1
|
Jeon Y, Kim T, Kwon H, Park YN, Kwon TH, Hong M, Choi KC, Ham J, Kim YJ. Cannabidiol potentiates p53-driven autophagic cell death in non-small cell lung cancer following DNA damage: a novel synergistic approach beyond canonical pathways. Exp Mol Med 2025:10.1038/s12276-025-01444-x. [PMID: 40307570 DOI: 10.1038/s12276-025-01444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 05/02/2025] Open
Abstract
The search for more effective and safer cancer therapies has led to an increasing interest in combination treatments that use well-established agents. Here we explore the potential of cannabidiol (CBD), a compound derived from cannabis, to enhance the anticancer effects of etoposide in non-small cell lung cancer (NSCLC). Although CBD is primarily used to manage childhood epilepsy, its broader therapeutic applications are being actively investigated, particularly in oncology. Our results revealed that, among various tested chemotherapeutic drugs, etoposide showed the most significant reduction in NSCLC cell viability when combined with CBD. To understand this synergistic effect, we conducted extensive transcriptomic and proteomic profiling, which showed that the combination of CBD and etoposide upregulated genes associated with autophagic cell death while downregulating key oncogenes known to drive tumor progression. This dual effect on cell death and oncogene suppression was mediated by inactivation of the PI3K-AKT-mTOR signaling pathway, a crucial regulator of cell growth and survival, and was found to be dependent on the p53 status. Interestingly, our analysis revealed that this combination therapy did not rely on traditional cannabinoid receptors or transient receptor potential cation channels, indicating that CBD exerts its anticancer effects through novel, noncanonical mechanisms. The findings suggest that the combination of CBD with etoposide could represent a groundbreaking approach to NSCLC treatment, particularly in cases where conventional therapies fail. By inducing autophagic cell death and inhibiting oncogenic pathways, this therapeutic strategy offers a promising new avenue for enhancing treatment efficacy in NSCLC, especially in tumors with p53 function.
Collapse
Affiliation(s)
- Youngsic Jeon
- Institute of Natural Products, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Taejung Kim
- Institute of Natural Products, Korea Institute of Science and Technology, Gangneung, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology, Gangneung, Republic of Korea
| | - Hyukjoon Kwon
- Institute of Natural Products, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyung Kwon
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon, Republic of Korea
| | - Min Hong
- Institute of Biological Resources, Chuncheon Bioindustry Foundation, Chuncheon, Republic of Korea
| | - Kyung-Chul Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jungyeob Ham
- Institute of Natural Products, Korea Institute of Science and Technology, Gangneung, Republic of Korea.
- Natural Product Applied Science, KIST School, University of Science and Technology, Gangneung, Republic of Korea.
- NeoCannBio Co. Ltd, Seoul, Republic of Korea.
| | - Young-Joo Kim
- Institute of Natural Products, Korea Institute of Science and Technology, Gangneung, Republic of Korea.
| |
Collapse
|
2
|
Wang DH, He DW, Lv TT, Zhang XK, Li ZJ, Wang ZY. Estrogen receptor α suppresses hepatocellular carcinoma by restricting M2 macrophage infiltration through the YAP-CCL2 axis. BMC Cancer 2025; 25:550. [PMID: 40148834 PMCID: PMC11948847 DOI: 10.1186/s12885-025-13676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/06/2025] [Indexed: 03/29/2025] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with significant differences in incidence and outcomes between men and women. Estrogen receptor alpha (ERα) expression is associated with sex-based differences and poor prognostic outcomes in HCC. However, the detailed function of ERα in the tumor microenvironment of HCC remains unclear. METHODS Bioinformatics analysis of differentially expressed genes in HCC samples was performed from publicly available databases, and ERα was selected. The function of ERα was examined in the cell experiments. A co-culture system was built to study function of ERα-treated liver cells on macrophages in vitro. The precise mechanism was determined using quantitative real-time PCR, western blotting, immunohistochemistry, mass spectrometry, co-immunoprecipitation, and dual-luciferase reporter assay. RESULTS ERα played an important role in the pathogenesis of sexual dimorphism in HCC. ERα mainly acted on macrophages in the tumor microenvironment (TME) of HCC and reduced M2 macrophage infiltration through CCL2. By acting on NF2 and 14-3-3theta, ERα enhanced YAP phosphorylation and attenuated the nuclear translocation of YAP, thereby suppressing CCL2 expression. It also acted as a transcription factor that regulated CCL2 expression at the transcriptional level. CONCLUSION ERα/YAP/CCL2 signaling reduced M2 macrophages infiltration to inhibit HCC progression, revealing the effect of ERα in cancer cells on immune cells in HCC microenvironment.
