1
|
Chang H, Cai F, Li X, Li A, Zhang Y, Yang X, Liu X. Biomaterial-based circular RNA therapeutic strategy for repairing intervertebral disc degeneration. BIOMEDICAL TECHNOLOGY 2025; 9:100057. [DOI: 10.1016/j.bmt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Zhang Y, Yang S, You X, Li Z, Chen L, Dai R, Sun H, Zhang L. CircSPG21 ameliorates oxidative stress-induced senescence in nucleus pulposus-derived mesenchymal stem cells and mitigates intervertebral disc degeneration through the miR-217/SIRT1 axis and mitophagy. Stem Cell Res Ther 2025; 16:49. [PMID: 39920738 PMCID: PMC11806878 DOI: 10.1186/s13287-025-04180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND The microenvironment of intervertebral disc degeneration (IVDD) is characterized by oxidative stress, leading to the senescence of nucleus pulposus-derived mesenchymal stem cells (NPMSCs). The purpose of this study was to investigate the competitive endogenous RNA mechanism involved in the senescence of NPMSCs induced by tert-butyl hydroperoxide (TBHP). METHODS Bioinformatic analysis identified differentially expressed circRNAs. Interactions among circSPG21, miR-217, and the NAD-dependent protein deacetylase sirtuin-1 (SIRT1) were validated through dual-luciferase assays, RNA fluorescence in situ hybridization and RNA immune precipitation. β-Gal staining, EdU staining, Western blotting, JC-1 assays, cell cycle analysis, and quantitative reverse transcription PCR (RT‒qPCR) were used to examine the functions of these molecules in TBHP-induced senescent NPMSCs. The therapeutic effects of circSPG21 were evaluated in a rat IVDD model. RESULTS CircSPG21 expression was significantly decreased in both human and rat IVDD tissues, whereas miR-217 was upregulated and SIRT1 was downregulated. Overexpression of circSPG21 alleviated NPMSC senescence by reducing P21 and P53 levels and restoring mitophagy through Parkin. The protective effects of circSPG21 were mediated through the miR-217/SIRT1 axis, as SIRT1 knockdown attenuated these benefits. CircSPG21 also ameliorated disc degeneration in the IVDD rat model, highlighting its potential as a therapeutic target. CONCLUSION CircSPG21 reduces oxidative stress-induced NPMSC senescence through the miR-217/SIRT1 axis and mitophagy, providing new insights into IVDD and identifying circSPG21 as a potential therapeutic target for disc degeneration.
Collapse
Affiliation(s)
- Yongbo Zhang
- Dalian Medical University, Dalian, 116000, China
- Department of Orthopedics, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China
| | - Sheng Yang
- Dalian Medical University, Dalian, 116000, China
- Department of Orthopedics, The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China
| | - Xuan You
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengguang Li
- Department of Orthopedics, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, 225001, China
| | - Liuyang Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Rui Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Hua Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China
| | - Liang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No.98 Nantong West Road, Yangzhou, 225001, Jiangsu Province, China.
- Department of Orthopedics, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, 225001, China.
| |
Collapse
|
3
|
Hu S, Zhu M, Xing H, Xue Y, Li J, Wang Z, Zhu Z, Fang M, Li Z, Xu J, He Y, Zhang N. Thread-structural microneedles loaded with engineered exosomes for annulus fibrosus repair by regulating mitophagy recovery and extracellular matrix homeostasis. Bioact Mater 2024; 37:1-13. [PMID: 38515611 PMCID: PMC10951295 DOI: 10.1016/j.bioactmat.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Low back pain is among the most grave public health concerns worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The destruction of annulus fibrosus (AF) is the primary cause of IVDD. A sustainable and stable treatment system for IVDD is lacking because of the special organizational structure and low nutrient supply of AF. We here found that IVDD results in the impaired mitochondrial function of AF tissue, and mitochondrial autophagy (mitophagy) plays a protective role in this process. We therefore reported a thread-structural microneedle (T-MN) matching the ring structure of AF. Based on the adsorption effect of laminin, our T-MN could load with bone marrow mesenchymal stem cell-derived exosomes to envelope the regulating mitophagy microRNA (miRNA 378), named as T-MN@EXO@miR-378. In general, we offered in situ locking in the defect site of AF to prevent nucleus pulposus leakage and promoted AF repair. The design of the thread structure was aimed at bionically matching the layered AF structure, thereby providing stronger adhesion. The T-MN@EXO@miR-378 effectively attached to AF and slowly released therapeutic engineered exosomes, and prevented IVDD progression by restoring mitophagy, promoting AF cell proliferation and migration, and inhibiting the pathological remodeling of the extracellular matrix. This functional system can be used as an excellent tool for sustained drug release and has a certain prospect in substituting the conventional treatment of IVDD.
