1
|
Huang X, Zhu J, Wei T, Luo L, Li C, Zhao M. Epigenetic Modifications in Vitiligo. Clin Rev Allergy Immunol 2025; 68:39. [PMID: 40205284 DOI: 10.1007/s12016-025-09048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Vitiligo is an autoimmune depigmenting skin disorder and can affect the mental health of the patients. Current research suggests that the development of vitiligo involves a combination of genetic susceptibility, immune imbalance, and oxidative stress. However, its pathogenesis has not been fully elucidated. Epigenetic modification has gained increasing attention as an emerging way to regulate gene expression at the transcriptional or post-transcriptional level. Currently known modes of epigenetic modification include the regulation of non-coding RNAs, DNA methylation, and histone modification. Studies suggest they play important roles in tumors, immune disorders, and inflammatory diseases. In recent years, the value of epigenetics in the diagnosis, treatment, and prognosis of vitiligo has been explored. They showed the potential to serve as biomarkers and play a therapeutic role. In this review, we summarize the epigenetic modification mechanisms involved in the pathogenesis of vitiligo, including physiological processes such as immune homeostasis, melanocyte survival, cell adhesion and migration, and metabolism. This will help us fully understand the progress of epigenetic research in vitiligo and lay the foundation for targeted therapeutic-related research.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Tianqi Wei
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Lingling Luo
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Ming Zhao
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Okamura K, Suzuki T. Genetics and epigenetics in vitiligo. J Dermatol Sci 2025; 117:45-51. [PMID: 39890561 DOI: 10.1016/j.jdermsci.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Vitiligo, a complex autoimmune disorder characterized by melanocyte destruction, arises from an intricate interplay of genetic, epigenetic, immune, and environmental factors. Genome-wide association studies (GWAS) have identified over 50 susceptibility loci, including key genes within the MHC region and those involved in immunity, oxidative stress, and melanogenesis. Concurrently, epigenetic research has unraveled regulatory networks critical to vitiligo pathogenesis, with a focus on DNA methylation and non-coding RNAs (e.g., microRNAs, long non-coding RNAs, and circular RNAs). These advancements provide deeper insights into gene regulation, immune processes, and cellular dynamics. This review integrates findings from genetic and epigenetic studies to offer a comprehensive understanding of molecular mechanisms of vitiligo, paving the way for innovative, personalized therapeutic approaches.
Collapse
Affiliation(s)
- Ken Okamura
- Department of Dermatology, Faculty of Medicine, Yamagata University, Yamagata, Japan.
| | - Tamio Suzuki
- Department of Dermatology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
3
|
Nie X, Chen L, Wang B, Wang S, Li Y. FOXO3 induces TUG1-mediated miR-375/GATA3 signaling axis to promote the survival of melanocytes in vitiligo. FASEB J 2024; 38:e70145. [PMID: 39520296 DOI: 10.1096/fj.202400676rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Vitiligo is characterized by the depletion of melanocytes due to the activation of CD8+ T cells. Taurine-upregulated gene 1 (TUG1), a long noncoding RNA, is involved in melanogenesis. This study aimed to explore the role and mechanism of TUG1 in vitiligo. RT-qPCR and western blot analyses demonstrated decreased TUG1 levels and increased miR-375 levels in patients with vitiligo. MTT and transwell assays indicated that TUG1 upregulation facilitated melanocyte survival and inhibited CD8+ T cell migration. Dual luciferase reporter and chromatin immunoprecipitation assays verified that Forkhead box O3 (FOXO3) directly interacted with the TUG1 promoter, leading to the positive regulation of TUG1 expression. In addition, FOXO3 promoted melanocyte survival by enhancing the transcription of TUG1. Luciferase reporter assay and RNA immunoprecipitation assay confirmed that TUG1 upregulated GATA binding protein 3 (GATA3) expression by targeting miR-375. TUG1 facilitated melanocyte survival by regulating the miR-375/GATA3 axis. In vitiligo, melanocyte survival is promoted by the induction of the TUG1-mediated miR-375/GATA3 axis by FOXO3, which offers new therapeutic targets for vitiligo treatment.
Collapse
Affiliation(s)
- Xiaojuan Nie
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Lamei Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Baihe Wang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Shengnan Wang
- Department of Dermatology, Shenxian People's Hospital of Shandong Province, Liaocheng, Shandong Province, China
| | - Yuanyuan Li
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
4
|
Ruiz-Ojeda D, Guzmán-Martín CA, Bojalil R, Balderas XF, Paredes-González IS, González-Ramírez J, Torres-Rasgado E, Hernández-DíazCouder A, Springall R, Sánchez-Muñoz F. Long noncoding RNA MALAT1 in dermatologic disorders: a comprehensive review. Biomark Med 2024; 18:853-867. [PMID: 38982732 PMCID: PMC11497971 DOI: 10.1080/17520363.2024.2369044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Dermatologic disorders, affecting the integumentary system, involve diverse molecular mechanisms such as cell proliferation, apoptosis, inflammation and immune responses. Long noncoding RNAs, particularly Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), are crucial regulators of gene expression. MALAT1 influences inflammatory responses, immune cell function and signaling pathways, impacting various physiological and pathological processes, including dermatologic disorders. Dysregulation of MALAT1 is observed in skin conditions like psoriasis, atopic dermatitis and systemic lupus erythematosus. However, its precise role remains unclear. This review consolidates knowledge on MALAT1's impact on skin biology and pathology, emphasizing its potential diagnostic and therapeutic implications in dermatologic conditions.
