1
|
Zhi-Xiong C. Decoding YOD1: Insights into tumour regulation and translational opportunities. Biochem Pharmacol 2025; 236:116889. [PMID: 40132762 DOI: 10.1016/j.bcp.2025.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
YOD1 deubiquitinase is a 38 kDa protein that belongs to the ovarian tumour protease (OTU) family, and its dysregulation can precipitate cancer development. Still, an up-to-date review article that can summarize its detailed tumour-regulatory function and translational potentials in different cancer types is lacking. To fill this literature gap, this review aims to discuss the tumour-modulatory role of YOD1 based on findings from different pre-clinical and clinical studies, followed by exploring the potential translational values of YOD1 as a tumour biomarker or therapeutic target. Overall, YOD1 could control the development of at least 15 tumour types by deubiquitinating or targeting different cellular proteins to modulate the activities of the cell cycle, p53, β-catenin, extracellular-regulated signal kinase (ERK), and YES-associated pathway (YAP) activities. Additionally, four long non-coding RNAs (lncRNAs), 12 microRNAs (miRNAs), and a few compounds can also directly or indirectly alter the expression and activity of YOD1, mediating tumourigenesis across different cancer types. Cellular expression data showed that YOD1 expression is dysregulated in eight cancer types, giving YOD1 the potential to be used as a diagnostic biomarker. Besides, YOD1 dysregulation can affect the clinical outcomes of various cancers. Hence, targeting YOD1 could potentially help slow tumourigenesis. The major drawback of considering YOD1 as a biomarker or therapeutic target is that its tumour-regulatory role is mainly based on the findings from single-center studies with relatively small sample sizes. Hence, future large-scale and in-depth clinical trials should be conducted to further verify the translational values of YOD1 as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive 117599, Singapore.
| |
Collapse
|
2
|
Fang X, Zhang Y, Ke Z, Zhang Y, Lin Y, Huang Y, Zhou J, Su H, Xu J, Liu Y. The m6A reader HNRNPC is a key regulator in DSS-induced colitis by modulating macrophage phenotype. iScience 2025; 28:111812. [PMID: 40124522 PMCID: PMC11927749 DOI: 10.1016/j.isci.2025.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/25/2024] [Accepted: 01/10/2025] [Indexed: 03/25/2025] Open
Abstract
m6A regulators were demonstrated to modulate the functions of intestinal epithelial and immune cells in the ulcerative colitis. This study aimed to elucidate whether and how the m6A reader heterogeneous nuclear ribonucleoprotein C (HNRNPC) regulates macrophage function in the colitis. We observed elevated HNRNPC in the inflammatory Raw264.7 cells and macrophages in the dextran sodium sulfate (DSS)-induced colitis. Knocking down HNRNPC can mitigate LPS-induced activation of macrophages in vitro. Furthermore, adoptive transfer of macrophages with HNRNPC knockdown significantly alleviated colitis compared to those transfected with negative control siRNA. Additionally, RNA sequencing illuminated that HNRNPC regulated functions of macrophages by inhibiting alternative mRNA slicing, involving adjusting acute inflammatory response, and promoting cell chemotaxis and migration. Besides, HNRNPC can govern the stability of Itgb7, and Itgb7 might be an effective target for HNRNPC in macrophages. Our findings highlight the crucial role and therapeutic potential of HNRNPC inhibition in macrophages in alleviating colitis.