Collapse
Affiliation(s)
- Shaojun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Meng Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Hongyuan Xing
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zhou Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Miaojie Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zilong Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ning Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| |
Collapse
|
4
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Wang X, Wu P, Fu Y, Yang R, Li C, Chen Y, He A, Chen X, Ma D, Ma J, Zhang T. The circular RNA expression profile of human auricle cartilage and the role of circCOL1A2 in isolated microtia. Cell Signal 2024; 115:111017. [PMID: 38123043 DOI: 10.1016/j.cellsig.2023.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microtia is one of the most common craniofacial birth defects worldwide, and its primary clinical manifestation is auricle deformity. Epigenetic factors are known to contribute to the etiology of microtia, yet the involvement of circular RNAs (circRNAs) in human auricle development and their association with microtia remains poorly understood. In this study, we aimed to analyze differentially expressed circRNAs and explore their functional implications in isolated microtia. By employing circRNA microarray analysis and bioinformatics approaches, we identified 340 differentially expressed circRNAs in auricle cartilage of patients with isolated microtia, comprising 152 upregulated and 188 downregulated circRNAs. A circRNA-mRNA co-expression network was constructed, followed by gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Subsequently, we selected four significantly upregulated circRNAs from the co-expression network based on their association with cartilage development and validated their expressions in 30 isolated microtia and 30 control clinical auricle cartilage samples. Among these circRNAs, circCOL1A2, the most significantly upregulated circRNA, was selected as a representative circRNA for investigating its role in isolated microtia. Overexpression of circCOL1A2 significantly inhibited chondrocyte proliferation and chondrogenic differentiation of human mesenchymal stem cells. Additionally, circCOL1A2 upregulated Dermatan Sulfate Epimerase Like (DSEL) expression by sponging miR-637 through the competing endogenous RNA (ceRNA) mechanism. Notably, the downregulation of DSEL attenuated the inhibitory effect of circCOL1A2 overexpression on cell proliferation and chondrogenic differentiation. Collectively, these findings highlight the involvement of circCOL1A2 in the pathogenesis of isolated microtia and emphasize the potential significance of dysregulated circRNAs in disease development.
Collapse
Affiliation(s)
- Xin Wang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Peixuan Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yaoyao Fu
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Run Yang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Chenlong Li
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ying Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Aijuan He
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xin Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| |
Collapse
|
6
|
Li JL, Han YB, Yang GY, Tian M, Shi CS, Tian D. Inflammation in Hernia and the epigenetic control. Semin Cell Dev Biol 2024; 154:334-339. [PMID: 37080853 DOI: 10.1016/j.semcdb.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
Inflammation is much more intrinsic to hernia then is what is generally appreciated. The occurrence of hernias is associated with swelling, stress and inflammation. Surgery remains an important intervention to treat hernias and for many years, post-surgical levels of inflammatory cytokines have been evaluated to compare the different strategies for their comparative advantages. All surgical procedures elicit some sort of inflammatory response and moreover the meshes used for hernia repair are also associated with elevated inflammatory response, although some favor predominantly a pro-inflammatory response while the other meshes favor anti-inflammatory response. An estimated more than 90% of hernia repairs involve some meshes with polypropylene considered as the gold standard. Efforts are underway to modulate polypropylene meshes associated inflammation through use of alternative materials as well as modifications to polypropylene meshes themselves. In the last one decade, miRNAs have entered hernia research and the data on a role of miRNAs in different hernias is slowly emerging, providing the first evidence of epigenetics in hernia. Some reports are connecting miRNAs with inflammation in hernia. All these aspects, such as, surgery-related to mesh-related inflammation as well as miRNA-related inflammation, are discussed in this article to present an up-to-date information on the topic.
