1
|
Kawashima A, Kodama K, Okubo Y, Endo W, Inui T, Ikeda M, Katata Y, Togashi N, Ohba C, Imagawa E, Iwama K, Mizuguchi T, Kitami M, Aihara Y, Takayama J, Tamiya G, Kikuchi A, Kure S, Saitsu H, Matsumoto N, Haginoya K. Long-term clinical observation of patients with heterozygous KIF1A variants. Am J Med Genet A 2024; 194:e63656. [PMID: 38760879 DOI: 10.1002/ajmg.a.63656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024]
Abstract
KIF1A-related disorders (KRDs) encompass recessive and dominant variants with wide clinical variability. Recent genetic investigations have expanded the clinical phenotypes of heterozygous KIF1A variants. However, there have been a few long-term observational studies of patients with heterozygous KIF1A variants. A retrospective chart review of consecutive patients diagnosed with spastic paraplegia at Miyagi Children's Hospital from 2016 to 2020 identified six patients with heterozygous KIF1A variants. To understand the long-term changes in clinical symptoms, we examined these patients in terms of their characteristics, clinical symptoms, results of electrophysiological and neuroimaging studies, and genetic testing. The median follow-up period was 30 years (4-44 years). This long-term observational study showed that early developmental delay and equinus gait, or unsteady gait, are the first signs of disease onset, appearing with the commencement of independent walking. In addition, later age-related progression was observed in spastic paraplegia, and the appearance of axonal neuropathy and reduced visual acuity were characteristic features of the late disease phenotype. Brain imaging showed age-related progression of cerebellar atrophy and the appearance of hyperintensity of optic radiation on T2WI and FLAIR imaging. Long-term follow-up revealed a pattern of steady progression and a variety of clinical symptoms, including spastic paraplegia, peripheral neuropathy, reduced visual acuity, and some degree of cerebellar ataxia. Clinical variability between patients was observed to some extent, and therefore, further studies are required to determine the phenotype-genotype correlation.
Collapse
Affiliation(s)
- Aritomo Kawashima
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Kaori Kodama
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Miki Ikeda
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Yu Katata
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Chihiro Ohba
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masahiro Kitami
- Department of Radiology, Miyagi Children's Hospital, Sendai, Japan
| | - Yu Aihara
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Jun Takayama
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gen Tamiya
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| |
Collapse
|
2
|
Fasaludeen A, McTague A, Jose M, Banerjee M, Sundaram S, Madhusoodanan UK, Radhakrishnan A, Menon RN. Genetic variant interpretation for the neurologist - A pragmatic approach in the next-generation sequencing era in childhood epilepsy. Epilepsy Res 2024; 201:107341. [PMID: 38447235 DOI: 10.1016/j.eplepsyres.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Genetic advances over the past decade have enhanced our understanding of the genetic landscape of childhood epilepsy. However a major challenge for clinicians ha been understanding the rationale and systematic approach towards interpretation of the clinical significance of variant(s) detected in their patients. As the clinical paradigm evolves from gene panels to whole exome or whole genome testing including rapid genome sequencing, the number of patients tested and variants identified per patient will only increase. Each step in the process of variant interpretation has limitations and there is no single criterion which enables the clinician to draw reliable conclusions on a causal relationship between the variant and disease without robust clinical phenotyping. Although many automated online analysis software tools are available, these carry a risk of misinterpretation. This guideline provides a pragmatic, real-world approach to variant interpretation for the child neurologist. The focus will be on ascertaining aspects such as variant frequency, subtype, inheritance pattern, structural and functional consequence with regard to genotype-phenotype correlations, while refraining from mere interpretation of the classification provided in a genetic test report. It will not replace the expert advice of colleagues in clinical genetics, however as genomic investigations become a first-line test for epilepsy, it is vital that neurologists and epileptologists are equipped to navigate this landscape.