Collapse
Affiliation(s)
- Xiaohui Fang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Ziliang Ke
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yang Zhang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yiken Lin
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yibo Huang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jianhua Zhou
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Huiting Su
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| |
Collapse
|
3
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
4
|
Wang Y, Yang T, Li Q, Zheng Z, Liao L, Cen J, Chen W, Luo J, Xu Y, Zhou M, Zhang J. circASAP1 induces renal clear cell carcinoma ferroptosis by binding to HNRNPC and thereby regulating GPX4. Mol Cancer 2025; 24:1. [PMID: 39748364 PMCID: PMC11694429 DOI: 10.1186/s12943-024-02122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/12/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) represents the most prevalent subtype, accounting for nearly 80% of all RCC cases. Recent research has shown that high expression of circular non-coding RNA (circRNA) is associated with poor prognosis in patients with renal clear cell carcinoma (ccRCC), however, the underlying mechanism remains unclear. METHODS After analysing self-sequenced renal cancer and paracancer circRNA sequencing data and comparing it with the GEO public database, we discovered that circASAP1 expression was significantly up-regulated in renal cancers. We also tested circASAP1 levels in 102 renal cancer patients and found that high expression of circASAP1 was associated with poor prognosis and metastasis. The interaction between circASAP1, HNRNPC and their downstream target genes was confirmed through experiments such as RNA pull-down, RIP and fluorescence in situ hybridisation. A series of in vitro and in vivo functional experiments were performed to verify the effects of circASAP1 on RCC proliferation and metastasis. RESULTS Circular RNA sequencing analysis revealed that circASAP1 expression was markedly elevated in ccRCC, with a significant association observed between elevated circASAP1 expression and poor prognosis and metastasis. Actinomycin D, RNase R, as well as fluorescence in situ hybridization (FISH) analyses revealed the ring structure and cytoplasmic localization of circASAP1. High circASAP1 expression was associated with ccRCC cell proliferative viability, invasion, and metastasis in CCK-8, transwell, plate cloning, and EdU experiments. Interaction of circASAP1 with HNRNPC and their downstream target genes was confirmed by RNA pull-down, RNA immunoprecipitation, FISH, silver staining, and mass spectrometry. Experiments using truncated isoforms demonstrated that amino acids 16-87 of HNRNPC bound circASAP1. Proteins altered by circASAP1 were enriched in the ferroptosis pathway on the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. CONCLUSIONS The relationship between circRNA and the ASAP1/HNRNPC/GPX4 axis was demonstrated by experimental data, which was further confirmed by rescue experiments. circASAP1 influenced tumor growth and ferroptosis in animal experiments and predicted the prognosis of patients with ccRCC. The circASAP1/HNRNPC/GPX4 axis provides novel directions and potential targets for RCC treatment.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Taowei Yang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Qihao Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Lican Liao
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Junjie Cen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, No. 58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
| | - Yi Xu
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China.
| | - Mi Zhou
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan road II, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
5
|
Rong S, Dai B, Yang C, Lan Z, Wang L, Xu L, Chen W, Chen J, Wu Z. HNRNPC modulates PKM alternative splicing via m6A methylation, upregulating PKM2 expression to promote aerobic glycolysis in papillary thyroid carcinoma and drive malignant progression. J Transl Med 2024; 22:914. [PMID: 39380010 PMCID: PMC11459990 DOI: 10.1186/s12967-024-05668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
The heterogeneous nuclear ribonucleoprotein C (HNRNPC) plays a crucial role in tumorigenesis, yet its role in papillary thyroid carcinoma (PTC) remains elusive. Herein, we elucidated the function and molecular mechanism of HNRNPC in PTC tumorigenesis and progression. Our study unveiled a significant upregulation of HNRNPC in PTC, and knockdown of HNRNPC markedly inhibited the proliferation, invasion, and metastasis of BCPAP cells. Furthermore, HNRNPC modulated PKM alternative splicing in BCPAP cells primarily through m6A modification. Additionally, by upregulating PKM2 expression, HNRNPC promoted aerobic glycolysis in BCPAP cells, thereby facilitating malignant progression in PTC. In summary, our findings demonstrate that HNRNPC regulates PKM alternative splicing through m6A methylation modification and promotes the proliferation, invasion and metastasis of PTC through glucose metabolism pathways mediated by PKM2. These discoveries provide new biomarkers for screening and diagnosing PTC patients and offer novel therapeutic targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Shikuo Rong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Thyroid Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Bao Dai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunrong Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ziteng Lan