Collapse
Affiliation(s)
- Jin-Long Li
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying-Bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gui-Yun Yang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Chang-Sai Shi
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Tian
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Xie G, Wu T, Ji G, Wu H, Lai Y, Wei B, Huang W. Circular RNA and intervertebral disc degeneration: unravelling mechanisms and implications. Front Mol Biosci 2023; 10:1302017. [PMID: 38192334 PMCID: PMC10773835 DOI: 10.3389/fmolb.2023.1302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Low back pain (LBP) is a major public health problem worldwide and a significant health and economic burden. Intervertebral disc degeneration (IDD) is the reason for LBP. However, we have not identified effective therapeutic strategies to address this challenge. With accumulating knowledge on the role of circular RNAs in the pathogenesis of IDD, we realised that circular RNAs (circRNAs) may have tremendous therapeutic potential and clinical application prospects in this field. This review presents an overview of the current understanding of characteristics, classification, biogenesis, and function of circRNAs and summarises the protective and detrimental circRNAs involved in the intervertebral disc that have been studied thus far. This review is aimed to help researchers better understand the regulatory role of circRNAs in the progression of IDD, reveal their clinical therapeutic potential, and provide a theoretical basis for the prevention and targeted treatment of IDD.
Collapse
Affiliation(s)
- Guohao Xie
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangju Ji
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Lai
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenhua Huang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Li W, Li X, Gao Y, Xiong C, Tang Z. Emerging roles of RNA binding proteins in intervertebral disc degeneration and osteoarthritis. Orthop Surg 2023; 15:3015-3025. [PMID: 37803912 PMCID: PMC10694020 DOI: 10.1111/os.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023] Open
Abstract
The etiology of intervertebral disc degeneration (IDD) and osteoarthritis (OA) is complex and multifactorial. Both predisposing genes and environmental factors are involved in the pathogenesis of IDD and OA. Moreover, epigenetic modifications affect the development of IDD and OA. Dysregulated phenotypes of nucleus pulposus (NP) cells and OA chondrocytes, including apoptosis, extracellular matrix disruption, inflammation, and angiogenesis, are involved at all developmental stages of IDD and OA. RNA binding proteins (RBPs) have recently been recognized as essential post-transcriptional regulators of gene expression. RBPs are implicated in many cellular processes, such as proliferation, differentiation, and apoptosis. Recently, several RBPs have been reported to be associated with the pathogenesis of IDD and OA. This review briefly summarizes the current knowledge on the RNA-regulatory networks controlled by RBPs and their potential roles in the pathogenesis of IDD and OA. These initial findings support the idea that specific modulation of RBPs represents a promising approach for managing IDD and OA.
Collapse
Affiliation(s)
- Wen Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Xing‐Hua Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Yang Gao
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Cheng‐Jie Xiong
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Zhong‐Zhi Tang
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| |
Collapse
|
9
|
Li Y, Zhou S, Hu X, Lu S. The pathological mechanisms of circRNAs in mediating intervertebral disc degeneration. Noncoding RNA Res 2023; 8:633-640. [PMID: 37780894 PMCID: PMC10539873 DOI: 10.1016/j.ncrna.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
Lower back pain (LBP) is a worldwide health problem associated with significant economic and social burden. Intervertebral disc degeneration (IVDD) is a leading cause of LBP. Several studies show that the death of nucleus pulposus cells (NPCs), abnormal metabolism of the extracellular matrix (ECM), and inflammatory response are the key mechanisms behind the pathogenesis of IVDD. Circular RNAs (circRNAs) are key regulators of gene expression and play a significant role in regulating NPCs death, ECM homeostasis, and inflammatory response by acting as microRNAs (miRNAs) sponges in IVDD. However, the regulatory role of circRNAs in mediating IVDD remains unknown. This review comprehensively describes the normal anatomic structure and function of IVD, the pathogenesis of IVDD, the characteristics, synthesis, mechanisms, and function of circRNAs. Moreover, we highlighted the 23 circRNAs that mediate ECM metabolism, 16 circRNAs that mediate NPCs apoptosis, circ_0004354 and circ_0040039 that mediate NPCs pyroptosis, and 5 circRNAs that mediate inflammatory response in IVDD. In addition, this review presents suggestions for future studies, such as the need for further investigation on ferroptosis-related circRNAs in IVDD. This review could provide novel insights into the pathogenesis and treatment of IVDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Suzhe Zhou