Collapse
Affiliation(s)
- Alfiya Fasaludeen
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Manna Jose
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Soumya Sundaram
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - U K Madhusoodanan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Ashalatha Radhakrishnan
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Ramshekhar N Menon
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
3
|
Burgis NE, VanWormer K, Robbins D, Smith J. An ITPA Enzyme with Improved Substrate Selectivity. Protein J 2024; 43:62-71. [PMID: 38066288 PMCID: PMC10901923 DOI: 10.1007/s10930-023-10162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 02/29/2024]
Abstract
Recent clinical data have identified infant patients with lethal ITPA deficiencies. ITPA is known to modulate ITP concentrations in cells and has a critical function in neural development which is not understood. Polymorphism of the ITPA gene affects outcomes for both ribavirin and thiopurine based therapies and nearly one third of the human population is thought to harbor ITPA polymorphism. In a previous site-directed mutagenesis alanine screen of the ITPA substrate selectivity pocket, we identified the ITPA mutant, E22A, as a gain-of function mutant with enhanced ITP hydrolysis activity. Here we report a rational enzyme engineering experiment to investigate the biochemical properties of position 22 ITPA mutants and find that the E22D ITPA has two- and four-fold improved substrate selectivity for ITP over the canonical purine triphosphates ATP and GTP, respectively, while maintaining biological activity. The novel E22D ITPA should be considered as a platform for further development of ITPA therapies.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA.
| | - Kandise VanWormer
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| | - Devin Robbins
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| | - Jonathan Smith
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| |
Collapse
|
4
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
5
|
Burgis NE, April C, VanWormer K. Arginine-178 is an essential residue for ITPA function. Arch Biochem Biophys 2023; 744:109700. [PMID: 37506994 PMCID: PMC10530447 DOI: 10.1016/j.abb.2023.109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
The inosine triphosphate pyrophosphatase (ITPA) enzyme plays a critical cellular role by removing noncanonical nucleoside triphosphates from nucleotide pools. One of the first pathological ITPA mutants identified is R178C (rs746930990), which causes a fatal infantile encephalopathy, termed developmental and epileptic encephalopathy 35 (DEE 35). The accumulation of noncanonical nucleotides such as inosine triphosphate (ITP), is suspected to affect RNA and/or interfere with normal nucleotide function, leading to development of DEE 35. Molecular dynamics simulations have shown that the very rare R178C mutation does not significantly perturb the overall structure of the protein, but results in a high level of structural flexibility and disrupts active-site hydrogen bond networks, while preliminary biochemical data indicate that ITP hydrolyzing activity is significantly reduced for the R178C mutant. Here we report Michaelis-Menten enzyme kinetics data for the R178C ITPA mutant and three other position 178 ITPA mutants. These data confirm that position 178 is essential for ITPA activity and even conservative mutation at this site (R178K) results in significantly reduced enzyme activity. Our data support that disruption of the active-site hydrogen bond network is a major cause of diminished ITP hydrolyzing activity for the R178C mutation. These results suggest an avenue for developing therapies to address DEE 35.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA.
