1
|
Zhao L, Guo J, Xu S, Duan M, Liu B, Zhao H, Wang Y, Liu H, Yang Z, Yuan H, Jiang X, Jiang X. Abnormal changes in metabolites caused by m 6A methylation modification: The leading factors that induce the formation of immunosuppressive tumor microenvironment and their promising potential for clinical application. J Adv Res 2025; 70:159-186. [PMID: 38677545 PMCID: PMC11976433 DOI: 10.1016/j.jare.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation modifications have been widely implicated in the metabolic reprogramming of various cell types within the tumor microenvironment (TME) and are essential for meeting the demands of cellular growth and maintaining tissue homeostasis, enabling cells to adapt to the specific conditions of the TME. An increasing number of research studies have focused on the role of m6A modifications in glucose, amino acid and lipid metabolism, revealing their capacity to induce aberrant changes in metabolite levels. These changes may in turn trigger oncogenic signaling pathways, leading to substantial alterations within the TME. Notably, certain metabolites, including lactate, succinate, fumarate, 2-hydroxyglutarate (2-HG), glutamate, glutamine, methionine, S-adenosylmethionine, fatty acids and cholesterol, exhibit pronounced deviations from normal levels. These deviations not only foster tumorigenesis, proliferation and angiogenesis but also give rise to an immunosuppressive TME, thereby facilitating immune evasion by the tumor. AIM OF REVIEW The primary objective of this review is to comprehensively discuss the regulatory role of m6A modifications in the aforementioned metabolites and their potential impact on the development of an immunosuppressive TME through metabolic alterations. KEY SCIENTIFIC CONCEPTS OF REVIEW This review aims to elaborate on the intricate networks governed by the m6A-metabolite-TME axis and underscores its pivotal role in tumor progression. Furthermore, we delve into the potential implications of the m6A-metabolite-TME axis for the development of novel and targeted therapeutic strategies in cancer research.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Junchen Guo
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Hexue Yuan
- Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110020, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
2
|
Youssef E, Zhao S, Purcell C, Olson GL, El-Deiry WS. Targeting the SMURF2-HIF1α axis: a new frontier in cancer therapy. Front Oncol 2024; 14:1484515. [PMID: 39697237 PMCID: PMC11652374 DOI: 10.3389/fonc.2024.1484515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
The SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) has emerged as a critical regulator in cancer biology, modulating the stability of Hypoxia-Inducible Factor 1-alpha (HIF1α) and influencing a network of hypoxia-driven pathways within the tumor microenvironment (TME). SMURF2 targets HIF1α for ubiquitination and subsequent proteasomal degradation, disrupting hypoxic responses that promote cancer cell survival, metabolic reprogramming, angiogenesis, and resistance to therapy. Beyond its role in HIF1α regulation, SMURF2 exerts extensive control over cellular processes central to tumor progression, including chromatin remodeling, DNA damage repair, ferroptosis, and cellular stress responses. Notably, SMURF2's ability to promote ferroptotic cell death through GSTP1 degradation offers an alternative pathway to overcome apoptosis resistance, expanding therapeutic options for refractory cancers. This review delves into the multifaceted interactions between SMURF2 and HIF1α, emphasizing how their interplay impacts metabolic adaptations like the Warburg effect, immune evasion, and therapeutic resistance. We discuss SMURF2's dual functionality as both a tumor suppressor and, in certain contexts, an oncogenic factor, underscoring its potential as a highly versatile therapeutic target. Furthermore, modulating the SMURF2-HIF1α axis presents an innovative approach to destabilize hypoxia-dependent pathways, sensitizing tumors to chemotherapy, radiotherapy, and immune-based treatments. However, the complexity of SMURF2's interactions necessitate a thorough assessment of potential off-target effects and challenges in specificity, which must be addressed to optimize its clinical application. This review concludes by proposing future directions for research into the SMURF2-HIF1α pathway, aiming to refine targeted strategies that exploit this axis and address the adaptive mechanisms of aggressive tumors, ultimately advancing the landscape of precision oncology.
Collapse
Affiliation(s)
- Emile Youssef
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Medical & Pharmacovigilance, Kapadi, Inc., Raleigh, NC, United States
| | - Shuai Zhao
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Connor Purcell
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Gary L. Olson
- Medicinal Chemistry & Drug Discovery, Provid Pharmaceuticals, Inc., Monmouth Junction, NJ, United States
| | - Wafik S. El-Deiry
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| |
Collapse
|
3
|
Han HJ, Sivaraman A, Kim M, Min KH, Song ME, Choi Y, Choi WJ, Han HK, Han J, Jang JP, Ryoo IJ, Lee K, Soung NK. HIF-1α inhibition by MO-2097, a novel chiral-free benzofuran targeting hnRNPA2B1. J Adv Res 2024; 64:67-81. [PMID: 37977260 PMCID: PMC11464424 DOI: 10.1016/j.jare.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator mediating adaptive responses to hypoxia. It is up-regulated in the tumor microenvironment and recognized as an effective anticancer drug target. Previously, we discovered that the natural compound moracin-O and its synthetic derivative MO-460 inhibited HIF-1α via hnRNPA2B1. OBJECTIVES This study aimed to develop novel HIF-1 inhibitors for cancer chemotherapy by harnessing the potential of the natural products moracins-O and P. METHODS In an ongoing search for novel HIF-1 inhibitors, a series of nature-inspired benzofurans with modifications on the chiral rings of moracins-O and P were synthesized. They showed improved chemical tractability and were evaluated for their inhibitory activity on HIF-1α accumulation under hypoxic conditions in HeLa CCL2 cells. The most potent derivative's chemical-based toxicities, binding affinities, and in vivo anti-tumorigenic effects were evaluated. Further, we examined whether our compound, MO-2097, exhibited anticancer effects in three-dimensional cultured organoids. RESULTS Herein, we identified a novel synthetic chiral-free compound, MO-2097, with reduced structural complexity and increased efficiency. MO-2097 exhibited inhibitory effects on hypoxia-induced HIF-1α accumulation in HeLa CCL2 cells via inhibition of hnRNPA2B1 protein, whose binding affinities were confirmed by isothermal titration calorimetry analysis. In addition, MO-2097 demonstrated in vivo efficacy and biocompatibility in a BALB/c mice xenograft model. The immunohistochemistry staining of MO-2097-treated tissues showed decreased expression of HIF-1α and increased levels of apoptosis marker cleaved caspase 3, confirming in vivo efficacy. Furthermore, we confirmed that MO-2097 works effectively in cancer patient-based organoid models. CONCLUSION MO-2097 represents a promising new generation of chemotherapeutic agents targeting HIF-1α inhibition via hnRNPA2B1, requiring further investigation.
