1
|
Laarne M, Oghabian A, Laitila J, Isohanni P, Tynninen O, Zhao F, Rostedt F, Sarparanta J, Sagath L, Lawlor MW, Wallgren-Pettersson C, Lehtokari VL, Pelin K. A homozygous single-nucleotide variant in TNNT1 causes abnormal troponin T isoform expression in a patient with severe nemaline myopathy: A case report. J Neuromuscul Dis 2025:22143602251339569. [PMID: 40397026 DOI: 10.1177/22143602251339569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
BACKGROUND Slow skeletal troponin T (ssTnT, TNNT1) is the tropomyosin-binding subunit of the troponin complex in the slow-twitch fibers of skeletal muscle. Exon 5 of TNNT1 is alternatively spliced, and retention of the 3' region of intron 11 (exon 12') has also been described. Variants in TNNT1 are known to cause nemaline myopathy (NM). OBJECTIVE To identify and further investigate the disease-causing variant in a patient with lethal NM. METHODS The genetic analyses included a gene panel, Sanger sequencing, whole-exome sequencing, and targeted array-CGH. Muscle biopsy was analyzed using routine histopathological methods. The alternative splicing of TNNT1 exon 12 in patient muscle was quantified from RNA sequencing data, and the protein expression was confirmed by western blot. Expression of ssTnT in patient muscle was studied by immunohistology. RESULTS The patient presented with arthrogryposis, stiffness, respiratory insufficiency, and minimal spontaneous movements. Histopathology showed hypotrophy and predominance of type II fibers, perimysial connective tissue accumulation, and nemaline bodies. The patient was homozygous for the TNNT1 missense variant (NM_003283.6:c.653C > G, p.(Pro218Arg), NM_ 001126132.3:c.612-7C > G), predicted to disrupt splicing. RNA-seq revealed inclusion of exon 12' in 49.85% of transcripts, whereas in controls exon 12' was not expressed. Exon 12' expression on the protein level was confirmed by western blot. Immunohistology showed strong ssTnT expression in remaining type I fibers, and low expression in type IIA fibers. CONCLUSIONS The c.653C > G variant was shown to alter TNNT1 splicing. The results suggest a novel pathogenetic mechanism involving abnormal expression of a troponin T isoform.
Collapse
Affiliation(s)
- Milla Laarne
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Ali Oghabian
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jenni Laitila
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism Research, University of Helsinki, Helsinki, Finland
- Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fang Zhao
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fanny Rostedt
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Lydia Sagath
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Carina Wallgren-Pettersson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Vilma-Lotta Lehtokari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Katarina Pelin
- Folkhälsan Research Center, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Qin C, Wang D, Han H, Cao Y, Wang X, Xuan Z, Wei M, Li Z, Liu Q. Expression patterns of housekeeping genes and tissue-specific genes in black goats across multiple tissues. Sci Rep 2024; 14:21896. [PMID: 39300207 DOI: 10.1038/s41598-024-72844-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Black goats are a significant meat breed in southern China. To investigate the expression patterns and biological functions of genes in various tissues of black goats, we analyzed housekeeping genes (HKGs), tissue-specific genes (TSGs), and hub genes (HUBGs) across 23 tissues. Additionally, we analyzed HKGs in 13 tissues under different feeding conditions. We identified 2968 HKGs, including six important ones. Interestingly, HKGs in grazing black goats demonstrated higher and more stable expression levels. We discovered a total of 9912 TSGs, including 134 newly identified ones. The number of TSGs for mRNA and lncRNA were nearly equal, with 127 mRNA TSGs expressed solely in one tissue. Additionally, the predicted functions of tissue-specific long non-coding RNAs (lncRNAs) targeting mRNAs corresponded with the physiological functions of the tissues.Weighted gene co-expression network analysis (WGCNA) constructed 30 modules, where the dark grey module consists almost entirely of HKGs, and TSGs are located in modules most correlated with their respective tissues. Additionally, we identified 289 HUBGs, which are involved in regulating the physiological functions of their respective tissues. Overall, these identified HKGs, TSGs, and HUBGs provide a foundation for studying the molecular mechanisms affecting the genetic and biological processes of complex traits in black goats.
Collapse
Affiliation(s)
- Chaobin Qin
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Dong Wang
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanhong Cao
- Guangxi Vocational University of Agriculture, Nanning, 530007, Guangxi, China
| | - Xiaobo Wang
- Henan Academy of Crops Molecular Breeding/The Shennong Laboratory, Zhengzhou, 450099, Henan, China
| | - Zeyi Xuan
- Guangxi Vocational University of Agriculture, Nanning, 530007, Guangxi, China
| | - Mingsong Wei
- Guangxi Vocational University of Agriculture, Nanning, 530007, Guangxi, China.
| | - Zhipeng Li
- School of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| |
Collapse
|
3
|
Yavaş C, Doğan M, Eröz R, Türegün K. A rare TNNT1 gene variant causing creatine kinase elevation in nemaline myopathy: c.271_273del (p.Lys91del). Genes Genomics 2024; 46:613-620. [PMID: 38363456 DOI: 10.1007/s13258-024-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Nemaline Myopathy (NM) is a rare genetic disorder that affects muscle function and is characterized by the presence of nemaline rods in muscle fibers. These rods are abnormal structures that interfere with muscle contraction and can cause muscle weakness, respiratory distress, and other complications. NM is caused by variants in several genes, including TNNT1, which encodes the protein troponin T1. NM is inherited in an autosomal recessive pattern. The prevalence of heterozygous TNNT1 variants has been reported to be 1/152,000, indicating that the disease is relatively rare. OBJECTIVE Investigation of TNNT1 gene variants that may cause cretin kinase elevation. METHODS Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and family segregation was done by Sanger sequencing. RESULTS In this study, we report a 5-year-old girl with a novel variant recessive congenital TNNT1 myopathy. The patient had a novel homozygous (c.271_273del) deletion in the TNNT1 gene that is associated with creatine kinase elevation, which is a marker of muscle damage. CONCLUSION This case expands the phenotypic spectrum of TNNT1 myopathy and highlights the importance of genetic testing and counseling for families affected by this rare disorder. In this study provides valuable insights into the genetic basis of NM and highlights the importance of early diagnosis and management for patients with this rare disorder. Further research is needed to better understand the pathophysiology of TNNT1 myopathy and to develop effective treatments for this debilitating condition.
Collapse
Affiliation(s)
- Cüneyd Yavaş
- Department of Molecular Biology and Genetics, Biruni University, Karanfil St. No:1H/12, Beylikduzu, Istanbul, 34100, Turkey.
| | - Mustafa Doğan
- Genetic Diseases Assessment Center, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Recep Eröz
- Department of Medical Genetics Medical Faculty, Aksaray University, Aksaray, Turkey
| | - Kübra Türegün
- Department of Biotechnology, Institute of Science and Technology, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Wang G, Wang B, Qin Q, Yan C, Zhao Y, Lin P. Exon Skipping Caused by Noncanonical Splicing Mutation in PRDX3-Related Spinocerebellar Ataxia. Mov Disord 2023; 38:1968-1970. [PMID: 37553955 DOI: 10.1002/mds.29575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Guangyu Wang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Wang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Qingtao Qin
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Yuying Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, China
| | - Pengfei Lin
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|