| | - Caitlin April
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| | - Kandise VanWormer
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, WA, 99004, USA
| |
Collapse
|
6
|
Guo HL, Zhao YT, Wang WJ, Dong N, Hu YH, Zhang YY, Chen F, Zhou L, Li T. Optimizing thiopurine therapy in children with acute lymphoblastic leukemia: A promising “MINT” sequencing strategy and therapeutic “DNA-TG” monitoring. Front Pharmacol 2022; 13:941182. [PMID: 36238550 PMCID: PMC9552076 DOI: 10.3389/fphar.2022.941182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Thiopurines, including thioguanine (TG), 6-mercaptopurine (6-MP), and azathioprine (AZA), are extensively used in clinical practice in children with acute lymphoblastic leukemia (ALL) and inflammatory bowel diseases. However, the common adverse effects caused by myelosuppression and hepatotoxicity limit their application. Metabolizing enzymes such as thiopurine S-methyltransferase (TPMT), nudix hydrolase 15 (NUDT15), inosine triphosphate pyrophosphohydrolase (ITPA), and drug transporters like multidrug resistance-associated protein 4 (MRP4) have been reported to mediate the metabolism and transportation of thiopurine drugs. Hence, the single nucleotide polymorphisms (SNPs) in those genes could theoretically affect the pharmacokinetics and pharmacological effects of these drugs, and might also become one of the determinants of clinical efficacy and adverse effects. Moreover, long-term clinical practices have confirmed that thiopurine-related adverse reactions are associated with the systemic concentrations of their active metabolites. In this review, we mainly summarized the pharmacogenetic studies of thiopurine drugs. We also evaluated the therapeutic drug monitoring (TDM) research studies and focused on those active metabolites, hoping to continuously improve monitoring strategies for thiopurine therapy to maximize therapeutic efficacy and minimize the adverse effects or toxicity. We proposed that tailoring thiopurine dosing based on MRP4, ITPA, NUDT15, and TMPT genotypes, defined as “MINT” panel sequencing strategy, might contribute toward improving the efficacy and safety of thiopurines. Moreover, the DNA-incorporated thioguanine nucleotide (DNA-TG) metabolite level was more suitable for red cell 6-thioguanine nucleotide (6-TGNs) monitoring, which can better predict the efficacy and safety of thiopurines. Integrating the panel “MINT” sequencing strategy with therapeutic “DNA-TG” monitoring would offer a new insight into the precision thiopurine therapy for pediatric acute lymphoblastic leukemia patients.
Collapse
Affiliation(s)
- Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue-Tao Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Visiting Graduate Student from School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, China
| | - Wei-Jun Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Visiting Graduate Student from School of Basic Medicine and Clinical Pharmacy, Pharmaceutical University, Nanjing, China
| | - Na Dong
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
- School of Institute of Pharmaceutical Science, Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Chen, ; Li Zhou, ; Tao Li,
| | - Li Zhou
- Hematology and Oncology Department, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Chen, ; Li Zhou, ; Tao Li,
| | - Tao Li
- Department of Solid Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Feng Chen, ; Li Zhou, ; Tao Li,
| |
Collapse
|
7
|
Sharma Y, Saini AG, Kaur R, Bhatia V, Didwal G, Kumar P, Uppala R. Neurodegeneration and Early Infantile Epilepsy Associated with ITPA Variants: A Case Series and Review of Literature. Neuropediatrics 2022; 53:167-175. [PMID: 35098521 DOI: 10.1055/s-0042-1742322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency associated with mutations in the ITPA gene is a recently characterized purine pathway defect that presents with early infantile epileptic encephalopathy and lethal course. This disorder is rare, and only 12 cases are reported worldwide. METHODS We report two additional cases of ITPA-associated neurodegeneration and two pathogenic compound heterozygous variants. We also reviewed the previously published cases of ITPA-associated encephalopathy. RESULTS Both cases presented with progressive infantile-onset encephalopathy, severe developmental delay, microcephaly, facial dysmorphism, and epilepsy. Together with the presented two cases, 14 cases were available for analysis. The mean age of presentation was 16.7 ± 12.4 months (range 3-48 m). The most common clinical features at presentation were developmental delay, seizures, microcephaly, and hypotonia, seen in all 14 (100%) patients. The mean age of seizure onset was 4.75 months (range 2-14 m). Cardiomyopathy was noted in 42% of patients where it was explicitly evaluated (n = 5/12). Consanguinity was reported in 77% of the cases. The cardinal neuroradiological features are T2-signal abnormalities and diffusion restriction in the long tracts, especially the posterior limb of the internal capsule and the optic radiation. The majority of the patients died before 4 years of age (85.7%). CONCLUSION ITPA-related encephalopathy presents with infantile-onset neurodegeneration, progressive microcephaly, and epilepsy. Progressive brain atrophy and diffusion restriction in the white matter tracts are important radiological clues.