Collapse
Affiliation(s)
- De-Hua Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, P. R. China
- Division of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050023, P. R. China
| | - Dong-Wei He
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, P. R. China
| | - Ting-Ting Lv
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, P. R. China
| | - Xiao-Kuan Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, P. R. China
| | - Zi-Jie Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, P. R. China
| | - Zhi-Yu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, P. R. China.
- , 12, Jiankang Road, Chang'an District, Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
3
|
Chen X, Ji X, Lao Z, Pan B, Qian Y, Yang W. Role of YAP/TAZ in bone diseases: A transductor from mechanics to biology. J Orthop Translat 2025; 51:13-23. [PMID: 39902099 PMCID: PMC11787699 DOI: 10.1016/j.jot.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Wolff's Law and the Mechanostat Theory elucidate how bone tissues detect and convert mechanical stimuli into biological signals, crucial for maintaining bone equilibrium. Abnormal mechanics can lead to diseases such as osteoporosis, osteoarthritis, and nonunion fractures. However, the detailed molecular mechanisms by which mechanical cues are transformed into biological responses in bone remain underexplored. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of bone homeostasis, are instrumental in this process. Emerging research highlights bone cells' ability to sense various mechanical stimuli and relay these signals intracellularly. YAP/TAZ are central in receiving these mechanical cues and converting them into signals that influence bone cell behavior. Abnormal YAP/TAZ activity is linked to several bone pathologies, positioning these proteins as promising targets for new treatments. Thus, this review aims to provide an in-depth examination of YAP/TAZ's critical role in the interpretation of mechanical stimuli to biological signals, with a special emphasis on their involvement in bone cell mechanosensing, mechanotransduction, and mechanoresponse. The translational potential of this article: Clinically, appropriate stress stimulation promotes fracture healing, while bed rest can lead to disuse osteoporosis and excessive stress can cause osteoarthritis or bone spurs. Recent advancements in the understanding of YAP/TAZ-mediated mechanobiological signal transduction in bone diseases have been significant, yet many aspects remain unknown. This systematic review summarizes current research progress, identifies unaddressed areas, and highlights potential future research directions. Advancements in this field facilitate a deeper understanding of the molecular mechanisms underlying bone mechanics regulation and underscore the potential of YAP/TAZ as therapeutic targets for bone diseases such as fractures, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
4
|
Jeon Y, Kim J, Kwon H, Yeon YJ, Kim T, Ham J, Kim YJ. Cannabiorcol as a novel inhibitor of the p38/MSK-1/NF-κB signaling pathway, reducing matrix metalloproteinases in osteoarthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156141. [PMID: 39405610 DOI: 10.1016/j.phymed.2024.156141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The bioactivity and potential medicinal applications of cannabiorcol, a lesser-known derivative of Cannabis sativa, require further investigation. Osteoarthritis (OA) is a chronic joint condition marked by gradual degradation of the cartilage and commonly associated with elevated levels of matrix metalloproteinases (MMPs). However, the influence of cannabiorcol on OA and its underlying mechanisms remains unclear. METHODS In silico analysis investigated the key transcription factors that regulate MMP expression. A chondrocyte cell model [interleukin (IL)-1β and IL-1⍺-treated C20A4 cell line] was established and treated with cannabiorcol. Associated cytotoxicity was assessed using a WST-8 assay. A monoiodoacetate-induced OA rat model was established and treated with cannabiorcol. Protein translocation and transactivation analyses were conducted using immunofluorescence and dual-luciferase reporter assays, respectively. Western blotting and real-time PCR analyzed relevant markers to examine cannabiorcol's effects on OA and its fundamental mechanisms. RESULTS Cannabiorcol inhibits the expression of IL-1β-induced MMPs compared to other cannabis-related compounds. In silico analysis revealed that the nuclear factor-kappa β (NF-κβ) and mitogen-activated protein kinase (MAPK) pathways are associated with MMP expression as key regulators. In vitro, cannabiorcol inhibits the NF-κB and p38 MAPK pathways independently cannabinoid receptors and transient receptor potential vanilloids. In vivo, cannabiorcol reduces MMP expression and ameliorates monoiodoacetate-induced OA traits in rats. CONCLUSION Cannabiorcol inhibits IL-1β-induced MMP expression in vitro and alleviates OA in an MIA-induced OA rat model by reducing MMP expression and inhibiting the p65/p38 axis.