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Linhe Wang
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zeyu Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Fujiwara Y, Takahashi RU, Saito M, Umakoshi M, Shimada Y, Koyama K, Yatabe Y, Watanabe SI, Koyota S, Minamiya Y, Tahara H, Kono K, Shiraishi K, Kohno T, Goto A, Tsuchiya N. Oncofetal IGF2BP3-mediated control of microRNA structural diversity in the malignancy of early-stage lung adenocarcinoma. Proc Natl Acad Sci U S A 2024; 121:e2407016121. [PMID: 39196622 PMCID: PMC11388381 DOI: 10.1073/pnas.2407016121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The nature of microRNA (miRNA) dysfunction in carcinogenesis remains controversial because of the complex connection between miRNA structural diversity and biological processes. Here, we found that oncofetal IGF2BP3 regulates the selective production of a subset of 3'-isoforms (3'-isomiRs), including miR-21-5p and Let-7 family, which induces significant changes in their cellular seed occupancy and structural components, establishing a cancer-specific gene expression profile. The D-score, reflecting dominant production of a representative miR-21-5p+C (a 3'-isomiR), discriminated between clinical early-stage lung adenocarcinoma (LUAD) cases with low and high recurrence risks, and was associated with molecular features of cell cycle progression, epithelial-mesenchymal transition pressure, and immune evasion. We found that IGF2BP3 controls the production of miR-21-5p+C by directing the nuclear Drosha complex to select the cleavage site. IGF2BP3 was also involved in the production of 3'-isomiRs of miR-425-5p and miR-454-3p. IGF2BP3-regulated these three miRNAs are suggested to be associated with the regulation of p53, TGF-β, and TNF pathways in LUAD. Knockdown of IGF2BP3 also induced a selective upregulation of Let-7 3'-isomiRs, leading to increased cellular Let-7 seed occupancy and broad repression of its target genes encoding cell cycle regulators. The D-score is an index that reflects this cellular situation. Our results suggest that the aberrant regulation of miRNA structural diversity is a critical component for controlling cellular networks, thus supporting the establishment of a malignant gene expression profile in early stage LUAD.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kei Koyama
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Souichi Koyota
- Molecular Medicine Laboratory, Bioscience Education and Research Support Center, Akita University, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Hospital, Akita 010-8543, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Naoto Tsuchiya
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
7
|
Kim SY, Na MJ, Yoon S, Shin E, Ha JW, Jeon S, Nam SW. The roles and mechanisms of coding and noncoding RNA variations in cancer. Exp Mol Med 2024; 56:1909-1920. [PMID: 39218979 PMCID: PMC11447202 DOI: 10.1038/s12276-024-01307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Functional variations in coding and noncoding RNAs are crucial in tumorigenesis, with cancer-specific alterations often resulting from chemical modifications and posttranscriptional processes mediated by enzymes. These RNA variations have been linked to tumor cell proliferation, growth, metastasis, and drug resistance and are valuable for identifying diagnostic or prognostic cancer biomarkers. The diversity of posttranscriptional RNA modifications, such as splicing, polyadenylation, methylation, and editing, is particularly significant due to their prevalence and impact on cancer progression. Additionally, other modifications, including RNA acetylation, circularization, miRNA isomerization, and pseudouridination, are recognized as key contributors to cancer development. Understanding the mechanisms underlying these RNA modifications in cancer can enhance our knowledge of cancer biology and facilitate the development of innovative therapeutic strategies. Targeting these RNA modifications and their regulatory enzymes may pave the way for novel RNA-based therapies, enabling tailored interventions for specific cancer subtypes. This review provides a comprehensive overview of the roles and mechanisms of various coding and noncoding RNA modifications in cancer progression and highlights recent advancements in RNA-based therapeutic applications.