Collapse
Affiliation(s)
- Yashu Sharma
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arushi Gahlot Saini
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajdeep Kaur
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikas Bhatia
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Gunjan Didwal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pawan Kumar
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Revathi Uppala
- Genetics Division, Sandor Specialty Diagnostic Pvt Ltd, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Garg M, Goraya J, Kochar G, Jain V. ITPA-associated developmental and epileptic encephalopathy: characteristic neuroradiological features with novel clinical and biochemical findings. Epileptic Disord 2022; 24:583-588. [PMID: 35770779 DOI: 10.1684/epd.2022.1424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) in children have an everexpanding range of rare causes. Mutations in ITPA have been recently described as causative of DEE, but only a small number of patients have been reported so far. We describe two Indian children with novel variants in the ITPA gene. Both patients had characteristic, previously described, neuroradiological findings that helped us suspect this condition even before genetic evaluation. In addition, we present new and rarely reported clinical findings associated with this condition: migrating partial epilepsy, fever-triggered seizures, movement disorder including oculogyria and dystonic tremor. One of the patients also had high cerebrospinal fluid glycine levels. Both patients had drug-responsive epilepsy, in contrast to drug-resistant seizures in previously reported patients. These patients reiterate the utility of awareness of specific neuroradiological findings and subsequent genetic evaluation to help make a precise diagnosis. Our report also extends the clinical spectrum and provides insight into possible biochemical causes for the neuroimaging findings seen in this condition.
Collapse
|
9
|
Scala M, Wortmann SB, Kaya N, Stellingwerff MD, Pistorio A, Glamuzina E, van Karnebeek CD, Skrypnyk C, Iwanicka‐Pronicka K, Piekutowska‐Abramczuk D, Ciara E, Tort F, Sheidley B, Poduri A, Jayakar P, Jayakar A, Upadia J, Walano N, Haack TB, Prokisch H, Aldhalaan H, Karimiani EG, Yildiz Y, Ceylan AC, Santiago‐Sim T, Dameron A, Yang H, Toosi MB, Ashrafzadeh F, Akhondian J, Imannezhad S, Mirzadeh HS, Maqbool S, Farid A, Al‐Muhaizea MA, Alshwameen MO, Aldowsari L, Alsagob M, Alyousef A, AlMass R, AlHargan A, Alwadei AH, AlRasheed MM, Colak D, Alqudairy H, Khan S, Lines MA, García Cazorla MÁ, Ribes A, Morava E, Bibi F, Haider S, Ferla MP, Taylor JC, Alsaif HS, Firdous A, Hashem M, Shashkin C, Koneev K, Kaiyrzhanov R, Efthymiou S, Genomics QS, Schmitt‐Mechelke T, Ziegler A, Issa MY, Elbendary HM, Striano P, Alkuraya FS, Zaki MS, Gleeson JG, Barakat TS, Bierau J, van der Knaap MS, Maroofian R, Houlden H. Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency. Hum Mutat 2022; 43:403-419. [PMID: 34989426 PMCID: PMC9152572 DOI: 10.1002/humu.24326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan-Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Saskia B. Wortmann
- Amalia Children's HospitalRadboud University NijmegenNijmegenThe Netherlands
- University Children's HospitalParacelsus Medical UniversitySalzburgAustria
| | - Namik Kaya
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Menno D. Stellingwerff
- Department of Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Angela Pistorio
- Clinical Epidemiology and Biostatistics UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic ServiceStarship Children's HospitalAucklandNew Zealand
| | - Clara D. van Karnebeek
- Departments of Pediatrics and Clinical GeneticsAcademic Medical CentreAmsterdamThe Netherlands
| | - Cristina Skrypnyk
- Department of Molecular Medicine, Al‐Jawhara Centre for Molecular MedicineArabian Gulf UniversityManamaKingdom of Bahrain
| | - Katarzyna Iwanicka‐Pronicka
- Department of Medical GeneticsThe Children's Memorial Health InstituteWarsawPoland
- Department of Audiology and PhoniatricsThe Children's Memorial Health InstituteWarsawPoland
| | | | - Elżbieta Ciara
- Department of Medical GeneticsThe Children's Memorial Health InstituteWarsawPoland
| | - Frederic Tort