Collapse
Affiliation(s)
- Ho Jin Han
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Aneesh Sivaraman
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyoung Ho Min
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Mo Eun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Won-Jun Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Junyeol Han
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Biomolecular Science, University of Science, and Technology, Daejeon, 34113, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - In-Ja Ryoo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Nak-Kyun Soung
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Biomolecular Science, University of Science, and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Xinliang Z, Achkasov EE, Gavrikov LK, Yuchen L, Zhang C, Dudnik EN, Rumyantseva O, Beeraka NM, Glazachev OS. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed Pharmacother 2024; 178:117275. [PMID: 39126774 DOI: 10.1016/j.biopha.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational pulmonary diseases (OPDs) pose a significant global health challenge, contributing to high mortality rates. This review delves into the pathophysiology of hypoxia and the safety of intermittent hypoxic conditioning (IHC) in OPD patients. By examining sources such as PubMed, Relemed, NLM, Scopus, and Google Scholar, the review evaluates the efficacy of IHC in clinical outcomes for OPD patients. It highlights the complexities of cardiovascular and respiratory regulation dysfunctions in OPDs, focusing on respiratory control abnormalities and the impact of intermittent hypoxic exposures. Key areas include the physiological effects of hypoxia, the role of hypoxia-inducible factor-1 alpha (HIF-1α) in occupational lung diseases, and the links between brain ischemia, stroke, and OPDs. The review also explores the interaction between intermittent hypoxic exposures, mitochondrial energetics, and lung physiology. The potential of IHE to improve clinical manifestations and underlying pathophysiology in OPD patients is thoroughly examined. This comprehensive analysis aims to benefit molecular pathologists, pulmonologists, clinicians, and physicians by enhancing understanding of IHE's clinical benefits, from research to patient care, and improving clinical outcomes for OPD patients.
Collapse
Affiliation(s)
- Zhang Xinliang
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Eugeny E Achkasov
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Leonid K Gavrikov
- Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd 400131, Russia.
| | - Li Yuchen
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Chen Zhang
- Chair of Epidemiology and Modern Technologies of Vaccination, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia
| | - Elena N Dudnik
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Olga Rumyantseva
- Izmerov Research Institute of Occupational Health, 31 Budeynniy Avenye, Moscow 105275, Russia.
| | - Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India.
| | - Oleg S Glazachev
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| |
Collapse
|
5
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
6
|
Wang Y, Wang L, Xie D, Chen B. Investigating the molecular mechanism of Mori Cortex against osteosarcoma by bioinformatics analysis and in vitro experimental. Medicine (Baltimore) 2024; 103:e38261. [PMID: 38758844 PMCID: PMC11098204 DOI: 10.1097/md.0000000000038261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVE To explore the therapeutic mechanism of Mori Cortex against osteosarcoma (OS), we conducted bioinformatics prediction followed by in vitro experimental validation. METHODS Gene expression data from normal and OS tissues were obtained from the GEO database and underwent differential analysis. Active Mori Cortex components and target genes were extracted from the Traditional Chinese Medicine System Pharmacology database. By intersecting these targets with differentially expressed genes in OS, we identified potential drug action targets. Using the STRING database, a protein-protein interaction network was constructed. Subsequent analyses of these intersected genes, including Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, were performed using R software to elucidate biological processes, molecular functions, and cellular components, resulting in the simulation of signaling pathways. Molecular docking assessed the binding capacity of small molecules to signaling pathway targets. In vitro validations were conducted on U-2 OS cells. The CCK8 assay was used to determine drug-induced cytotoxicity in OS cells, and Western Blotting was employed to validate the expression of AKT, extracellular signal-regulated kinases (ERK), Survivin, and Cyclin D1 proteins. RESULTS Through differential gene expression analysis between normal and OS tissues, we identified 12,364 differentially expressed genes. From the TCSMP database, 39 active components and 185 therapeutic targets related to OS were derived. The protein-protein interaction network indicated that AKT1, IL-6, JUN, VEGFA, and CASP3 might be central targets of Mori Cortex for OS. Molecular docking revealed that the active compound Morusin in Mori Cortex exhibits strong binding affinity to AKT and ERK. The CCK8 assay showed that Morusin significantly inhibits the viability of U-2 OS cells. Western Blot demonstrated a reduction in the p-AKT/AKT ratio, the p-ERK/ERK ratio, Survivin, and Cyclin D1. CONCLUSION Mori Cortex may exert its therapeutic effects on OS through multiple cellular signaling pathways. Morusin, the active component of Mori Cortex, can inhibit cell cycle regulation and promote cell death in OS cells by targeting AKT/ERK pathway.