Collapse
Affiliation(s)
- Sang Yean Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Min Jeong Na
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Sungpil Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Eunbi Shin
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Jin Woong Ha
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Soyoung Jeon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
- NEORNAT Inc., Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
8
|
Wagner V, Meese E, Keller A. The intricacies of isomiRs: from classification to clinical relevance. Trends Genet 2024; 40:784-796. [PMID: 38862304 DOI: 10.1016/j.tig.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
MicroRNAs (miRNAs) and isoforms of their archetype, called isomiRs, regulate gene expression via complementary base-pair binding to messenger RNAs (mRNAs). The partially evolutionarily conserved isomiR sequence variations are differentially expressed among tissues, populations, and genders, and between healthy and diseased states. Aiming towards the clinical use of isomiRs as diagnostic biomarkers and for therapeutic purposes, several challenges need to be addressed, including (i) clarification of isomiR definition, (ii) improved annotation in databases with new standardization (such as the mirGFF3 format), and (iii) improved methods of isomiR detection, functional verification, and in silico analysis. In this review we discuss the respective challenges, and highlight the opportunities for clinical use of isomiRs, especially in the light of increasing amounts of next-generation sequencing (NGS) data.
Collapse
Affiliation(s)
- Viktoria Wagner
- Chair for Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University Campus, 66123 Saarbrücken, Germany.
| |
Collapse
|
9
|
Yang J, Liang F, Zhang F, Zhao H, Gong Q, Gao N. Recent advances in the reciprocal regulation of m 6A modification with non-coding RNAs and its therapeutic application in acute myeloid leukemia. Pharmacol Ther 2024; 259:108671. [PMID: 38830387 DOI: 10.1016/j.pharmthera.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common modifications of RNA in eukaryotic cells and is involved in mRNA metabolism, including stability, translation, maturation, splicing, and export. m6A also participates in the modification of multiple types of non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, thereby affecting their metabolism and functions. Increasing evidence has revealed that m6A regulators, such as writers, erasers, and readers, perform m6A-dependent modification of ncRNAs, thus affecting cancer progression. Moreover, ncRNAs modulate m6A regulators to affect cancer development and progression. In this review, we summarize recent advances in understanding m6A modification and ncRNAs and provide insights into the interaction between m6A modification and ncRNAs in cancer. We also discuss the potential clinical applications of the mechanisms underlying the interplay between m6A modifications and ncRNAs in acute myeloid leukemia (AML). Therefore, clarifying the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for AML and has great clinical application prospects.
Collapse
Affiliation(s)
- Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| |
Collapse
|
10
|
Li YJ, Qiu YL, Li MR, Shen M, Zhang F, Shao JJ, Xu XF, Zhang ZL, Zheng SZ. New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1130-1141. [PMID: 38195693 PMCID: PMC11130213 DOI: 10.1038/s41401-023-01214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancy, presenting a formidable challenge to the medical community owing to its intricate pathogenic mechanisms. Although current prevention, surveillance, early detection, diagnosis, and treatment have achieved some success in preventing HCC and controlling overall disease mortality, the imperative to explore novel treatment modalities for HCC remains increasingly urgent. Epigenetic modification has emerged as pivotal factors in the etiology of cancer. Among these, RNA N6-methyladenosine (m6A) modification stands out as one of the most prevalent, abundant, and evolutionarily conserved post-transcriptional alterations in eukaryotes. The literature underscores that the dynamic and reversible nature of m6A modifications orchestrates the intricate regulation of gene expression, thereby exerting a profound influence on cell destinies. Increasing evidence has substantiated conspicuous fluctuations in m6A modification levels throughout the progression of HCC. The deliberate modulation of m6A modification levels through molecular biology and pharmacological interventions has been demonstrated to exert a discernible impact on the pathogenesis of HCC. In this review, we elucidate the multifaceted biological functions of m6A modifications in HCC, and concurrently advancing novel therapeutic strategies for the management of this malignancy.