Collapse
Affiliation(s)
- Youngsic Jeon
- Institute of Natural Products, Korea Institute of Science and Technology, Republic of Korea
| | - Jiyool Kim
- Institute of Natural Products, Korea Institute of Science and Technology, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Republic of Korea
| | - Hyukjoon Kwon
- Institute of Natural Products, Korea Institute of Science and Technology, Republic of Korea
| | - Young Joo Yeon
- Department of Biochemical Engineering, Gangneung-Wonju National University, Republic of Korea
| | - Taejung Kim
- Institute of Natural Products, Korea Institute of Science and Technology, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Republic of Korea.
| | - Jungyeob Ham
- Institute of Natural Products, Korea Institute of Science and Technology, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Republic of Korea; NeoCannBio Co., Ltd., Republic of Korea.
| | - Young-Joo Kim
- Institute of Natural Products, Korea Institute of Science and Technology, Republic of Korea.
| |
Collapse
|
5
|
Jeon Y, Choi KC, Park YN, Kim YJ. Identification of Molecular Subtypes and Prognostic Traits Based on Chromosomal Instability Phenotype-Related Genes in Lung Adenocarcinoma. Cancers (Basel) 2024; 16:3818. [PMID: 39594773 PMCID: PMC11592823 DOI: 10.3390/cancers16223818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Lung adenocarcinoma (LUAD) exhibits significant molecular heterogeneity; however, previous studies have not fully explored its classification into distinct molecular subtypes. Here, we identified LUAD-significant chromosomal instability (CIN) phenotype genes (n = 24) using a TCGA-LUAD cohort (n = 592) and evaluated their ability to predict pathologic grade. Unsupervised clustering and principal component analysis revealed that LUAD patients could be classified into CIN phenotype-related subtypes (GroupLow, GroupModerate, and GroupHigh), each exhibiting distinct transcriptomic patterns. Notably, the GroupHigh showed significantly poor overall survival [OS; hazard ratio (HR) = 1.43, p-value < 10-3] and disease-free survival (DFS; HR = 1.27, p-value < 10-3). Univariate and multivariate analysis confirmed that its expression status was an independent prognostic predictor (p-value < 10-3, HR = 2.18, 95% C.I = 1.26-3.76) of the clinical outcomes, outperforming pathologic grade (p-value < 10-3, HR = 1.2, 95% C.I = 1.08-1.33). Moreover, analysis of surfactant metabolism-related genes revealed higher expression in the GroupLow, which was associated with a favorable prognosis. By integrating multiple independent cohorts (n = 779), we validated these findings and confirmed that CIN phenotype gene status serves as a critical prognostic marker in LUAD. Furthermore, genomic profiling showed that the GroupHigh exhibited frequent mutations in key genes such as KEAP1, LYST, SETD2, and TP53, with oncogenes in this group preferentially showing copy number gains. Our study highlights the significance of CIN phenotype gene status as a predictor of LUAD prognosis and its association with transcriptomic and genomic alterations, paving the way for further clinical validation and potential therapeutic interventions.