Collapse
Affiliation(s)
- Yuanhui Wang
- Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling Wang
- Department of Operating Room, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongke Xie
- Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Chen
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Rehabilitation Science, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
7
|
Wang J, Zhang J, Liu H, Meng L, Gao X, Zhao Y, Wang C, Gao X, Fan A, Cao T, Fan D, Zhao X, Lu Y. N6-methyladenosine reader hnRNPA2B1 recognizes and stabilizes NEAT1 to confer chemoresistance in gastric cancer. Cancer Commun (Lond) 2024; 44:469-490. [PMID: 38512764 PMCID: PMC11024687 DOI: 10.1002/cac2.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Chemoresistance is a major cause of treatment failure in gastric cancer (GC). Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an N6-methyladenosine (m6A)-binding protein involved in a variety of cancers. However, whether m6A modification and hnRNPA2B1 play a role in GC chemoresistance is largely unknown. In this study, we aimed to investigate the role of hnRNPA2B1 and the downstream mechanism in GC chemoresistance. METHODS The expression of hnRNPA2B1 among public datasets were analyzed and validated by quantitative PCR (qPCR), Western blotting, immunofluorescence, and immunohistochemical staining. The biological functions of hnRNPA2B1 in GC chemoresistance were investigated both in vitro and in vivo. RNA sequencing, methylated RNA immunoprecipitation, RNA immunoprecipitation, and RNA stability assay were performed to assess the association between hnRNPA2B1 and the binding RNA. The role of hnRNPA2B1 in maintenance of GC stemness was evaluated by bioinformatic analysis, qPCR, Western blotting, immunofluorescence, and sphere formation assays. The expression patterns of hnRNPA2B1 and downstream regulators in GC specimens from patients who received adjuvant chemotherapy were analyzed by RNAscope and multiplex immunohistochemistry. RESULTS Elevated expression of hnRNPA2B1 was found in GC cells and tissues, especially in multidrug-resistant (MDR) GC cell lines. The expression of hnRNPA2B1 was associated with poor outcomes of GC patients, especially in those who received 5-fluorouracil treatment. Silencing hnRNPA2B1 effectively sensitized GC cells to chemotherapy by inhibiting cell proliferation and inducing apoptosis both in vitro and in vivo. Mechanically, hnRNPA2B1 interacted with and stabilized long noncoding RNA NEAT1 in an m6A-dependent manner. Furthermore, hnRNPA2B1 and NEAT1 worked together to enhance the stemness properties of GC cells via Wnt/β-catenin signaling pathway. In clinical specimens from GC patients subjected to chemotherapy, the expression levels of hnRNPA2B1, NEAT1, CD133, and CD44 were markedly elevated in non-responders compared with responders. CONCLUSION Our findings indicated that hnRNPA2B1 interacts with and stabilizes lncRNA NEAT1, which contribute to the maintenance of stemness property via Wnt/β-catenin pathway and exacerbate chemoresistance in GC.
Collapse
Affiliation(s)
- Jiayao Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
- The Air Force Hospital of Southern Theater CommandGuangzhouGuangdongP. R. China
| | - Jiehao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
- The Air Force Hospital of Southern Theater CommandGuangzhouGuangdongP. R. China
| | - Hao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Lingnan Meng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
| | - Xianchun Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Yihan Zhao
- Second Clinical CollegeShaanxi University of Traditional Chinese MedicineXianyangShaanxiP. R. China
| | - Chen Wang
- College of Life SciencesNorthwest UniversityXi'anShaanxiP. R. China
| | - Xiaoliang Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Ahui Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Tianyu Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| |
Collapse
|
8
|
Lu Y, Zou R, Gu Q, Wang X, Zhang J, Ma R, Wang T, Wu J, Feng J, Zhang Y. CRNDE mediated hnRNPA2B1 stability facilitates nuclear export and translation of KRAS in colorectal cancer. Cell Death Dis 2023; 14:611. [PMID: 37716979 PMCID: PMC10505224 DOI: 10.1038/s41419-023-06137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Development of colorectal cancer (CRC) involves activation of Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling. However, the post-transcriptional regulation of KRAS has yet to be fully characterized. Here, we found that the colorectal neoplasia differentially expressed (CRNDE)/heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) axis was notably elevated in CRC and was strongly associated with poor prognosis of patients, while also significantly promoting CRC cell proliferation and metastasis both in vitro and in vivo. Furthermore, CRNDE maintained the stability of hnRNPA2B1 protein by inhibiting E3 ubiquitin ligase TRIM21 mediated K63 ubiquitination-dependent protein degradation. CRNDE/hnRNPA2B1 axis facilitated the nuclear export and translation of KRAS mRNA, which specifically activated the MAPK signaling pathway, eventually accelerating the malignant progression of CRC. Our findings provided insight into the regulatory network for stable hnRNPA2B1 protein expression, and the molecular mechanisms by which the CRNDE/hnRNPA2B1 axis mediated KRAS nucleocytoplasmic transport and translation, deeply underscoring the bright future of hnRNPA2B1 as a promising biomarker and therapeutic target for CRC. By hindering hnRNPA2B1 from binding to the E3 ubiquitin ligase TRIM21, whose mediated ubiquitin-dependent degradation was thereby inhibited, CRNDE protected the stability of hnRNPA2B1's high protein expression in CRC. Supported by the high level of the oncogenic molecule CRNDE, hnRNPA2B1 bound to KRAS mRNA and promoted KRAS mRNA nucleus export to enter the ribosomal translation program, subsequently activating the MAPK signaling pathway and ultimately accelerating the malignant progression of CRC.