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica iGenètica MolecularHospital Clínic, IDIBAPS, CIBERERBarcelonaSpain
| | - Beth Sheidley
- Department of NeurologyF.M. Kirby Neurobiology Center, Boston Children's HospitalBostonMassachusettesUSA
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics ProgramBoston Children's HospitalBostonMassachusettesUSA
| | - Annapurna Poduri
- Department of NeurologyF.M. Kirby Neurobiology Center, Boston Children's HospitalBostonMassachusettesUSA
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics ProgramBoston Children's HospitalBostonMassachusettesUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettesUSA
| | | | | | - Jariya Upadia
- Tulane University School of MedicineNew OrleansLouisianaUSA
| | | | - Tobias B. Haack
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Holger Prokisch
- Institute of Human GeneticsTechnische Universität MünchenMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Hesham Aldhalaan
- Department of NeurosciencesKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Ehsan G. Karimiani
- Department of Medical GeneticsNext Generation Genetic PolyclinicMashhadIran
- Molecular and Clinical Sciences InstituteSt. George's University of London, Cranmer TerraceLondonUK
- Innovative Medical Research CenterIslamic Azad University, Mashhad BranchMashhadIran
| | - Yilmaz Yildiz
- Pediatric Metabolic Diseases ClinicDr. Sami Ulus Training and Research Hospital for Maternity and ChildrenAnkaraTurkey
| | - Ahmet C. Ceylan
- Department of Medical GeneticsAnkara City HospitalAnkaraTurkey
| | | | | | | | - Mehran B. Toosi
- Pediatric Neurology Department, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
| | - Farah Ashrafzadeh
- Department of PediatricsMashhad University of Medical SciencesMashhadIran
| | - Javad Akhondian
- Pediatric Neurology Department, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
| | - Shima Imannezhad
- Department of Pediatric DiseasesMashhad University of Medical SciencesMashhadIran
| | - Hanieh S. Mirzadeh
- Department of Pediatric DiseasesMashhad University of Medical SciencesMashhadIran
| | - Shazia Maqbool
- Development and Behavioral Pediatrics DepartmentInstitute of Child Health and The Children HospitalLahorePakistan
| | - Aisha Farid
- Development and Behavioral Pediatrics DepartmentInstitute of Child Health and The Children HospitalLahorePakistan
| | - Mohamed A. Al‐Muhaizea
- Department of NeurosciencesKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Meznah O. Alshwameen
- Department of NeurosciencesKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Lama Aldowsari
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Maysoon Alsagob
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Ashwaq Alyousef
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Rawan AlMass
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Aljouhra AlHargan
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Ali H. Alwadei
- Neurosciences DepartmentKing Fahad Medical CityRiyadhSaudi Arabia
| | - Maha M. AlRasheed
- Department of Clinical PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific ComputingKFSHRCRiyadhKingdom of Saudi Arabia
| | - Hanan Alqudairy
- Department of GeneticsKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Sameena Khan
- Department of NeurosciencesKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Matthew A. Lines
- Medical Genetics, Department of PediatricsAlberta Children's HospitalCalgaryCanada
| | | | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme‐IBC, Servei de Bioquímica iGenètica MolecularHospital Clínic, IDIBAPS, CIBERERBarcelonaSpain
| | - Eva Morava
- Department of Clinical Genomics, Laboratory of Medicine and PathologyCenter for Individualized Medicine, Mayo ClinicRochesterMinnesotaUSA
| | - Farah Bibi
- Institute of Biochemistry and BiotechnologyPir Mehar Ali Shah Arid Agriculture UniversityRawalpindiPakistan
| | - Shahzad Haider
- Izzat Ali Shah HospitalLalarukh Wah CanttRawalpindiPakistan
| | - Matteo P. Ferla
- NIHR Oxford BRC Genomic Medicine, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Jenny C. Taylor
- NIHR Oxford BRC Genomic Medicine, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Hessa S. Alsaif