Collapse
Affiliation(s)
- Youngsic Jeon
- Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
| | - Kyung-Chul Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Young-Joo Kim
- Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
| |
Collapse
|
6
|
Gan X, Dai G, Li Y, Xu L, Liu G. Intricate roles of estrogen and estrogen receptors in digestive system cancers: a systematic review. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0224. [PMID: 39475214 PMCID: PMC11523274 DOI: 10.20892/j.issn.2095-3941.2024.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Gender disparities are evident across different types of digestive system cancers, which are typically characterized by a lower incidence and mortality rate in females compared to males. This finding suggests a potential protective role of female steroid hormones, particularly estrogen, in the development of these cancers. Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors (ERs), including the classic (ERα and ERβ) and non-traditional ERs [G protein-coupled estrogen receptor (GPER)]. Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers. In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers, including hepatocellular, pancreatic, esophageal, gastric, and colorectal carcinoma. Furthermore, we discuss the potential molecular mechanisms underlying ERα, ERβ, and GPER effects, and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs. The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved. Additionally, deciphering the intricate roles of estrogen, ERs, and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers, eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
Collapse
Affiliation(s)
- Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Physiology, Michigan State University, East Lansing 48824, USA
| | - Guanqi Dai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yonghao Li
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guolong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
7
|
Li S, Hao L, Li N, Hu X, Yan H, Dai E, Shi X. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review). Int J Oncol 2024; 65:88. [PMID: 39092548 DOI: 10.3892/ijo.2024.5676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes‑associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1‑targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.
Collapse
Affiliation(s)
- Shenghao Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Liyuan Hao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Na Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Erhei Dai
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
8
|
Nie Y, Yan J, Huang X, Jiang T, Zhang S, Zhang G. Dihydrotanshinone I targets ESR1 to induce DNA double-strand breaks and proliferation inhibition in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155767. [PMID: 38833789 DOI: 10.1016/j.phymed.2024.155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Due to its high incidence and elevated mortality, hepatocellular carcinoma (HCC) has emerged as a formidable global healthcare challenge. The intricate interplay between gender-specific disparities in both incidence and clinical outcomes has prompted a progressive recognition of the substantial influence exerted by estrogen and its corresponding receptors (ERs) upon HCC pathogenesis. Estrogen replacement therapy (ERT) emerged for the treatment of HCC by administering exogenous estrogen. However, the powerful side effects of estrogen, including the promotion of breast cancer and infertility, hinder the further application of ERT. Identifying effective therapeutic targets for estrogen and screening bioactive ingredients without E2-like side effects is of great significance for optimizing HCC ERT. METHODS In this study, we employed an integrative approach, harnessing data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, clinical paraffin sections, adenoviral constructs as well as in vivo studies, to unveil the association between estrogen, estrogen receptor α (ESR1) and HCC. Leveraging methodologies encompassing molecular dynamics simulation and cellular thermal shift assay (CETSA) were used to confirm whether ESR1 is a molecular target of DHT. Multiple in vitro and in vivo experiments were used to identify whether i) ESR1 is a crucial gene that promotes DNA double-strand breaks (DSBs) and proliferation inhibition in HCC, ii) Dihydrotanshinone I (DHT), a quinonoid monomeric constituent derived from Salvia miltiorrhiza (Dan shen) exerts anti-HCC effects by regulating ESR1 and subsequent DSBs, iii) DHT has the potential to replace E2. RESULTS DHT could target ESR1 and upregulate its expression in a concentration-dependent manner. This, in turn, leads to the downregulation of breast cancer type 1 susceptibility protein (BRCA1), a pivotal protein involved in the homologous recombination repair (HRR) process. The consequence of this downregulation is manifested through the induction of DSBs in HCC, subsequently precipitating a cascade of downstream events, including apoptosis and cell cycle arrest. Of particular significance is the comparative assessment of DHT and isodose estradiol treatments, which underscores DHT's excellent HCC-suppressive efficacy without concomitant perturbation of endogenous sex hormone homeostasis. CONCLUSION Our findings not only confirm ESR1 as a therapeutic target in HCC management but also underscores DHT's role in upregulating ESR1 expression, thereby impeding the proliferation and invasive tendencies of HCC. In addition, we preliminarily identified DHT has the potential to emerge as an agent in optimizing HCC ERT through the substitution of E2.