Collapse
Affiliation(s)
- Ya Lu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Renrui Zou
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Quan Gu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Wang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Junying Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Ma
- Research Center of Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Research Center of Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan Zhang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
- Research Center of Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Li H, Liu Y, Xue Z, Zhang L, Ruan X, Yang J, Fan Z, Zhao H, Cao Y, Chen G, Xu Y, Zhou L. Adamantaniline Derivatives Target ATP5B to Inhibit Translation of Hypoxia Inducible Factor-1α. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301071. [PMID: 37401167 PMCID: PMC10477886 DOI: 10.1002/advs.202301071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Indexed: 07/05/2023]
Abstract
Hypoxia inducible factor-1α (HIF-1α) plays a critical role in cellular adaptation to hypoxia and it is a potential therapeutic target for anti-cancer drugs. Applying high-throughput screening, here it is found that HI-101, a small molecule containing an adamantaniline moiety, effectively reduces HIF-1α protein expression. With the compound as a hit, a probe (HI-102) is developed for target identification by affinity-based protein profiling. The catalytic β subunit of mitochondrial FO F1 -ATP synthase, ATP5B, is identified as the binding protein of HI-derivatives. Mechanistically, HI-101 promotes the binding of HIF-1α mRNA to ATP5B, thus inhibiting HIF-1α translation and the following transcriptional activity. Further modifications of HI-101 lead to HI-104, a compound with good pharmacokinetic properties, exhibiting antitumor activity in MHCC97-L mice xenograft model, and HI-105, the most potent compound with an IC50 of 26 nm. The findings provide a new strategy for further developing HIF-1α inhibitors by translational inhibition through ATP5B.
Collapse
Affiliation(s)
- Huiti Li
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Yali Liu
- Institute of Aging & Tissue RegenerationNational Key Laboratory of Cancer Systems Medicine and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zian Xue
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Li Zhang
- Institute of Precision Medicinethe Ninth People's HospitalShanghai Jiao Tong University School of Medicine115 Jinzun RoadShanghai200125China
| | - Xiaoxue Ruan
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Jintong Yang
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Zhongjiao Fan
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| | - Hongfang Zhao
- Institute of Aging & Tissue RegenerationNational Key Laboratory of Cancer Systems Medicine and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yu Cao
- Institute of Precision Medicinethe Ninth People's HospitalShanghai Jiao Tong University School of Medicine115 Jinzun RoadShanghai200125China
| | - Guoqiang Chen
- Institute of Aging & Tissue RegenerationNational Key Laboratory of Cancer Systems Medicine and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043)Renji HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ying Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Lu Zhou
- Department of Medicinal ChemistrySchool of PharmacyFudan University826 Zhangheng RoadShanghai201203P. R. China
| |
Collapse
|
10
|
Wu Y, Li A, Chen C, Fang Z, Chen L, Zheng X. Biological function and research progress of N6-methyladenosine binding protein heterogeneous nuclear ribonucleoprotein A2B1 in human cancers. Front Oncol 2023; 13:1229168. [PMID: 37546413 PMCID: PMC10399595 DOI: 10.3389/fonc.2023.1229168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification found in both mRNA and lncRNA. It exerts reversible regulation over RNA function and affects RNA processing and metabolism in various diseases, especially tumors. The m6A binding protein, hnRNPA2B1, is extensively studied as a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) protein family. It is frequently dysregulated and holds significant importance in multiple types of tumors. By recognizing m6A sites for variable splicing, maintaining RNA stability, and regulating translation and transport, hnRNPA2B1 plays a vital role in various aspects of tumor development, metabolism, and regulation of the immune microenvironment. In this review, we summarized the latest research on the functional roles and underlying molecular mechanisms of hnRNPA2B1. Moreover, we discussed its potential as a target for tumor therapy.
Collapse
Affiliation(s)
- Yue Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - An Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Can Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute for Cell Therapy, Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
11
|
Zohar Y, Mabjeesh NJ. Targeting HIF-1 for prostate cancer: a synthesis of preclinical evidence. Expert Opin Ther Targets 2023; 27:715-731. [PMID: 37596912 DOI: 10.1080/14728222.2023.2248381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
INTRODUCTION Hypoxia-inducible factor (HIF) mediates multiple intracellular processes that drive cellular metabolism and induce proliferation. Dysregulated HIF expression is associated with oncogenic cellular transformation. Moreover, high HIF levels correlate with tumor aggressiveness and chemoresistance, indicating the vital effect of HIF-1α on tumorigenicity. Currently, widespread in-vitro and in-vivo research is focusing on targeting HIF with drugs that have already been approved for use by the FDA, such as belzutifan, in renal cell carcinoma. HIF inhibition is mostly associated with tumor size reduction; however, drug toxicity remains a challenge. AREA COVERED In this review, we focus on the potential of targeting HIF in prostate cancer (PC) and summarize the scientific background of HIF activity in PC. This finding emphasizes the rationale for using HIF as a therapeutic target in this malignancy. We have listed known HIF inhibitors that are being investigated in preclinical studies and their potential as anticancer drugs for PC. EXPERT OPINION Although HIF-targeting agents have been investigated for over a decade, their use in therapy-resistant cancers remains relevant and should be explored further. In addition, the use of naturally occurring HIF inhibitors should be considered as an add-on therapy for the currently used regimens.
