1
|
Onnée M, Malfatti E. The widening genetic and myopathologic spectrum of congenital myopathies (CMYOs): a narrative review. Neuromuscul Disord 2025; 49:105338. [PMID: 40112751 DOI: 10.1016/j.nmd.2025.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Congenital myopathies (CMYOs) represent a genetically and clinically heterogeneous group of disorders characterized by early-onset muscle weakness and distinct myopathologic features. The advent of next-generation sequencing (NGS) has accelerated the identification of causative genes, leading to the discovery of novel CMYOs and thereby challenging the traditional classification. In this comprehensive review, we focus on the clinical, myopathologic, molecular and pathophysiological features of 33 newly identified CMYOs.
Collapse
Affiliation(s)
- Marion Onnée
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France
| | - Edoardo Malfatti
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Hôpital Henri Mondor, 94010 Créteil, France; European Reference Center for Neuromuscular Disorders, EURO-NMD, France.
| |
Collapse
|
2
|
Brooks D, Burke E, Lee S, Eble TN, O'Leary M, Osei-Owusu I, Rehm HL, Dhar SU, Emrick L, Bick D, Nehrebecky M, Macnamara E, Casas-Alba D, Armstrong J, Prat C, Martínez-Monseny AF, Palau F, Liu P, Adams D, Lalani S, Rosenfeld JA, Burrage LC. Heterozygous MAP3K20 variants cause ectodermal dysplasia, craniosynostosis, sensorineural hearing loss, and limb anomalies. Hum Genet 2024; 143:279-291. [PMID: 38451290 PMCID: PMC11191325 DOI: 10.1007/s00439-024-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.
Collapse
Affiliation(s)
- Daniel Brooks
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elizabeth Burke
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Advanced Technology Core for Macromolecular X-Ray Crystallography, Baylor College of Medicine, Houston, TX, USA
| | - Tanya N Eble
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie O'Leary
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shweta U Dhar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lisa Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - David Bick
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Michelle Nehrebecky
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ellen Macnamara
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Dídac Casas-Alba
- Department of Genetic Medicine, Pediatric Institute of Rare Diseases (IPER), CIBER on Rare Diseases (CIBERER), Hospital Sant Joan de DéuEsplugues de Llobregat, 08950, Barcelona, Spain
| | - Judith Armstrong
- Department of Genetic Medicine, Pediatric Institute of Rare Diseases (IPER), CIBER on Rare Diseases (CIBERER), Hospital Sant Joan de DéuEsplugues de Llobregat, 08950, Barcelona, Spain
| | - Carolina Prat
- Department of Dermatology, Hospital Sant Joan de Deu, Esplugues de Llobregat, 08950, Barcelona, Spain
| | - Antonio F Martínez-Monseny
- Department of Genetic Medicine, Pediatric Institute of Rare Diseases (IPER), CIBER on Rare Diseases (CIBERER), Hospital Sant Joan de DéuEsplugues de Llobregat, 08950, Barcelona, Spain
| | - Francesc Palau
- Department of Genetic Medicine, Pediatric Institute of Rare Diseases (IPER), CIBER on Rare Diseases (CIBERER), Hospital Sant Joan de DéuEsplugues de Llobregat, 08950, Barcelona, Spain
- Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics, Houston, TX, USA
| | - David Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
3
|
Mordente K, Ryder L, Bekker-Jensen S. Mechanisms underlying sensing of cellular stress signals by mammalian MAP3 kinases. Mol Cell 2024; 84:142-155. [PMID: 38118452 DOI: 10.1016/j.molcel.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.
Collapse
Affiliation(s)
- Kelly Mordente
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
4
|
Stonadge A, Genzor AV, Russell A, Hamed MF, Romero N, Evans G, Pownall ME, Bekker-Jensen S, Blanco G. Myofibrillar myopathy hallmarks associated with ZAK deficiency. Hum Mol Genet 2023; 32:2751-2770. [PMID: 37427997 PMCID: PMC10789240 DOI: 10.1093/hmg/ddad113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
The ZAK gene encodes two functionally distinct kinases, ZAKα and ZAKβ. Homozygous loss of function mutations affecting both isoforms causes a congenital muscle disease. ZAKβ is the only isoform expressed in skeletal muscle and is activated by muscle contraction and cellular compression. The ZAKβ substrates in skeletal muscle or the mechanism whereby ZAKβ senses mechanical stress remains to be determined. To gain insights into the pathogenic mechanism, we exploited ZAK-deficient cell lines, zebrafish, mice and a human biopsy. ZAK-deficient mice and zebrafish show a mild phenotype. In mice, comparative histopathology data from regeneration, overloading, ageing and sex conditions indicate that while age and activity are drivers of the pathology, ZAKβ appears to have a marginal role in myoblast fusion in vitro or muscle regeneration in vivo. The presence of SYNPO2, BAG3 and Filamin C (FLNC) in a phosphoproteomics assay and extended analyses suggested a role for ZAKβ in the turnover of FLNC. Immunofluorescence analysis of muscle sections from mice and a human biopsy showed evidence of FLNC and BAG3 accumulations as well as other myofibrillar myopathy markers. Moreover, endogenous overloading of skeletal muscle exacerbated the presence of fibres with FLNC accumulations in mice, indicating that ZAKβ signalling is necessary for an adaptive turnover of FLNC that allows for the normal physiological response to sustained mechanical stress. We suggest that accumulation of mislocalized FLNC and BAG3 in highly immunoreactive fibres contributes to the pathogenic mechanism of ZAK deficiency.
Collapse
Affiliation(s)
- Amy Stonadge
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Aitana V Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alex Russell
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Mohamed F Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Norma Romero
- Unité de Morphologie Neuromusculaire Institut de Myologie - Inserm Sorbonne Université - GHU Pitié-Salpêtrière 47- 83, boulevard de l’Hôpital F-75 651 Paris, Cedex 13, France
| | - Gareth Evans
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Mary Elizabeth Pownall
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Gonzalo Blanco
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|