- Department of Orthopedics, Anhui No 2 Provincial People's Hospital, Hefei, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
10
|
Ohnishi H, Zhang Z, Yurube T, Takeoka Y, Kanda Y, Tsujimoto R, Miyazaki K, Matsuo T, Ryu M, Kumagai N, Kuroshima K, Hiranaka Y, Kuroda R, Kakutani K. Anti-Inflammatory Effects of Adiponectin Receptor Agonist AdipoRon against Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:ijms24108566. [PMID: 37239908 DOI: 10.3390/ijms24108566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adiponectin, a hormone secreted by adipocytes, has anti-inflammatory effects and is involved in various physiological and pathological processes such as obesity, inflammatory diseases, and cartilage diseases. However, the function of adiponectin in intervertebral disc (IVD) degeneration is not well understood. This study aimed to elucidate the effects of AdipoRon, an agonist of adiponectin receptor, on human IVD nucleus pulposus (NP) cells, using a three-dimensional in vitro culturing system. This study also aimed to elucidate the effects of AdipoRon on rat tail IVD tissues using an in vivo puncture-induced IVD degeneration model. Analysis using quantitative polymerase chain reaction demonstrated the downregulation of gene expression of proinflammatory and catabolic factors by interleukin (IL)-1β (10 ng/mL) in human IVD NP cells treated with AdipoRon (2 μM). Furthermore, western blotting showed AdipoRon-induced suppression of p65 phosphorylation (p < 0.01) under IL-1β stimulation in the adenosine monophosphate-activated protein kinase (AMPK) pathway. Intradiscal administration of AdipoRon was effective in alleviating the radiologic height loss induced by annular puncture of rat tail IVD, histomorphological degeneration, production of extracellular matrix catabolic factors, and expression of proinflammatory cytokines. Therefore, AdipoRon could be a new therapeutic candidate for alleviating the early stage of IVD degeneration.
Collapse
Affiliation(s)
- Hiroki Ohnishi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Zhongying Zhang
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshiki Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yutaro Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryu Tsujimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kunihiko Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tomoya Matsuo
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masao Ryu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naotoshi Kumagai
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kohei Kuroshima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshiaki Hiranaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
11
|
Liang T, Gao B, Zhou J, Qiu X, Qiu J, Chen T, Liang Y, Gao W, Qiu X, Lin Y. Constructing intervertebral disc degeneration animal model: A review of current models. Front Surg 2023; 9:1089244. [PMID: 36969323 PMCID: PMC10036602 DOI: 10.3389/fsurg.2022.1089244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 03/12/2023] Open
Abstract
Low back pain is one of the top disorders that leads to disability and affects disability-adjusted life years (DALY) globally. Intervertebral disc degeneration (IDD) and subsequent discogenic pain composed major causes of low back pain. Recent studies have identified several important risk factors contributing to IDD's development, such as inflammation, mechanical imbalance, and aging. Based on these etiology findings, three categories of animal models for inducing IDD are developed: the damage-induced model, the mechanical model, and the spontaneous model. These models are essential measures in studying the natural history of IDD and finding the possible therapeutic target against IDD. In this review, we will discuss the technical details of these models, the duration between model establishment, the occurrence of observable degeneration, and the potential in different study ranges. In promoting future research for IDD, each animal model should examine its concordance with natural IDD pathogenesis in humans. We hope this review can enhance the understanding and proper use of multiple animal models, which may attract more attention to this disease and contribute to translation research.