Collapse
Affiliation(s)
- Yarden Zohar
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Nicola J Mabjeesh
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
12
|
Jia W, Yuan J, Cheng B, Ling C. Targeting tumor-derived exosome-mediated premetastatic niche formation: The metastasis-preventive value of traditional Chinese medicine. Cancer Lett 2023:216261. [PMID: 37302563 DOI: 10.1016/j.canlet.2023.216261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Tumor-derived exosome (TDE)-mediated premetastatic niche (PMN) formation is a potential mechanism underlying the organotropic metastasis of primary tumors. Traditional Chinese medicine (TCM) has shown considerable success in preventing and treating tumor metastasis. However, the underlying mechanisms remain elusive. In this review, we discussed PMN formation from the perspectives of TDE biogenesis, cargo sorting, and TDE recipient cell alterations, which are critical for metastatic outgrowth. We also reviewed the metastasis-preventive effects of TCM, which act by targeting the physicochemical materials and functional mediators of TDE biogenesis, regulating the cargo sorting machinery and secretory molecules in TDEs, and targeting the TDE-recipient cells involved in PMN formation.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Jiaying Yuan
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| |
Collapse
|
13
|
Feng R, Yin Y, Wei Y, Li Y, Li L, Zhu R, Yu X, Liu Y, Zhao Y, Liu Z. Mutant p53 activates hnRNPA2B1-AGAP1-mediated exosome formation to promote esophageal squamous cell carcinoma progression. Cancer Lett 2023; 562:216154. [PMID: 37030635 DOI: 10.1016/j.canlet.2023.216154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023]
Abstract
p53 mutations predispose cancer cell development, promote their survival and metastasis, and lead to ineffective therapeutic responses and unfavorable prognosis. No drug that abrogates the oncogenic functions of mutant p53 has been approved for cancer treatment. Here, we performed whole-genome sequencing of 663 esophageal squamous cell carcinoma (ESCC) tumor tissues and paired normal tissues. The results indicated that ESCC samples from our cohort had a more dispersed distribution of TP53 mutants and a higher proportion of nonsense mutants than European and American ESCC samples in the International Agency for Research on Cancer (IARC) database. The most frequent p53 mutations disrupt the inhibition of proliferation, migration, and invasion mediated by wild-type p53 in ESCC. Furthermore, p53 mutations alter its protein nucleoplasmic localization and protein stability. The p53 mutation G245S (p53-G245S) interacts with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) to increase protein translation of phosphatidylinositol-dependent Arf GAP (AGAP1) by promoting AGAP1 mRNA stability. AGAP1 promotes cancer cell proliferation and metastasis by enhancing exosome formation. Furthermore, we explored the combination of the HSP90 inhibitor HSP90i and the AGAP1 inhibitor QS11 could inhibit ESCC cell proliferation and metastasis. Thus, the p53-G245S/hnRNPA2B1/AGAP1 axis promotes ESCC progression by enhancing exosome formation, and the combination of an HSP90 inhibitor and an AGAP1 inhibitor may serve as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Riyue Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yin Yin
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuge Wei
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Li
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Rui Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers (Basel) 2022; 14:cancers14246054. [PMID: 36551540 PMCID: PMC9775408 DOI: 10.3390/cancers14246054] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the transcription of many genes that are responsible for the adaptation and survival of tumor cells in hypoxic environments. Over the past few decades, tremendous efforts have been made to comprehensively understand the role of HIF-1 in tumor progression. Based on the pivotal roles of HIF-1 in tumor biology, many HIF-1 inhibitors interrupting expression, stabilization, DNA binding properties, or transcriptional activity have been identified as potential therapeutic agents for various cancers, yet none of these inhibitors have yet been successfully translated into clinically available cancer treatments. In this review, we briefly introduce the regulation of the HIF-1 pathway and summarize its roles in tumor cell proliferation, angiogenesis, and metastasis. In addition, we explore the implications of HIF-1 in the development of drug resistance and cancer-related pain: the most commonly encountered obstacles during conventional anticancer therapies. Finally, the current status of HIF-1 inhibitors in clinical trials and their perspectives are highlighted, along with their modes of action. This review provides new insights into novel anticancer drug development targeting HIF-1. HIF-1 inhibitors may be promising combinational therapeutic interventions to improve the efficacy of current cancer treatments and reduce drug resistance and cancer-related pain.
Collapse
|
15
|
Emerging roles of hnRNP A2B1 in cancer and inflammation. Int J Biol Macromol 2022; 221:1077-1092. [PMID: 36113587 DOI: 10.1016/j.ijbiomac.2022.09.104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a group of RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing, transactivation of gene expression, and regulation of protein translation. As a core component of the hnRNP complex in mammalian cells, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNP A2B1) participates in and coordinates various molecular events. Given its regulatory role in inflammation and cancer progression, hnRNP A2B1 has become a novel player in immune response, inflammation, and cancer development. Concomitant with these new roles, a surprising number of mechanisms deemed to regulate hnRNP A2B1 functions have been identified, including post-translational modifications, changes in subcellular localization, direct interactions with multiple DNAs, RNAs, and proteins or the formation of complexes with them, which have gradually made hnRNP A2B1 a molecular target for multiple drugs. In light of the rising interest in the intersection between cancer and inflammation, this review will focus on recent knowledge of the biological roles of hnRNP A2B1 in cancer, immune response, and inflammation.
Collapse
|
16
|
Action Sites and Clinical Application of HIF-1α Inhibitors. Molecules 2022; 27:molecules27113426. [PMID: 35684364 PMCID: PMC9182161 DOI: 10.3390/molecules27113426] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 01/02/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is widely distributed in human cells, and it can form different signaling pathways with various upstream and downstream proteins, mediate hypoxia signals, regulate cells to produce a series of compensatory responses to hypoxia, and play an important role in the physiological and pathological processes of the body, so it is a focus of biomedical research. In recent years, various types of HIF-1α inhibitors have been designed and synthesized and are expected to become a new class of drugs for the treatment of diseases such as tumors, leukemia, diabetes, and ischemic diseases. This article mainly reviews the structure and functional regulation of HIF-1α, the modes of action of HIF-1α inhibitors, and the application of HIF-1α inhibitors during the treatment of diseases.