Collapse
Affiliation(s)
- Yunmeng Nie
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), No. 318 Chaowang Road, Hangzhou, Zhejiang 310000, China
| | - Xueru Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), No. 318 Chaowang Road, Hangzhou, Zhejiang 310000, China; Key Laboratory of Traditional Chinese Medicine for the treatment of Intestine-Liver of Zhejiang Province, Hangzhou 310000, China.
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China; Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou, Zhejiang 310053, China; Traditional Chinese Medicine 'Preventing Disease' Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China.
| |
Collapse
|
9
|
Liang Y, Xie Y, Liu X, Yu L, Yan H, Shang Z, Wu Y, Cai X, Shi W, Du J, Yang Z. Integrating Network Pharmacology and Experimental Validation to Decipher the Mechanism of Action of Astragalus- Atractylodes Herb Pair in Treating Hepatocellular Carcinoma. Drug Des Devel Ther 2024; 18:2169-2187. [PMID: 38882048 PMCID: PMC11179675 DOI: 10.2147/dddt.s459593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.
Collapse
Affiliation(s)
- Yuling Liang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Zimeng Shang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yuan Wu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xue Cai
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Wanxin Shi
- Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| |
Collapse
|
10
|
Tian Y, Hong X, Xie Y, Guo Z, Yu Q. 17β-Estradiol (E 2) Upregulates the ERα/SIRT1/PGC-1α Signaling Pathway and Protects Mitochondrial Function to Prevent Bilateral Oophorectomy (OVX)-Induced Nonalcoholic Fatty Liver Disease (NAFLD). Antioxidants (Basel) 2023; 12:2100. [PMID: 38136219 PMCID: PMC10740447 DOI: 10.3390/antiox12122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Premature menopause is associated with an increased prevalence of nonalcoholic fatty liver disease (NAFLD). Menopausal hormone therapy (MHT) has been widely used in clinical practice and has the potential to protect mitochondrial function and alleviate NAFLD. After bilateral oophorectomy (OVX), female rats without 17β-estradiol (E2) intervention developed NAFLD, whereas E2 supplementation was effective in preventing NAFLD in female rats. The altered pathways and cellular events from both comparison pairs, namely, the OVX vs. sham group and the OVX vs. E2 group, were assessed using transcriptomic analysis. KEGG pathways enriched by both transcriptomic and metabolomic analyses strongly suggest that oxidative phosphorylation is a vital pathway that changes during the development of NAFLD and remains unchanged when E2 is applied. Liver tissue from the OVX-induced NAFLD group exhibited increased lipid peroxidation, impaired mitochondria, and downregulated ERα/SIRT1/PGC-1α expression. An in vitro study indicated that the protective effect of E2 treatment on hepatic steatosis could be abolished when ERα or SIRT1 was selectively inhibited. This damage was accompanied by reduced mitochondrial complex activity and increased lipid peroxidation. The current research indicates that E2 upregulates the ERα/SIRT1/PGC-1α signaling pathway and protects mitochondrial function to prevent OVX-induced NAFLD.
Collapse
Affiliation(s)
| | | | | | | | - Qi Yu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China; (Y.T.); (X.H.); (Y.X.); (Z.G.)
| |
Collapse
|
11
|
Jeon Y, Kim T, Kwon H, Kim JK, Park YT, Ham J, Kim YJ. Cannabidiol Enhances Cabozantinib-Induced Apoptotic Cell Death via Phosphorylation of p53 Regulated by ER Stress in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:3987. [PMID: 37568803 PMCID: PMC10417827 DOI: 10.3390/cancers15153987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Cannabidiol (CBD), a primary constituent in hemp and cannabis, exerts broad pharmacological effects against various diseases, including cancer. Additionally, cabozantinib, a potent multi-kinase inhibitor, has been approved for treating patients with advanced hepatocellular carcinoma (HCC). Recently, there has been an increase in research on combination therapy using cabozantinib to improve efficacy and safety when treating patients. Here, we investigated the effect of a combination treatment of cabozantinib and CBD on HCC cells. CBD treatment enhanced the sensitivity of HCC cells to cabozantinib-mediated anti-cancer activity by increasing cytotoxicity and apoptosis. Phospho-kinase array analysis demonstrated that the apoptotic effect of the combination treatment was mainly related to p53 phosphorylation regulated by endoplasmic reticulum (ER) stress when compared to other kinases. The inhibition of p53 expression and ER stress suppressed the apoptotic effect of the combination treatment, revealing no changes in the expression of Bax, Bcl-2, cleaved caspase-3, cleaved caspase-8, or cleaved caspase-9. Notably, the effect of the combination treatment was not associated with cannabinoid receptor 1 (CNR1) and the CNR2 signaling pathways. Our findings suggest that the combination therapy of cabozantinib and CBD provides therapeutic efficacy against HCC.