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinlang Zhou
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jincheng Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Taiqiu Chen
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanfang Liang
- Department of Operating Theater, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuemei Qiu
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| | - Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Correspondence: Xuemei Qiu Youxi Lin
| |
Collapse
|
12
|
EIF4A3-Induced Upregulation of hsa_circ_0040039 is a Biomarker and Aggravates IL-1β-Stimulated Intervertebral Disc Degeneration. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04334-y. [PMID: 36689155 DOI: 10.1007/s12010-023-04334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Intervertebral disc degeneration (IDD) is characterised by nucleus pulposus (NP) loss and extracellular matrix (ECM) degeneration. Circular RNAs (circRNAs) have been reported to be dysregulated during IDD progression. Recently, reports showed that hsa_circ_0040039 was increased in degenerated lumbar disc samples. The aim of this study was to explore the specific role and underlying mechanisms of hsa_circ_0040039 in IDD. The expression of hsa_circ_0040039 was investigated in NP tissues of IDD patients. IL-1β was used to treat NP cells to construct an IDD in vitro model. Overexpression and loss-of-function assays and bioinformatic analysis were performed to evaluate the role and potential mechanism of hsa_circ_0040039 during IDD progression. Hsa_circ_0040039 expression was increased about 2 folds in NP tissues compared with normal tissues and IL-1β-stimulated NP cells also presented hsa_circ_0040039 upregulation, and its overexpression promoted cell proliferation and ECM degeneration. The depletion of hsa_circ_0040039 had the opposite effects. Based on bioinformatics prediction, Luciferase assay, PCR and Western blot, our study verified that hsa_circ_0040039 directly bond to miR-146b-3p, then mediated its targeted MMP2 and PCNA. Moreover, the overexpression of miR-146b-3p and the silence of MMP2 or PCNA, partially abolished the effect of hsa_circ_0040039 on IL-1β-stimulated NPs. Hsa_circ_0040039 may participate in IDD development by mediating the repair and regeneration of NPs through upregulation MMP2 and PCNA mediated by miR-146b-3p.
Collapse
|
13
|
He D, Li Z, Chen Y, Huang M. Circular RNA circ_0029589 promotes ox-LDL-induced endothelial cell injury through regulating RAB22A by serving as a sponge of miR-1197. Clin Hemorheol Microcirc 2023; 83:359-376. [PMID: 36683504 DOI: 10.3233/ch-221657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Dysfunction of endothelial cells is now considered a vital contributor to the pathogenesis of atherosclerosis (AS). Moreover, circular RNA (circRNA) circ_0029589 has been found to be involved in the regulation of oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell damage. Nevertheless, its molecular mechanism in ox-LDL-triggered endothelial cell injury is poorly defined. METHODS Human umbilical vein endothelial cells (HUVECs) treated with ox-LDL were applied as cell models of AS. Circ_0029589, microRNA-1197 (miR-1197), and Ras-related protein Rab-22A (RAB22A) expression were detected using real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, angiogenesis, and invasion were detected using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, tube formation, and transwell assays. Western blot analysis of Cleaved-caspase-3, B-cell lymphoma-2 related X protein (Bax), and RAB22A. IL-6, IL-1β, and Tumor necrosis factor α (TNF-α) levels were gauged using ELISA kits. Superoxide Dismutase (SOD) activity and Malondiahyde (MDA) level were assessed using special kits. Bioinformatics software predicted the binding between miR-1197 and circ_0029589 or RAB22A, which was proved using dual-luciferase reporter and RNA pull-down assays. RESULTS Circ_0029589 and RAB22A expression were strengthened, and miR-1197 was reduced in ox-LDL-treated HUVECs. Importantly, circ_0029589 silencing ameliorated ox-LDL-triggered HUVEC damage via promoting cell proliferation, tube formation ability, invasion, and repressing cell apoptosis, inflammation, and oxidative stress. Mechanical analysis suggested that circ_0029589 might affect RAB22A content through sponging miR-1197. CONCLUSION Circ_0090231 might protect against ox-LDL-mediated HUVEC injury via the miR-1197/RAB22A axis, which provides a therapeutic strategy for endothelial cell damage of AS.