Collapse
|
17
|
Asadi MR, Moslehian MS, Sabaie H, Poornabi M, Ghasemi E, Hassani M, Hussen BM, Taheri M, Rezazadeh M. Stress Granules in the Anti-Cancer Medications Mechanism of Action: A Systematic Scoping Review. Front Oncol 2021; 11:797549. [PMID: 35004322 PMCID: PMC8739770 DOI: 10.3389/fonc.2021.797549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022] Open
Abstract
Stress granule (SG) formation is a well-known cellular mechanism for minimizing stress-related damage and increasing cell survival. In addition to playing a critical role in the stress response, SGs have emerged as critical mediators in human health. It seems logical that SGs play a key role in cancer cell formation, development, and metastasis. Recent studies have shown that many SG components contribute to the anti-cancer medications' responses through tumor-associated signaling pathways and other mechanisms. SG proteins are known for their involvement in the translation process, control of mRNA stability, and capacity to function in both the cytoplasm and nucleus. The current systematic review aimed to include all research on the impact of SGs on the mechanism of action of anti-cancer medications and was conducted using a six-stage methodological framework and the PRISMA guideline. Prior to October 2021, a systematic search of seven databases for eligible articles was performed. Following the review of the publications, the collected data were subjected to quantitative and qualitative analysis. Notably, Bortezomib, Sorafenib, Oxaliplatin, 5-fluorouracil, Cisplatin, and Doxorubicin accounted for the majority of the medications examined in the studies. Overall, this systematic scoping review attempts to demonstrate and give a complete overview of the function of SGs in the mechanism of action of anti-cancer medications by evaluating all research.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziye Poornabi
- Student Research Committee, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Elham Ghasemi
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maryam Rezazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
张 河, 陈 南, 王 晓, 高 白, 凌 木, 陈 果, 吴 志, 李 宇, 钟 伟, 潘 斌. [Identification and validation of hub genes in prostate cancer progression based on weighted gene co-expression network analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1631-1640. [PMID: 34916188 PMCID: PMC8685695 DOI: 10.12122/j.issn.1673-4254.2021.11.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To identify the key hub genes in prostate cancer metastasis based on weighted gene co-expression network analysis (WGCNA) and verify the identified genes. METHODS Whole-genome chip data GSE6919 of prostate cancer study were analyzed using principal component analysis (PCA), and the differentially expressed genes (DEGs) were analyzed using R software. WGCNA was performed to construct a gene co-expression network for screening the key genes. TCGA database was used to explore the expressions of the DEGs and their association with the prognosis. To validate the results, we designed siRNA fragments targeting the metastasis-related gene HNRNPA2B1, and observed its effect on growth, apoptosis, clone formation, migration and invasion of prostate cancer cell lines using MTT assay, flow cytometry, clone formation assay, and Transwell assay. RESULTS PCA analysis showed obvious clustering of significant DEGs in metastatic cancer group. The modules obtained by WGCNA analysis in metastasis group involved stem cell differentiation, amino acid metabolism and immune response. Further screening of the genes identified 3 genes related with prostate cancer occurrence (BDH1, PAK4 and EXTL3) and another 3 with prostate cancer metastasis (NKTR, CTBP2 and HNRNPA2B1), which were shown to have differential expressions in TCGA database and were correlated with the patient's overall survival. In the cell experiment, PC3 and LNCap cells transfected with the siRNA fragment targeting HNRNPA2B1 showed obvious growth inhibition with increased cell apoptosis, lowered clone formation ability, and suppressed capacities for migration and invasion. CONCLUSION We identified 3 hub genes related with the occurrence (BDH1, PAK4 and EXTL3) and another 3 with metastasis of prostate cancer (NKTR, CTBP2 and HNRNPA2B1) using WGCNA, which provides a new approach for studying the regulatory mechanisms of prostate cancer.