Collapse
Affiliation(s)
- Yu-Jia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang-Ling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Ran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang-Juan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Fen Xu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zi-Li Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shi-Zhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Águila S, González-Conejero R, Martínez C. microRNAs and thrombo-inflammation: relationship in sight. Curr Opin Hematol 2024; 31:140-147. [PMID: 38277182 DOI: 10.1097/moh.0000000000000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
PURPOSE OF REVIEW Thrombo-inflammation is a multifaceted pathologic process involving various cells such as platelets, neutrophils, and monocytes. In recent years, microRNAs have been consistently implicated as regulators of these cells. RECENT FINDINGS MicroRNAs play a regulatory role in several platelet receptors that have recently been identified as contributing to thrombo-inflammation and neutrophil extracellular trap (NET) formation. In addition, a growing body of evidence has shown that several intracellular and extracellular microRNAs directly promote NET formation. SUMMARY Targeting microRNAs is a promising therapeutic approach to control thrombosis in patients with both infectious and noninfectious inflammatory diseases. Future research efforts should focus on elucidating the specific roles of microRNAs in thrombo-inflammation and translating these findings into tangible benefits for patients.
Collapse
Affiliation(s)
- Sonia Águila
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, UCAM
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, Murcia, Spain
| | - Rocío González-Conejero
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, UCAM
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, Murcia, Spain
| | - Constantino Martínez
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, UCAM
- Department of Hematology, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, Murcia, Spain
| |
Collapse
|
12
|
Zheng Z, Zeng X, Zhu Y, Leng M, Zhang Z, Wang Q, Liu X, Zeng S, Xiao Y, Hu C, Pang S, Wang T, Xu B, Peng P, Li F, Tan W. CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis. Mol Cancer 2024; 23:4. [PMID: 38184608 PMCID: PMC10770969 DOI: 10.1186/s12943-023-01912-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the most common malignant tumor worldwide. Metastasis is a leading case of cancer-related deaths of RCC. Circular RNAs (circRNAs), a class of noncoding RNAs, have emerged as important regulators in cancer metastasis. However, the functional effects and regulatory mechanisms of circRNAs on RCC metastasis remain largely unknown. METHODS High-throughput RNA sequencing techniques were performed to analyze the expression profiles of circRNAs and mRNAs in highly and poorly invasive clear cell renal cell carcinoma (ccRCC) cell lines. Functional experiments were performed to unveil the regulatory role of circPPAP2B in the proliferation and metastatic capabilities of ccRCC cells. RNA pulldown, Mass spectrometry analysis, RNA methylation immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), co-immunoprecipitation (CoIP), next-generation RNA-sequencing and double luciferase experiments were employed to clarify the molecular mechanisms by which circPPAP2B promotes ccRCC metastasis. RESULTS In this study, we describe a newly identified circular RNA called circPPAP2B, which is overexpressed in highly invasive ccRCC cells, as determined through advanced high-throughput RNA sequencing techniques. Furthermore, we observed elevated circPPAP2B in ccRCC tissues, particularly in metastatic ccRCC tissues, and found it to be associated with poor prognosis. Functional experiments unveiled that circPPAP2B actively stimulates the proliferation and metastatic capabilities of ccRCC cells. Mechanistically, circPPAP2B interacts with HNRNPC in a m6A-dependent manner to facilitate HNRNPC nuclear translocation. Subcellular relocalization was dependent upon nondegradable ubiquitination of HNRNPC and stabilization of an HNRNPC/Vimentin/Importin α7 ternary complex. Moreover, we found that circPPAP2B modulates the interaction between HNRNPC and splicing factors, PTBP1 and HNPNPK, and regulates pre-mRNA alternative splicing. Finally, our studies demonstrate that circPPAP2B functions as a miRNA sponge to directly bind to miR-182-5p and increase CYP1B1 expression in ccRCC. CONCLUSIONS Collectively, our study provides comprehensive evidence that circPPAP2B promotes proliferation and metastasis of ccRCC via HNRNPC-dependent alternative splicing and miR-182-5p/CYP1B1 axis and highlights circPPAP2B as a potential therapeutic target for ccRCC intervention.