Collapse
Affiliation(s)
- Youngsic Jeon
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
| | - Taejung Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyukjoon Kwon
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
| | | | - Young-Tae Park
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
| | - Jungyeob Ham
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- NeoCannBio Co., Ltd., Seoul 02792, Republic of Korea;
| | - Young-Joo Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (Y.J.); (T.K.); (H.K.); (Y.-T.P.)
| |
Collapse
|
12
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
13
|
Yu Y, Ding S, Xu X, Yan D, Fan Y, Ruan B, Zhang X, Zheng L, Jie W, Zheng S. Integrating Network Pharmacology and Bioinformatics to Explore the Effects of Dangshen ( Codonopsis pilosula) Against Hepatocellular Carcinoma: Validation Based on the Active Compound Luteolin. Drug Des Devel Ther 2023; 17:659-673. [PMID: 36883114 PMCID: PMC9985903 DOI: 10.2147/dddt.s386941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Purpose This study aimed to explore the pharmacological mechanism of Dangshen (Codonopsis pilosula) against hepatocellular carcinoma (HCC) based on network pharmacology and bioinformatics, and to verify the anticancer effect of luteolin, the active ingredient of Codonopsis pilosula, on HCC cells. Methods The effective compounds and potential targets of Codonopsis pilosula were established using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The genes related to HCC were obtained through the GeneCards database. The interactive genes were imported into the Visualization and Integrated Discovery database for Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal enrichment, and the hub genes were screened out. The Cancer Genome Atlas database was used to construct a prognosis model, and the prognosis and clinicopathological correlation were analyzed. In in vitro experiments, we verified the effects of luteolin, an active compound of Codonopsis pilosula, on the proliferation, cell cycle, apoptosis and migration of HCC cells. Results A total of 21 effective compounds of Codonopsis pilosula and 98 potential downstream target genes were screened through the TCMSP database, and 1406 HCC target genes were obtained through the GeneCards database. Finally, 53 interacting genes between the two databases were obtained, among which, the 10 key node genes were CASP3, TP53, MDM2, AKT1, ESR1, BCL2L1, MCL1, HSP90AA1, CASP9, and CCND1, involving 77 typical GO terms and 72 KEGG signals. The Kaplan-Meier survival curve of the model group showed that the overall survival of the low-risk group was significantly higher than that of the high-risk group. Luteolin significantly inhibited the proliferation and migration of HCC cells, induced apoptosis, and increased the G2/M phase ratio. Mechanistically, luteolin significantly inhibited the phosphorylation of MAPK-JNK and Akt (Thr308) and subsequently led to upregulation of ESR1. Pharmacological inhibition of ESR1 with fulvestrant enhanced cell viability and migration and attenuated apoptosis. Conclusion Codonopsis pilosula has potential for clinical development due to its anti-HCC properties. Luteolin, the effective component of Codonopsis pilosula, plays anti-HCC role through AKT- or MAPK-JNK signaling mediated ESR1.