Collapse
Affiliation(s)
- 河元 张
- 广东省梅州市人民医院泌尿外科,广东 梅州 514021Department of Urology, Meizhou People's Hospital, Meizhou 514021, China
| | - 南辉 陈
- 广东省梅州市人民医院泌尿外科,广东 梅州 514021Department of Urology, Meizhou People's Hospital, Meizhou 514021, China
- 南方医科大学南方医院泌尿外科,广东 广州 510515Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓红 王
- 南方医科大学第三附属医院肾内科,广东 广州 510630Department of Nephrology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 白云 高
- 暨南大学附属第一医院泌尿外科,广东 广州 510630Department of Urology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - 木安 凌
- 暨南大学附属第一医院泌尿外科,广东 广州 510630Department of Urology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - 果 陈
- 暨南大学附属第一医院泌尿外科,广东 广州 510630Department of Urology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - 志明 吴
- 中山大学肿瘤防治中心泌尿外科,广东 广州 510060Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - 宇同 李
- 暨南大学附属第一医院泌尿外科,广东 广州 510630Department of Urology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - 伟枫 钟
- 广州 市第十二人民医院泌尿外科,广东 广州 510630Department of Urology, Guangzhou Twelfth People's Hospital, Guangzhou 510630, China
- 中山大学肿瘤防治中心泌尿外科,广东 广州 510060Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - 斌 潘
- 暨南大学附属第一医院泌尿外科,广东 广州 510630Department of Urology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
19
|
Jiang F, Tang X, Tang C, Hua Z, Ke M, Wang C, Zhao J, Gao S, Jurczyszyn A, Janz S, Beksac M, Zhan F, Gu C, Yang Y. HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. J Hematol Oncol 2021; 14:54. [PMID: 33794982 PMCID: PMC8017865 DOI: 10.1186/s13045-021-01066-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
N6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic RNAs while accumulating studies suggest that m6A aberrant expression plays an important role in cancer. HNRNPA2B1 is a m6A reader which binds to nascent RNA and thus affects a perplexing array of RNA metabolism exquisitely. Despite unveiled facets that HNRNPA2B1 is deregulated in several tumors and facilitates tumor growth, a clear role of HNRNPA2B1 in multiple myeloma (MM) remains elusive. Herein, we analyzed the function and the regulatory mechanism of HNRNPA2B1 in MM. We found that HNRNPA2B1 was elevated in MM patients and negatively correlated with favorable prognosis. The depletion of HNRNPA2B1 in MM cells inhibited cell proliferation and induced apoptosis. On the contrary, the overexpression of HNRNPA2B1 promoted cell proliferation in vitro and in vivo. Mechanistic studies revealed that HNRNPA2B1 recognized the m6A sites of ILF3 and enhanced the stability of ILF3 mRNA transcripts, while AKT3 downregulation by siRNA abrogated the cellular proliferation induced by HNRNPA2B1 overexpression. Additionally, the expression of HNRNPA2B1, ILF3 and AKT3 was positively associated with each other in MM tissues tested by immunohistochemistry. In summary, our study highlights that HNRNPA2B1 potentially acts as a therapeutic target of MM through regulating AKT3 expression mediated by ILF3-dependent pattern.
Collapse
Affiliation(s)
- Fengjie Jiang
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Xiaozhu Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Chao Tang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Zhen Hua
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Mengying Ke
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Chen Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Jiamin Zhao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Shengyao Gao
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Cracow, Poland
| | - Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, USA
| | - Meral Beksac
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| | - Fenghuang Zhan
- Internal Medicine, University of Iowa, Iowa City, USA.,Myeloma Center, University of Arkansas, Little Rock, USA
| | - Chunyan Gu
- The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China. .,School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
| | - Ye Yang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China. .,Internal Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
20
|
Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D'Agostino VG. RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles 2020; 10:e12043. [PMID: 33391635 PMCID: PMC7769857 DOI: 10.1002/jev2.12043] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous particles released from the cells through different biogenetic and secretory mechanisms. We now conceive EVs as shuttles mediating cellular communication, carrying a variety of molecules resulting from intracellular homeostatic mechanisms. The RNA is a widely detected cargo and, impressively, a recognized functional intermediate that elects EVs as modulators of cancer cell phenotypes, determinants of disease spreading, cell surrogates in regenerative medicine, and a source for non-invasive molecular diagnostics. The mechanistic elucidation of the intracellular events responsible for the engagement of RNA into EVs will significantly improve the comprehension and possibly the prediction of EV "quality" in association with cell physiology. Interestingly, the application of multidisciplinary approaches, including biochemical as well as cell-based and computational strategies, is increasingly revealing an active RNA-packaging process implicating RNA-binding proteins (RBPs) in the sorting of coding and non-coding RNAs. In this review, we provide a comprehensive view of RBPs recently emerging as part of the EV biology, considering the scenarios where: (i) individual RBPs were detected in EVs along with their RNA substrates, (ii) RBPs were detected in EVs with inferred RNA targets, and (iii) EV-transcripts were found to harbour sequence motifs mirroring the activity of RBPs. Proteins so far identified are members of the hnRNP family (hnRNPA2B1, hnRNPC1, hnRNPG, hnRNPH1, hnRNPK, and hnRNPQ), as well as YBX1, HuR, AGO2, IGF2BP1, MEX3C, ANXA2, ALIX, NCL, FUS, TDP-43, MVP, LIN28, SRP9/14, QKI, and TERT. We describe the RBPs based on protein domain features, current knowledge on the association with human diseases, recognition of RNA consensus motifs, and the need to clarify the functional significance in different cellular contexts. We also summarize data on previously identified RBP inhibitor small molecules that could also be introduced in EV research as potential modulators of vesicular RNA sorting.
Collapse
Affiliation(s)
- Fabrizio Fabbiano
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Jessica Corsi
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Elena Gurrieri
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Caterina Trevisan
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Michela Notarangelo
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Vito G. D'Agostino
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
21
|
Kim I, Kim M, Park MK, Naik R, Park JH, Kim BK, Choi Y, Chang KY, Won M, Ban HS, Lee K. The disubstituted adamantyl derivative LW1564 inhibits the growth of cancer cells by targeting mitochondrial respiration and reducing hypoxia-inducible factor (HIF)-1α accumulation. Exp Mol Med 2020; 52:1845-1856. [PMID: 33235318 PMCID: PMC8080809 DOI: 10.1038/s12276-020-00523-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Targeting cancer metabolism has emerged as an important cancer therapeutic strategy. Here, we describe the synthesis and biological evaluation of a novel class of hypoxia-inducible factor (HIF)-1α inhibitors, disubstituted adamantyl derivatives. One such compound, LW1564, significantly suppressed HIF-1α accumulation and inhibited the growth of various cancer cell lines, including HepG2, A549, and HCT116. Measurements of the oxygen consumption rate (OCR) and ATP production rate revealed that LW1564 suppressed mitochondrial respiration, thereby increasing the intracellular oxygen concentration to stimulate HIF-1α degradation. LW1564 also significantly decreased overall ATP levels by inhibiting mitochondrial electron transport chain (ETC) complex I and downregulated mammalian target of rapamycin (mTOR) signaling by increasing the AMP/ATP ratio, which increased AMP-activated protein kinase (AMPK) phosphorylation. Consequently, LW1564 promoted the phosphorylation of acetyl-CoA carboxylase, which inhibited lipid synthesis. In addition, LW1564 significantly inhibited tumor growth in a HepG2 mouse xenograft model. Taken together, the results indicate that LW1564 inhibits the growth of cancer cells by targeting mitochondrial ETC complex I and impairing cancer cell metabolism. We, therefore, suggest that LW1564 may be a potent therapeutic agent for a subset of cancers that rely on oxidative phosphorylation for ATP generation. A drug that curbs the accumulation of a critical protein involved in the oxygen-sensing machinery of cells could offer a potent new therapeutic for treating cancer. Inhyub Kim, University of Science and Technology, Daejeon, South Korea, and colleagues describe a compound called LW1564 that suppresses metabolism within mitochondria, the energy factories of the cell. Less energy production means less oxygen consumption and therefore oxygen molecules build up inside the cell, which in turn stimulates the degradation of HIF-1α, a master regulator of oxygen balance. Many tumors rely on HIF-1α for their aberrant biological characteristics, and without this protein they tend to show reduced growth. The authors demonstrated that LW1564 could limit HIF-1α accumulation and inhibit the proliferation of various cancer cell lines. The drug also inhibited tumor growth in a mouse model of liver cancer.