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Abdulwahab Firdous
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Chingiz Shashkin
- International University of Postgraduate EducationAlmatyKazakhstan
| | - Kairgali Koneev
- Department of Neurology and NeurosurgeryAsfendiyarov Kazakh National Medical UniversityAlmatyKazakhstan
| | - Rauan Kaiyrzhanov
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | | | | | - Andreas Ziegler
- Zentrum für Kinder und Jugendmedizin Heidelberg, Sektion Neuropädiatrie und StoffwechselmedizinUniversitätsklinikum HeidelbergHeidelbergGermany
| | - Mahmoud Y. Issa
- Clinical Genetics Department, Human Genetics and Genome Research DivisionNational Research CentreCairoEgypt
| | - Hasnaa M. Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research DivisionNational Research CentreCairoEgypt
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversità Degli Studi di GenovaGenoaItaly
- Pediatric Neurology and Muscular Diseases UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomics MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
- Department of Anatomy and Cell BiologyAlfaisal UniversityRiyadhSaudi Arabia
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research DivisionNational Research CentreCairoEgypt
| | - Joseph G. Gleeson
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical InstituteUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands
| | - Jorgen Bierau
- Laboratory of Biochemical Genetics, Department of Clinical GeneticsMaastricht University HospitalMaastrichtThe Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Reza Maroofian
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Henry Houlden
- UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
10
|
Çavuşoğlu D, Kulali M, Dündar N, Gokaslan C, Aydin K. ITPA related developmental encephalopathy: Key role of neuroimaging. Ann Indian Acad Neurol 2022; 25:133-134. [PMID: 35342253 PMCID: PMC8954321 DOI: 10.4103/aian.aian_999_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/18/2021] [Indexed: 11/13/2022] Open
|
11
|
Itai T, Miyatake S, Hatano T, Hattori N, Ohno A, Aoki Y, Itomi K, Mori H, Saitsu H, Matsumoto N. Cerebrovascular diseases in two patients with entire NSD1 deletion. Hum Genome Var 2021; 8:20. [PMID: 34031356 PMCID: PMC8144564 DOI: 10.1038/s41439-021-00151-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
We describe two patients with NSD1 deletion, who presented with early-onset, or recurrent cerebrovascular diseases (CVDs). A 39-year-old female showed developmental delay and abnormal gait in infancy, and developed slowly-progressive intellectual disability and movement disorders. Brain imaging suggested recurrent parenchymal hemorrhages. A 6-year-old male had tremor as a neonate and brain imaging revealed subdural hematoma and brain contusion. This report suggests possible involvement of CVDs associated with NSD1 deletion.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Department of human genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Satoko Miyatake
- Department of human genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University, Bunkyo-Ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University, Bunkyo-Ku, Tokyo, Japan
| | - Atsuko Ohno
- Department of Pediatric Neurology, Toyota Municipal Child Development Center, Toyota, Aichi, Japan
| | - Yusuke Aoki
- Division of Neurology, Aichi Children's Health and Medical Center, Obu, Aichi, Japan
| | - Kazuya Itomi
- Division of Neurology, Aichi Children's Health and Medical Center, Obu, Aichi, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Naomichi Matsumoto
- Department of human genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
12
|
Akaba Y, Takahashi S, Takeguchi R, Tanaka R, Nabatame S, Saitsu H, Matsumoto N. Phenotypic overlap between pyruvate dehydrogenase complex deficiency and FOXG1 syndrome. Clin Case Rep 2021; 9:1711-1715. [PMID: 33768920 PMCID: PMC7981633 DOI: 10.1002/ccr3.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 11/12/2022] Open
Abstract
Pyruvate dehydrogenase complex (PDHC) deficiency is a mitochondrial disorder. We report two cases of PDHC deficiency with clinical symptoms and brain imaging findings reminiscent of FOXG1 syndrome, suggesting a phenotypic overlap of these disorders.
