Research Center, Inonu University, Malatya 44210, Turkey
| | - Bilge Özgör
- Department of Paediatric Neurology, Faculty of Medicine, Turgut Ozal Research Center, Inonu University, Malatya 44210, Turkey
| | - Angela Lochmüller
- GKT School of Medical Education, King's College London, London SE1 1UL, UK
| | - Ashwati Nair
- GKT School of Medical Education, King's College London, London SE1 1UL, UK
| | - Emily O'Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA SE1 1UL, USA
| | - Alysia K Lovgren
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA SE1 1UL, USA
| | | | - Reza Maroofian
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, University College London, London WC1N 3BG, UK
| | - Henry Houlden
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, University College London, London WC1N 3BG, UK
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa ON K1H 8L1, Canada
| | - Andreas Roos
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa ON K1H 8L1, Canada
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V., Dortmund 44227, Germany
- Department of Pediatric Neurology, University of Duisburg-Essen, Essen 45141, Germany
| | - Juliane S Müller
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0PY, UK
| | - Denisa Hathazi
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0PY, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Steven Laurie
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Hanns Lochmüller
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa ON K1H 8L1, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa ON K1Y 4E9, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0PY, UK
| |
Collapse
|
7
|
Susgun S, Kasan K, Yucesan E. Gene Hunting Approaches through the Combination of Linkage Analysis with Whole-Exome Sequencing in Mendelian Diseases: From Darwin to the Present Day. Public Health Genomics 2022; 24:207-217. [PMID: 34237751 DOI: 10.1159/000517102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the context of medical genetics, gene hunting is the process of identifying and functionally characterizing genes or genetic variations that contribute to disease phenotypes. In this review, we would like to summarize gene hunting process in terms of historical aspects from Darwin to now. For this purpose, different approaches and recent developments will be detailed. SUMMARY Linkage analysis and association studies are the most common methods in use for explaining the genetic background of hereditary diseases and disorders. Although linkage analysis is a relatively old approach, it is still a powerful method to detect disease-causing rare variants using family-based data, particularly for consanguineous marriages. As is known that, consanguineous marriages or endogamy poses a social problem in developing countries, however, this same condition also provides a unique opportunity for scientists to identify and characterize pathogenic variants. The rapid advancements in sequencing technologies and their parallel implementation together with linkage analyses now allow us to identify the candidate variants related to diseases in a relatively short time. Furthermore, we can now go one step further and functionally characterize the causative variant through in vitro and in vivo studies and unveil the variant-phenotype relationships on a molecular level more robustly. Key Messages: Herein, we suggest that the combined analysis of linkage and exome analysis is a powerful and precise tool to diagnose clinically rare and recessively inherited conditions.
Collapse
Affiliation(s)
- Seda Susgun
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey.,Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Koray Kasan
- Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Emrah Yucesan
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
8
|
Xu H, Yu S, Peng K, Gao L, Chen S, Shen Z, Han Z, Chen M, Lin J, Chen S, Kang M. The role of EEF1D in disease pathogenesis: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1600. [PMID: 34790806 PMCID: PMC8576685 DOI: 10.21037/atm-21-5025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022]
Abstract