Collapse
Affiliation(s)
- Yaping Yu
- Department of Oncology of the First Affiliated Hospital & Tumor Institute, Hainan Medical University, Haikou, 570102, People's Republic of China
| | - Shun Ding
- Department of Otolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, People's Republic of China
| | - Xiaoqing Xu
- Department of Oncology of the First Affiliated Hospital & Tumor Institute, Hainan Medical University, Haikou, 570102, People's Republic of China
| | - Dongming Yan
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University, Haikou, 570102, People's Republic of China
| | - Yonghao Fan
- Department of Oncology of the First Affiliated Hospital & Tumor Institute, Hainan Medical University, Haikou, 570102, People's Republic of China
| | - Banzhan Ruan
- Department of Oncology of the First Affiliated Hospital & Tumor Institute, Hainan Medical University, Haikou, 570102, People's Republic of China
| | - Xiaodian Zhang
- Department of Oncology of the First Affiliated Hospital & Tumor Institute, Hainan Medical University, Haikou, 570102, People's Republic of China
| | - Liping Zheng
- Department of Oncology of the First Affiliated Hospital & Tumor Institute, Hainan Medical University, Haikou, 570102, People's Republic of China
| | - Wei Jie
- Department of Oncology of the First Affiliated Hospital & Tumor Institute, Hainan Medical University, Haikou, 570102, People's Republic of China
| | - Shaojiang Zheng
- Department of Oncology of the First Affiliated Hospital & Tumor Institute, Hainan Medical University, Haikou, 570102, People's Republic of China.,Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Medical University, Haikou, 571199, People's Republic of China
| |
Collapse
|
14
|
Wang Y, Chen H, Yu J, Kang W, To KF. Recent insight into the role and therapeutic potential of YAP/TAZ in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188787. [PMID: 36041574 DOI: 10.1016/j.bbcan.2022.188787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of cancer treatment, gastrointestinal (GI) cancers are still the most prevalent malignancies with high morbidity and mortality worldwide. Dysregulation of the Hippo signaling pathway has been recognized to play a critical role during cancer development and adopted for monitoring disease progression and therapy response. Despite the well-documented tumor proliferation and metastasis, recent efforts in two core Hippo components, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), have identified as the driving forces behind cancer metabolism, stemness, tumor immunity, and therapy resistance. Understanding the molecular mechanisms by which YAP/TAZ facilitates the tumorigenesis and progression of GI cancer, and identifying novel therapeutic strategies for targeting YAP/TAZ are crucial to GI cancer treatment and prevention. In this study, we summarize the latest findings on the function and regulatory mechanisms of YAP/TAZ in GI cancers, and highlight the translational significance of targeting YAP/TAZ for cancer therapies.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
15
|
Meng X, Liu X. Therapeutic Value of Estrogen Receptor α in Hepatocellular Carcinoma Based on Molecular Mechanisms. J Clin Transl Hepatol 2022; 10:140-146. [PMID: 35233383 PMCID: PMC8845150 DOI: 10.14218/jcth.2021.00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/04/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is significantly lower in women than men, implying that estrogen receptors (ERs) may play an important role in this sex dimorphism. Recently, considerable progress has been made in expanding our understanding of the mechanisms of ERs in HCC. As one of the most important ERs, ERα functions as a tumor suppressor in the progression of HCC through various pathways, such as STAT3 signaling pathways, lipid metabolism-related signaling pathways, and non-coding RNAs. However, the function of ERα was reduced with the changes of some molecules in the liver, which may develop further into HCC and make it difficult to achieve an effective hormone treatment effect. Intriguingly, there are signs that individualized hormone therapy according to the activity of ERα will overcome this challenge. Based on these observations, it is particularly imperative to reassess and extend the function of ERα. In this review, we mainly elucidated molecular mechanisms associated with ERα in HCC and investigated the individualized hormone therapy based on these mechanisms, with the aim of providing new insights for HCC treatment.
Collapse
Affiliation(s)
- Xiangzhe Meng
- Second Clinical College, Jining Medical University, Jining, Shandong, China
| | - Xue Liu
- Department of Pathology, College of Basic Medicine, Jining Medical University, Jining, Shandong, China
- Correspondence to: Xue Liu, Department of Pathology, College of Basic Medicine, Jining Medical University, 133 Hehua Road, Jining, Shandong 272067, China. ORCID: https://orcid.org/0000-0001-7817-8392. Tel: +86-15053798589, E-mail:
| |
Collapse
|