Collapse
Affiliation(s)
- Dequan He
- Department of Cardiology, Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiliang Li
- Department of Cardiology, Heart Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Department of Cardiology, Heart Center, South China hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Youquan Chen
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Huang
- Department of Cardiology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Tan J, Yang B, Zhong H, Luo M, Su Z, Xie C, Shi M, Sun C, Lin L. Circular RNA circEMB promotes osteosarcoma progression and metastasis by sponging miR-3184-5p and regulating EGFR expression. Biomark Res 2023; 11:3. [PMID: 36611218 PMCID: PMC9825012 DOI: 10.1186/s40364-022-00442-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Osteosarcoma (OSA) is the most prevalent type of bone cancer with a high rate of metastasis. Circular RNAs (CircRNAs) play an essential role in multiple aspects of tumour biology. This study aimed to elucidate the role of circEMB in OSA. METHODS circRNAs related to OSA invasion were identified via RNA sequencing and qRT-PCR. The relationship between circEMB levels and clinicopathological features of OSA was examined using the clinical specimens and data of 53 patients with OSA. Several in vivo and in vitro experiments, including intravital imaging, whole-transcriptome sequencing, transwell assay, flow cytometry, dual-luciferase reporter assay, RIP assay, RNA pull-down assay and RNA-FISH, were performed to examine the effects of circEMB on the malignant behaviour of OSA. RESULTS A novel circRNA, named circEMB (hsa_circ_001310), was identified in this study. circEMB can promote the malignant behaviour of OSA. In vitro experiments revealed that circEMB knockdown decreased cell proliferation, inhibited tumour invasion and metastasis; increased apoptosis and resulted in G1/S phase arrest. In vivo experiments revealed that circEMB knockdown inhibited tumour growth and metastasis in xenograft-bearing mice. Mechanistically, circEMB affects the malignant behaviour of OSA by mediating EGFR as an miR-3184-5p sponge. In addition, the circEMB/miR-3184-5p/EGFR axis modulates methotrexate (MTX) resistance in OSA. CONCLUSIONS CircEMB plays a critical role in promoting cancer via the miR-3184-5p/EGFR pathway, indicating that circEMB may serve as a therapeutic target for OSA.
Collapse
Affiliation(s)
- Jianye Tan
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China ,grid.412455.30000 0004 1756 5980Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006 China
| | - Bingsheng Yang
- grid.416466.70000 0004 1757 959XDepartment of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Haobo Zhong
- Department of Orthopaedic, Huizhou First Hospital, Guangdong 516003 Huizhou, China
| | - Mengliang Luo
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Zexin Su
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Chao Xie
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Meiling Shi
- grid.415002.20000 0004 1757 8108Department of Rheumatology and Clinical Immunology, Jiangxi Provincial Peoples’ Hospital Affiliated to Nanchang University, Nanchang, 330006 China
| | - Chunhan Sun
- Department of Orthopaedic, Huizhou First Hospital, Guangdong 516003 Huizhou, China
| | - Lijun Lin
- grid.417404.20000 0004 1771 3058Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| |
Collapse
|
15
|
Cui Y, Zhao X, Wu Y. Circ_0005918 Sponges miR-622 to Aggravate Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 10:905213. [PMID: 35874804 PMCID: PMC9304550 DOI: 10.3389/fcell.2022.905213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intervertebral discdegeneration (IDD) is the most common cause of lower back pain, but the exact molecular mechanism of IDD is still unknown. Recently, studies have shown that circular RNAs (circRNAs) regulate diverse biological procedures such as cell metastasis, growth, metabolism, migration, apoptosis, and invasion. We demonstrated that IL-1β and TNF-α induced circ_0005918 expression in the NP cell, and circ_0005918 was overexpressed in the IDD group compared with the control group. Moreover, the upregulated expression of circ_0005918 was associated with disc degeneration degree. The elevated expression of circ_0005918 promoted cell growth and ECM degradation, and it induced secretion of inflammatory cytokines including IL-1β, IL-6, and TNF-α. Moreover, we found that circ_0005918 sponged miR-622 in the NP cell. In addition, the exposure to IL-1β and TNF-α suppressed the expression of miR-622, which was downregulated in the IDD group compared with the control group. Furthermore, the downregulated expression of miR-622 was associated with disc degeneration degree. The expression level of miR-622 was negatively associated with circ_0005918 expression in the IDD group. In conclusion, circ_0005918 regulated cell growth, ECM degradation, and secretion of inflammatory cytokines by regulating miR-622 expression. These data suggested that circ_0005918 played important roles in the development of IDD via sponging miR-622.
Collapse
|