Collapse
Affiliation(s)
- Inhyub Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34141, Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Min Kyung Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea.,College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Ravi Naik
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Jae Hyung Park
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | | | - Misun Won
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon, 34141, Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, 34141, Korea.
| | - Hyun Seung Ban
- Biotherapeutics Translational Research Center, KRIBB, Daejeon, 34141, Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea.
| |
Collapse
|
22
|
Sudhakaran M, Parra MR, Stoub H, Gallo KA, Doseff AI. Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters. Biochem Pharmacol 2020; 182:114259. [PMID: 33011162 DOI: 10.1016/j.bcp.2020.114259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/14/2023]
Abstract
Acquired resistance to doxorubicin is a major hurdle in triple-negative breast cancer (TNBC) therapy, emphasizing the need to identify improved strategies. Apigenin and other structurally related dietary flavones are emerging as potential chemo-sensitizers, but their effect on three-dimensional TNBC spheroid models has not been investigated. We previously showed that apigenin associates with heterogeneous ribonuclear protein A2/B1 (hnRNPA2), an RNA-binding protein involved in mRNA and co-transcriptional regulation. However, the role of hnRNPA2 in apigenin chemo-sensitizing activity has not been investigated. Here, we show that apigenin induced apoptosis in TNBC spheroids more effectively than apigenin-glycoside, owing to higher cellular uptake. Moreover, apigenin inhibited the growth of TNBC patient-derived organoids at an in vivo achievable concentration. Apigenin sensitized spheroids to doxorubicin-induced DNA damage, triggering caspase-9-mediated intrinsic apoptotic pathway and caspase-3 activity. Silencing of hnRNPA2 decreased apigenin-induced sensitization to doxorubicin in spheroids by diminishing apoptosis and partly abrogated apigenin-mediated reduction of ABCC4 and ABCG2 efflux transporters. Together these findings provide novel insights into the critical role of hnRNPA2 in mediating apigenin-induced sensitization of TNBC spheroids to doxorubicin by increasing the expression of efflux transporters and apoptosis, underscoring the relevance of using dietary compounds as a chemotherapeutic adjuvant.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/biosynthesis
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/metabolism
- Apigenin/administration & dosage
- Apigenin/metabolism
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/metabolism
- Drug Delivery Systems/methods
- Female
- Gene Expression Regulation, Neoplastic
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/deficiency
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics
- Humans
- Mice
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - Michael Ramirez Parra
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Hayden Stoub
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, United States
| | - Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States.
| | - Andrea I Doseff
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
23
|
Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1612. [PMID: 32588964 DOI: 10.1002/wrna.1612] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein hnRNPA2/B1 is a member of the hnRNPs family and is widely expressed in various tissues. hnRNPA2/B1 recognizes and binds specific RNA substrates and DNA motifs and is involved in the transcription, splicing processing, transport, stability, and translation regulation of a variety of RNA molecules and in regulating the expression of a large number of genes. hnRNPA2/B1 is also involved in telomere maintenance and DNA repair, while its expression changes and mutations are involved in the development of various tumors and neurodegenerative and autoimmune diseases. This paper reviews the role and mechanism of hnRNPA2/B1 in RNA metabolism, tumors, and neurodegenerative and autoimmune diseases. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Tang W, Zhao G. Small molecules targeting HIF-1α pathway for cancer therapy in recent years. Bioorg Med Chem 2019; 28:115235. [PMID: 31843464 DOI: 10.1016/j.bmc.2019.115235] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Hypoxia is a very important feature of tumors, especially for solid tumors, and it was demonstrated highly relevant with aggressive biology, including anti-apoptosis, vasculogenesis and radiation or chemotherapy resistance. Correlatively, hypoxia-inducible factors 1-α (HIF-1α), which the wildest contribution of hypoxia-inducible factors (HIFs), plays a crucial role in the adaptation of tumor cells to hypoxia via upregulating the transcription of the oncogene and downregulating the transcription of suppressor gene. This review focus on the HIF-1α regulation including hydroxylation and acetylation, growth factors pathway, heat shock proteins(HSPs), and small molecule inhibitors for HIF-1α directly or indirectly.
Collapse
Affiliation(s)
- Wendi Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, PR China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, PR China.
| |
Collapse
|