1
|
Oyama K, Nakata K, Abe T, Hirotaka K, Fujimori N, Kiyotani K, Iwamoto C, Ikenaga N, Morisaki S, Umebayashi M, Tanaka H, Koya N, Nakagawa S, Tsujimura K, Yoshimura S, Onishi H, Nakamura Y, Nakamura M, Morisaki T. Neoantigen peptide-pulsed dendritic cell vaccine therapy after surgical treatment of pancreatic cancer: a retrospective study. Front Immunol 2025; 16:1571182. [PMID: 40248703 PMCID: PMC12004129 DOI: 10.3389/fimmu.2025.1571182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction Pancreatic cancer shows very poor prognosis and high resistance to conventional standard chemotherapy and immunotherapy; therefore, the development of new breakthrough therapies is highly desirable. Method We retrospectively evaluated the safety and efficacy of neoantigen peptide-pulsed dendritic cell (Neo-P DC) vaccine therapy after surgical treatment of pancreatic cancer. Result The result showed induction of neoantigen-specific T cells in 13 (81.3%) of the 16 patients who received Neo-P DC vaccines. In survival analysis of the nine patients who received Neo-P DC vaccines after recurrence, longer overall survival was observed in patients with neoantigen-specific T cell induction than those without T cell induction. Notably, only one of the seven patients who received Neo-P DC vaccines as adjuvant setting developed recurrence, and no patient died during median follow-up 61 months after surgery (range, 25-70 months). Furthermore, TCR repertoire analyses were performed in a case treated with Neo-P DC vaccine combined with long and short peptides, and one significantly dominant clone induced by the long peptide was detected among CD4+ T cell populations. Discussion The present study suggests the feasibility and efficacy of Neo-P DC vaccine therapy after surgical treatment of pancreatic cancer in both postoperative recurrence cases and adjuvant setting. A case analysis suggests the importance of combination with long peptides targeting CD4+ T cell.
Collapse
Affiliation(s)
- Koki Oyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Abe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kento Hirotaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuma Kiyotani
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayo Umebayashi
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Hiroto Tanaka
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Norihiro Koya
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Shinichiro Nakagawa
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Kenta Tsujimura
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Sachiko Yoshimura
- Corporate Headquarters, Cancer Precision Medicine Inc., Kawasaki, Japan
| | - Hideya Onishi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Nakamura
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| |
Collapse
|
2
|
Avci CB, Bagca BG, Shademan B, Takanlou LS, Takanlou MS, Nourazarian A. Precision oncology: Using cancer genomics for targeted therapy advancements. Biochim Biophys Acta Rev Cancer 2025; 1880:189250. [PMID: 39701327 DOI: 10.1016/j.bbcan.2024.189250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Cancer genomics plays a crucial role in oncology by enhancing our understanding of how genes drive cancer and facilitating the development of improved treatments. This field meticulously examines various cancers' genetic makeup through various methodologies, leading to groundbreaking discoveries. Innovative tools such as rapid gene sequencing, single-cell studies, spatial gene mapping, epigenetic analysis, liquid biopsies, and computational modeling have significantly progressed the field. These techniques uncover genetic alterations, tumor heterogeneity, and the evolutionary dynamics of cancers. Genetic abnormalities and molecular markers that initiate and propagate distinct cancer types are classified according to tumor type. The integration of precision medicine with cancer genomics emphasizes the significance of utilizing genetic data in treatment decision-making, enabling personalized care and enhancing patient outcomes. Critical topics in cancer genomics encompass tumor diversity, alterations in non-coding DNA, epigenetic modifications, cancer-specific proteins, metabolic changes, and the impact of inherited genes on cancer risk.
Collapse
Affiliation(s)
- Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|
3
|
Prabhakar PK, Upadhyay TK, Sahu SK. mRNA-based cancer vaccines: A novel approach to melanoma treatment. Adv Immunol 2024; 165:117-162. [PMID: 40449972 DOI: 10.1016/bs.ai.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2025]
Abstract
Malignant melanoma is one of the most aggressive forms of cancer and a leading cause of death from skin tumors. With the rising incidence of melanoma diagnoses, there is an urgent need to develop effective treatments. Among the most modern approaches are cancer vaccines, which aim to enhance cell-mediated immunity. Recently, mRNA-based cancer vaccines have gained significant attention due to their rapid production, low manufacturing costs, and ability to induce both humoral and cellular immune responses. These vaccines hold great potential in melanoma treatment, yet their application faces several challenges, including mRNA stabilization, delivery methods, and tumor heterogeneity. The recent success of mRNA vaccines in combating COVID-19 has renewed interest in their potential for cancer immunotherapy. In particular, mRNA cancer vaccines offer high specificity and better efficacy compared to traditional treatments. They can target tumor-specific neoantigens, prompting a robust immune response. This chapter reviews the mechanism of action of mRNA vaccines, advancements in adjuvant identification, and innovations in delivery systems such as lipid nanoparticles. It also discusses ongoing clinical trials evaluating the efficacy of mRNA-based vaccines in melanoma, highlighting promising early-phase results. Despite their potential, the development of mRNA cancer vaccines faces significant obstacles. Tumor heterogeneity, immunosuppressive tumor microenvironments, and practical issues like vaccine administration and clinical evaluation methods are major barriers to success. By addressing these challenges and advancing innovations, mRNA cancer vaccines hold promise for transforming melanoma treatment. A careful balance between the opportunities and challenges will be key to unlocking the full potential of mRNA vaccines in cancer immunotherapy.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Biotechnology, School of Engineering and Technology, Nagaland University, Meriema, Kohima, Nagaland, India.