Collapse
Affiliation(s)
- Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiangbo Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Mengxin Leng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaocen Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Siying Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yongyuan Xiao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chenxi Hu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Tong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bihong Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Peidan Peng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
13
|
Wong LL, Fadzil AB, Chen Q, Rademaker MT, Charles CJ, Richards AM, Wang P. Interrogating the Role of miR-125b and Its 3'isomiRs in Protection against Hypoxia. Int J Mol Sci 2023; 24:16015. [PMID: 37958999 PMCID: PMC10650460 DOI: 10.3390/ijms242116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
MiR-125b has therapeutic potential in the amelioration of myocardial ischemic injury. MicroRNA isomiRs, with either 5' or 3' addition or deletion of nucleotide(s), have been reported from next-generation sequencing data (NGS). However, due to technical challenges, validation and functional studies of isomiRs are few. In this study, we discovered using NGS, four 3'isomiRs of miR-125b, i.e., addition of A (adenosine), along with deletions of A, AG (guanosine) and AGU (uridine) from rat and sheep heart. These findings were validated using RT-qPCR. Comprehensive functional studies were carried out in the H9C2 hypoxia model. After miR-125b, isomiRs of Plus A, Trim A, AG and AGU mimic transfection, the H9C2 cells were subjected to hypoxic challenge. As assessed using cell viability, apoptosis, CCK-8 and LDH release, miR-125b and isomiRs were all protective against hypoxia. However, Plus A and Trim A were more effective than miR-125b, whilst Trim AG and Trim AGU had far weaker effects than miR-125b. Interestingly, both the gene regulation profile and apoptotic gene validation indicated a major overlap among miR-125b, Plus A and Trim A, whilst Trims AG and AGU revealed a different profile compared to miR-125b. Conclusions: miR-125b and its 3' isomiRs are expressed stably in the heart. miR-125b and isomiRs with addition or deletion of A might function concurrently and concordantly under specific physiological and pathophysiological conditions. In-depth understanding of isomiRs' metabolism and function will contribute to better miRNA therapeutic drug design.
Collapse
Affiliation(s)
- Lee Lee Wong
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Azizah Binti Fadzil
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Qiying Chen
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Miriam T. Rademaker
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch P.O. Box 4345, New Zealand;
| | - Christopher J. Charles
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch P.O. Box 4345, New Zealand;
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Christchurch Heart Institute, Department of Medicine, University of Otago-Christchurch, Christchurch P.O. Box 4345, New Zealand;
| | - Peipei Wang
- Cardiovascular Research Institute, National University Health System, Singapore 117599, Singapore; (A.B.F.); (Q.C.); (A.M.R.)
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
14
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
15
|
Wu S, Xie H, Su Y, Jia X, Mi Y, Jia Y, Ying H. The landscape of implantation and placentation: deciphering the function of dynamic RNA methylation at the maternal-fetal interface. Front Endocrinol (Lausanne) 2023; 14:1205408. [PMID: 37720526 PMCID: PMC10499623 DOI: 10.3389/fendo.2023.1205408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
The maternal-fetal interface is defined as the interface between maternal tissue and sections of the fetus in close contact. RNA methylation modifications are the most frequent kind of RNA alterations. It is effective throughout both normal and pathological implantation and placentation during pregnancy. By influencing early embryo development, embryo implantation, endometrium receptivity, immune microenvironment, as well as some implantation and placentation-related disorders like miscarriage and preeclampsia, it is essential for the establishment of the maternal-fetal interface. Our review focuses on the role of dynamic RNA methylation at the maternal-fetal interface, which has received little attention thus far. It has given the mechanistic underpinnings for both normal and abnormal implantation and placentation and could eventually provide an entirely novel approach to treating related complications.