Collapse
Affiliation(s)
- Dayanara Ruiz-Ojeda
- Posgrado en Medicina Interna, Hospital Central Sur de Alta Especialidad de Petróleos Mexicanos, Ciudad de México, C.P. 14140, México
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| | - Carlos A Guzmán-Martín
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, C.P. 04960, México
- Departamento de programas de investigación, Hospital Shriners para Niños México, Ciudad de México, C.P. 04600, México
| | - Rafael Bojalil
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, C.P. 04960, México
| | - Ximena F Balderas
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| | - Iris S Paredes-González
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, C.P. 14080, México
| | - Javier González-Ramírez
- Laboratorio de Biología Celular, Facultad de Enfermería, Universidad Autónoma de Baja California Campus Mexicali, Mexicali, Baja California, C.P. 21376, México
| | - Enrique Torres-Rasgado
- Facultad de Medicina, Cuerpo Académico de Medicina Interna (CA-160), Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000,México
| | - Adrián Hernández-DíazCouder
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, C.P. 06720, México
| | - Rashidi Springall
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, C.P. 14080, México
| |
Collapse
|
5
|
Lai NS, Yu HC, Huang HB, Huang Tseng HY, Lu MC. Increased Expression of Long Noncoding RNA LOC100506314 in T cells from Patients with Nonsegmental Vitiligo and Its Contribution to Vitiligo Pathogenesis. Mediators Inflamm 2023; 2023:2440377. [PMID: 37731844 PMCID: PMC10509001 DOI: 10.1155/2023/2440377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 07/04/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
This study aimed to identify the abnormal expression of long noncoding RNAs (lncRNAs) in T cells from patients with vitiligo and to investigate their functional roles in the immune system. Using microarray analysis, the expression levels of RNA transcripts in T cells from patients with vitiligo and controls were compared. We identified several genes and validated their expression levels in T cells from 41 vitiligo patients and 41 controls. The biological functions of the lncRNAs were studied in a transfection study using an RNA pull-down assay, followed by proteomic analysis and western blotting. The expression levels of 134 genes were significantly increased, and those of 142 genes were significantly decreased in T cells from vitiligo patients. After validation, six genes had increased expression, and three genes had decreased expression in T cells from patients with vitiligo. T-cell expression of LOC100506314 was increased in vitiligo, especially CD4+, but not CD8+ T cells. The expression levels of LOC100506314 in CD4+ T cells was positively and significantly associated with the severity of vitiligo. LOC100506314 was bound to the signal transducer and activator of transcription 3 (STAT3) and macrophage migration inhibitory factor (MIF). Enhanced expression of LOC100506314 inhibited the phosphorylation of STAT3, protein kinase B (AKT), and extracellular signal-regulated protein kinases (ERK), as well as the levels of nuclear protein of p65 and the expression of IL-6 and IL-17 in Jurkat cells and T cells from patients with vitiligo. In conclusion, this study showed that the expression of LOC100506314 was elevated in CD4+ T cells from patients with vitiligo and associated the severity of vitiligo. LOC100506314 interacted with STAT3 and MIF and inhibited IL-6 and IL-17 expression by suppressing the STAT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), AKT, and ERK pathways. Enhanced expression of LOC100506314 in T cells may be a potential treatment strategy for vitiligo.
Collapse
Affiliation(s)
- Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin 62247, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
| | - Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin 62247, Chiayi, Taiwan
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, National Chung Cheng University, Minxiong, Chiayi 62130, Taiwan
| | - Hsien-Yu Huang Tseng
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin 62247, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin 62247, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
| |
Collapse
|
6
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Zhang Z, Shen W, Liu W, Lyu L. Role of miRNAs in melanin metabolism: Implications in melanin-related diseases. J Cosmet Dermatol 2022; 21:4146-4159. [PMID: 35041756 DOI: 10.1111/jocd.14762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/02/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are short single-stranded non-coding RNAs that regulate degradation and expression of messenger RNA (mRNA) and play a wide range of key roles in different biological processes. They mediate different stages of melanocyte differentiation, growth, and apoptosis through a variety of pathways and can mediate melanin production by targeting key enzymes. AIMS This article was aimed to review the role of miRNAs in melanin metabolism and to introduce the role and significance of miRNAs in melanin-related diseases. MATERIALS & METHODS Systematic search and retrospective review were performed on the published data. RESULTS This paper reviews the process of melanin synthesis and the regulatory mechanism, explores the miRNA expression profiles in different model organisms, and introduces the mechanisms of several key miRNAs participating in melanin metabolism through target genes. We also explore the potential role of miRNA as a new target for the treatment of melanin metabolism disease, including vitiligo, melanoma, and chloasma. CONCLUSION miRNAs play a key role in melanin-related diseases, and the miRNAs involved may be potential therapeutic targets.
Collapse
Affiliation(s)
- Zhigang Zhang
- Department of Dermatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Wanlu Shen
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Weimin Liu
- Department of Dermatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| |
Collapse
|