| | - Tarun Kumar Upadhyay
- Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Liu Y, Altreuter J, Bodapati S, Cristea S, Wong CJ, Wu CJ, Michor F. Predicting patient outcomes after treatment with immune checkpoint blockade: A review of biomarkers derived from diverse data modalities. CELL GENOMICS 2024; 4:100444. [PMID: 38190106 PMCID: PMC10794784 DOI: 10.1016/j.xgen.2023.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024]
Abstract
Immune checkpoint blockade (ICB) therapy targeting cytotoxic T-lymphocyte-associated protein 4, programmed death 1, and programmed death ligand 1 has shown durable remission and clinical success across different cancer types. However, patient outcomes vary among disease indications. Studies have identified prognostic biomarkers associated with immunotherapy response and patient outcomes derived from diverse data types, including next-generation bulk and single-cell DNA, RNA, T cell and B cell receptor sequencing data, liquid biopsies, and clinical imaging. Owing to inter- and intra-tumor heterogeneity and the immune system's complexity, these biomarkers have diverse efficacy in clinical trials of ICB. Here, we review the genetic and genomic signatures and image features of ICB studies for pan-cancer applications and specific indications. We discuss the advantages and disadvantages of computational approaches for predicting immunotherapy effectiveness and patient outcomes. We also elucidate the challenges of immunotherapy prognostication and the discovery of novel immunotherapy targets.
Collapse
Affiliation(s)
- Yang Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jennifer Altreuter
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Sudheshna Bodapati
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cheryl J Wong
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 20115, USA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 20115, USA; The Eli and Edythe Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02138, USA; The Ludwig Center at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
6
|
Ebadati A, Oshaghi M, Saeedi S, Parsa P, Mahabadi VP, Karimi M, Hajiebrahimdehi AJ, Hamblin MR, Karimi M. Mechanism and antibacterial synergies of poly(Dabco-BBAC) nanoparticles against multi-drug resistant Pseudomonas aeruginosa isolates from human burns. Bioorg Chem 2023; 140:106718. [PMID: 37566942 DOI: 10.1016/j.bioorg.2023.106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Multi-drug resistant bacteria are a major problem in the treatment of infectious diseases, such as pneumonia, meningitis, or even coronavirus disease 2019 (COVID-19). Cationic nanopolymers are a new type of antimicrobial agent with high efficiency. We synthesized and characterized cationic polymer based on 1,4-diazabicyclo [2.2.2] octane (DABCO) and Bis (bromoacetyl)cystamine (BBAC), named poly (DABCO-BBAC) nanoparticles(NPs), and produced 150 nm diameter NPs. The antibacterial activity of poly (DABCO-BBAC) against eight multi drug resistant (MDR) Pseudomonas aeruginosa isolates from human burns, its possible synergistic effect with gentamicin, and the mechanism of action were examined. Poly(DABCO-BBAC) could effectively inhibit and kill bacterial strains at a very low concentration calculated by minimum inhibitory concentration (MIC) assay. Nevertheless, its synergism index with gentamicin showed an indifferent effect. Moreover, transmission electron microscopy and lipid peroxidation assays showed that poly (DABCO-BBAC) distorted and damaged the bacterial cell wall. These results suggest that the poly (DABCO-BBAC) could be an effective antibacterial agent for MDR clinical pathogens.