Collapse
Affiliation(s)
- Yuichi Akaba
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Satoru Takahashi
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Ryo Takeguchi
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Ryosuke Tanaka
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Shin Nabatame
- Department of PediatricsGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Hirotomo Saitsu
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsGraduate School of MedicineYokohama City UniversityYokohamaJapan
| |
Collapse
|
13
|
Ohori S, Tsuburaya RS, Kinoshita M, Miyagi E, Mizuguchi T, Mitsuhashi S, Frith MC, Matsumoto N. Long-read whole-genome sequencing identified a partial MBD5 deletion in an exome-negative patient with neurodevelopmental disorder. J Hum Genet 2021; 66:697-705. [PMID: 33510365 DOI: 10.1038/s10038-020-00893-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Whole-exome sequencing (WES) can detect not only single-nucleotide variants in causal genes, but also pathogenic copy-number variations using several methods. However, there may be overlooked pathogenic variations in the out of target genome regions of WES analysis (e.g., promoters), leaving many patients undiagnosed. Whole-genome sequencing (WGS) can potentially analyze such regions. We applied long-read nanopore WGS and our recently developed analysis pipeline "dnarrange" to a patient who was undiagnosed by trio-based WES analysis, and identified a heterozygous 97-kb deletion partially involving 5'-untranslated exons of MBD5, which was outside the WES target regions. The phenotype of the patient, a 32-year-old male, was consistent with haploinsufficiency of MBD5. The transcript level of MBD5 in the patient's lymphoblastoid cells was reduced. We therefore concluded that the partial MBD5 deletion is the culprit for this patient. Furthermore, we found other rare structural variations (SVs) in this patient, i.e., a large inversion and a retrotransposon insertion, which were not seen in 33 controls. Although we considered that they are benign SVs, this finding suggests that our pipeline using long-read WGS is useful for investigating various types of potentially pathogenic SVs. In conclusion, we identified a 97-kb deletion, which causes haploinsufficiency of MBD5 in a patient with neurodevelopmental disorder, demonstrating that long-read WGS is a powerful technique to discover pathogenic SVs.
Collapse
Affiliation(s)
- Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Rie S Tsuburaya
- Department of Pediatric Neurology, National Hospital Organization Utano National Hospital, 8 Ondoyamacho, Ukyo-ku, Kyoto, 616-8255, Japan
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, 8 Ondoyamacho, Ukyo-ku, Kyoto, 616-8255, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-city, Chiba, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Shinjuku-ku, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
14
|
Sugawara Y, Mizuno T, Moriyama K, Ishiwata H, Kato M, Nakashima M, Mizuguchi T, Matsumoto N. Cerebrospinal fluid abnormalities in developmental and epileptic encephalopathy with a de novo CDK19 variant. Neurol Genet 2020; 6:e527. [PMID: 33134521 PMCID: PMC7577532 DOI: 10.1212/nxg.0000000000000527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Yuji Sugawara
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Tomoko Mizuno
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Kengo Moriyama
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Hisako Ishiwata
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Mitsuko Nakashima
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Takeshi Mizuguchi
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| | - Naomichi Matsumoto
- Department of Pediatrics (Y.S., T. Mizuno, K.M.), Tokyo Medical and Dental University, Yushima, Bunkyo-ku; Home Care Clinic for Children Aozora Sumida (H.I.), Higashikomagata, Sumida-ku, Tokyo; Department of Pediatrics (M.K.), Showa University School of Medicine, Hatanodai, Shinagawa-ku, Tokyo; Department of Human Genetics (M.N., T. Mizuguchi, N.M.), Yokohama City University Graduate School of Medicine, Fukuura, Kanazawa-ku, Yokohama; Department of Biochemistry (M.N.), Hamamatsu University School of Medicine, Handayama, Higashi-ku Hamamatsu; and Present Address: Department of Pediatrics (Y.S.), Soka Municipal Hospital, Soka, Soka-Shi, Saitama-Ken, Japan
| |
Collapse
|