Objective The purpose of this paper was to investigate the role and mechanism of EEF1D in various diseases, especially in tumorigenesis and development, and explore the possibility of EEF1D as a biological target. Background EEF1D is a part of the EEF1 protein complex, which can produce four protein isoforms, of which three short isoforms are used as translation elongation factors. The three short isoforms play a role in anti-aging, regulating the cell cycle, and promoting the occurrence and development of malignant tumors, and the only long-form isoform plays a role in the development of the nervous system. Methods We searched the PubMed and Web of Science databases for literature up to January 2021 using relevant keywords, including “EEF1D”, “eukaryotic translation elongation factor 1 delta”, “translation elongation factor”, “translation elongation factor and cancer”, and “translation elongation factor and nervous system disease”. We then created an overview of the literature and summarized the results of the paper. Conclusions Through the review of relevant articles, we found that EEF1D is obviously overexpressed in a variety of tumors, and can regulate the proliferation of tumor cells and tumor growth, as well as play a role in tumor invasion. EEF1D is likely to become a new biological target for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kaiming Peng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingduan Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Science, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Kaitsuka T, Tomizawa K, Matsushita M. Heat Shock-Induced Dephosphorylation of Eukaryotic Elongation Factor 1BδL by Protein Phosphatase 1. Front Mol Biosci 2021; 7:598578. [PMID: 33521052 PMCID: PMC7841112 DOI: 10.3389/fmolb.2020.598578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022] Open
Abstract
Several variant proteins are produced from EEF1D, including two representative proteins produced via alternative splicing machinery. One protein is the canonical translation eukaryotic elongation factor eEF1Bδ1, and the other is the heat shock-responsive transcription factor eEF1BδL. eEF1Bδ1 is phosphorylated by cyclin-dependent kinase 1 (CDK1), but the machinery controlling eEF1BδL phosphorylation and dephosphorylation has not been clarified. In this study, we found that both proteins were dephosphorylated under heat shock and proteotoxic stress, and this dephosphorylation was inhibited by okadaic acid. Using proteins with mutations at putative phosphorylated residues, we revealed that eEF1Bδ1 and eEF1BδL are phosphorylated at S133 and S499, respectively, and these residues are both CDK1 phosphorylation sites. The eEF1BδL S499A mutant more strongly activated HSPA6 promoter-driven reporter than the wild-type protein and S499D mutant. Furthermore, protein phosphatase 1 (PP1) was co-immunoprecipitated with eEF1Bδ1 and eEF1BδL, and PP1 dephosphorylated both proteins in vitro. Thus, this study clarified the role of phosphorylation/dephosphorylation in the functional regulation of eEF1BδL during heat shock.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,School of Pharmacy in Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
10
|
Binaafar S, Razmara E, Mahdieh N, Sahebjame H, Tavasoli AR, Garshasbi M. A novel missense variant in GPT2 causes non-syndromic autosomal recessive intellectual disability in a consanguineous Iranian family. Eur J Med Genet 2020; 63:103853. [PMID: 31978613 DOI: 10.1016/j.ejmg.2020.103853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/15/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
Abstract
Intellectual disability (ID) affects 1-3% of the general population worldwide. Genetic factors play an undeniable role in the etiology of Non-Syndromic Intellectual disability (NS-ID). Nowadays, whole-exome sequencing (WES) technique is used frequently to identify the causative genes in such heterogeneous diseases. Herein, we subjected four patients with initial diagnostics of NS-ID in a consanguineous Iranian family. To find the possible genetic cause(s), Trio-WES was performed on the proband and his both healthy parents. Sanger sequencing was performed to confirm the identified variant by WES and also investigate whether it co-segregates with the patients' phenotype in the family. Using several online in-silico predictors, the probable impacts of the variant on structure and function of GPT2 protein were predicted. A novel variant, c.266A>G; p.(Glu89Gly), in exon 3 of GPT2 (NM_133443.3) was identified using Trio-WES. The candidate variant was also verified by Sanger sequencing. All affected members showed the common clinical features suffering from a non-progressive mild-to-severe ID. Also, different clinical observations compared to previously reported cases such as no facial features, no obvious structural malformations, ability to speak but with difficulty, and lack of any morphological defects were noted for the first time in this family. The c.266A>G; p.(Glu89Gly) variant reported here is the sixth variant identified up to now in the GPT2 gene, to be associated with NS-ID. Our data support the potential malfunction of the substituted GPT2 protein resulted from the novel variant, however, we strongly suggest confirming this finding more by doing functional analysis.
Collapse
Affiliation(s)
- Sima Binaafar
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sahebjame
- Department of Biology, Faculty of Basic Science, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|