Collapse
Affiliation(s)
- Arefeh Ebadati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Oshaghi
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Saeedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Parsa
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Karimi
- Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; Karen Diagnostic Laboratory, Varamin, Iran; Sepid Diagnostic Laboratory, Varamin, Iran
| | - Atefeh Jahandideh Hajiebrahimdehi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advances Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Morisaki S, Onishi H, Morisaki T, Kubo M, Umebayashi M, Tanaka H, Koya N, Nakagawa S, Tsujimura K, Yoshimura S, Yew PY, Kiyotani K, Nakamura Y, Nakamura M, Kitazono T, Morisaki T. Immunological analysis of hybrid neoantigen peptide encompassing class I/II neoepitope-pulsed dendritic cell vaccine. Front Immunol 2023; 14:1223331. [PMID: 37881436 PMCID: PMC10595142 DOI: 10.3389/fimmu.2023.1223331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Neoantigens/ are tumor-specific antigens that evade central immune tolerance mechanisms in the thymus. Long-term tumor-specific cytotoxic T lymphocyte activity maintenance requires class II antigen-reactive CD4+ T cells. We had previously shown that intranodal vaccination with class I neoantigen peptide-pulsed dendritic cells (DCs) induced a robust immune response in a subset of patients with metastatic cancer. The present study aimed to perform a detailed ex vivo analysis of immune responses in four patients receiving an intranodal hybrid human leukocyte antigen class II neoantigen peptide encompassing a class I neoantigen epitope (hybrid neoantigen)-pulsed DC vaccine. After vaccination, strong T-cell reactions against the hybrid class II peptide and the class I-binding neoantigen peptide were observed in all four patients. We found that hybrid class II neoantigen peptide-pulsed DCs stimulated CD4+ T cells via direct antigen presentation and CD8+ T cells via cross-presentation. Further, we demonstrated that hybrid class II peptides encompassing multiple class I neoantigen epitope-pulsed DCs could present multiple class I peptides to CD8+ T cells via cross-presentation. Our findings provide insight into the mechanisms underlying hybrid neoantigen-pulsed DC vaccine therapy and suggest future neoantigen vaccine design.
Collapse
Affiliation(s)
- Shinji Morisaki
- Fukuoka General Cancer Clinic, Fukuoka, Japan
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takafumi Morisaki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Kubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | - Sachiko Yoshimura
- Corporate Headquarters, Cancer Precision Medicine Inc., Kawasaki, Japan
| | - Poh Yin Yew
- Corporate Headquarters, Cancer Precision Medicine Inc., Kawasaki, Japan
| | - Kazuma Kiyotani
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Yusuke Nakamura
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
8
|
Gao Y, Gao Y, Fan Y, Zhu C, Wei Z, Zhou C, Chuai G, Chen Q, Zhang H, Liu Q. Pan-Peptide Meta Learning for T-cell receptor–antigen binding recognition. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Identification of T Cell Receptors Targeting a Neoantigen Derived from Recurrently Mutated FGFR3. Cancers (Basel) 2023; 15:cancers15041031. [PMID: 36831375 PMCID: PMC9953830 DOI: 10.3390/cancers15041031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Immunotherapies, including immune checkpoint blockades, play a critically important role in cancer treatments. For immunotherapies, neoantigens, which are generated by somatic mutations in cancer cells, are thought to be good targets due to their tumor specificity. Because neoantigens are unique in individual cancers, it is challenging to develop personalized immunotherapy targeting neoantigens. In this study, we screened "shared neoantigens", which are specific types of neoantigens derived from mutations observed commonly in a subset of cancer patients. Using exome sequencing data in the Cancer Genome Atlas (TCGA), we predicted shared neoantigen peptides and performed in vitro screening of shared neoantigen-reactive CD8+ T cells using peripheral blood from healthy donors. We examined the functional activity of neoantigen-specific T cell receptors (TCRs) by generating TCR-engineered T cells. Among the predicted shared neoantigens from TCGA data, we found that the mutated FGFR3Y373C peptide induced antigen-specific CD8+ T cells from the donor with HLA-A*02:06 via an ELISPOT assay. Subsequently, we obtained FGFR3Y373C-specific CD8+ T cell clones and identified two different sets of TCRs specifically reactive to FGFR3Y373C. We found that the TCR-engineered T cells expressing FGFR3Y373C-specific TCRs recognized the mutated FGFR3Y373C peptide but not the corresponding wild-type peptide. These two FGFR3Y373C-specific TCR-engineered T cells showed cytotoxic activity against mutated FGFR3Y373C-loaded cells. These results imply the possibility of strategies of immunotherapies targeting shared neoantigens, including cancer vaccines and TCR-engineered T cell therapies.
Collapse
|
10
|
Guiding immunotherapy combinations: Who gets what? Adv Drug Deliv Rev 2021; 178:113962. [PMID: 34481029 DOI: 10.1016/j.addr.2021.113962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/27/2023]
Abstract
Although PD-1 and CTLA-4 inhibitors have proven successful in a range of malignancies, there are subsets of patients that do not respond to these agents due to upregulation of adaptive and innate resistance mechanisms by the tumor and its surrounding microenvironment. As new immunotherapeutic strategies are developed, there is a need for rational implementation of novel immunotherapy combinations that target complementary mechanisms of immunotherapy resistance intrinsic to each patient and tumor type. In this short review, we cover mechanisms by which tumors evade the immune system, as well as summarize available clinical data on emerging therapeutic agents that target these defense mechanisms. Rational implementation of combination immunotherapy targeting patient- and malignancy-specific immune evasion mechanisms may thus lead to enhanced response rates and allow immunotherapy to be effective even in tumors that are historically considered poorly responsive to immunotherapy.
Collapse
|