Collapse
Affiliation(s)
- Shengyu Wu
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Xie
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Su
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinrui Jia
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yabing Mi
- Department of Clinical Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanhui Jia
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Le MN, Nguyen TD, Nguyen TA. SRSF7 and SRSF3 depend on RNA sequencing motifs and secondary structures to regulate Microprocessor. Life Sci Alliance 2023; 6:e202201779. [PMID: 36750366 PMCID: PMC9905709 DOI: 10.26508/lsa.202201779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Human Microprocessor cleaves pri-miRNAs to initiate miRNA biogenesis. The accuracy and efficiency of Microprocessor cleavage ensure appropriate miRNA sequence and expression and thus its proper gene regulation. However, Microprocessor cleaves many pri-miRNAs incorrectly, so it requires assistance from many cofactors. For example, SRSF3 enhances Microprocessor cleavage by interacting with the CNNC motif in pri-miRNAs. However, whether SRSF3 can function with other motifs and/or requires the motifs in a certain secondary structure is unknown. In addition, the function of SRSF7 (a paralog of SRSF3) in miRNA biogenesis still needs to be discovered. Here, we demonstrated that SRSF7 could stimulate Microprocessor cleavage. In addition, by conducting high-throughput pri-miRNA cleavage assays for Microprocessor and SRSF7 or SRSF3, we demonstrated that SRSF7 and SRSF3 function with the CRC and CNNC motifs, adopting certain secondary structures. In addition, SRSF7 and SRSF3 affect the Microprocessor cleavage sites in human cells. Our findings demonstrate the roles of SRSF7 in miRNA biogenesis and provide a comprehensive view of the molecular mechanism of SRSF7 and SRSF3 in enhancing Microprocessor cleavage.
Collapse
Affiliation(s)
- Minh Ngoc Le
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Trung Duc Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| | - Tuan Anh Nguyen
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong, China
| |
Collapse
|
17
|
Orbán TI. One locus, several functional RNAs-emerging roles of the mechanisms responsible for the sequence variability of microRNAs. Biol Futur 2023:10.1007/s42977-023-00154-7. [PMID: 36847925 DOI: 10.1007/s42977-023-00154-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
With the development of modern molecular genetics, the original "one gene-one enzyme" hypothesis has been outdated. For protein coding genes, the discovery of alternative splicing and RNA editing provided the biochemical background for the RNA repertoire of a single locus, which also serves as an important pillar for the enormous protein variability of the genomes. Non-protein coding RNA genes were also revealed to produce several RNA species with distinct functions. The loci of microRNAs (miRNAs), encoding for small endogenous regulatory RNAs, were also found to produce a population of small RNAs, rather than a single defined product. This review aims to present the mechanisms contributing to the astonishing variability of miRNAs revealed by the new sequencing technologies. One important source is the careful balance of arm selection, producing sequentially different 5p- or 3p-miRNAs from the same pre-miRNA, thereby broadening the number of regulated target RNAs and the phenotypic response. In addition, the formation of 5', 3' and polymorphic isomiRs, with variable end and internal sequences also leads to a higher number of targeted sequences, and increases the regulatory output. These miRNA maturation processes, together with other known mechanisms such as RNA editing, further increase the potential outcome of this small RNA pathway. By discussing the subtle mechanisms behind the sequence diversity of miRNAs, this review intends to reveal this engaging aspect of the inherited "RNA world", how it contributes to the almost infinite molecular variability among living organisms, and how this variability can be exploited to treat human diseases.
Collapse
Affiliation(s)
- Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
18
|
Rhim J, Baek W, Seo Y, Kim JH. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells 2022; 11:cells11182791. [PMID: 36139366 PMCID: PMC9497241 DOI: 10.3390/cells11182791] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in regulating gene expression at a posttranscriptional level. As one of the first discovered oncogenic miRNAs, microRNA-21 (miR-21) has been highlighted for its critical role in cancers, such as glioblastoma, pancreatic adenocarcinoma, non-small cell lung cancer, and many others. MiR-21 targets many vital components in a wide range of cancers and acts on various cellular processes ranging from cancer stemness to cell death. Expression of miR-21 is elevated within cancer tissues and circulating miR-21 is readily detectable in biofluids, making it valuable as a cancer biomarker with significant potential for use in diagnosis and prognosis. Advances in RNA-based therapeutics have revealed additional avenues by which miR-21 can be utilized as a promising target in cancer. The purpose of this review is to outline the roles of miR-21 as a key modulator in various cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiho Rhim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Woosun Baek
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Yoona Seo
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-2204
| |
Collapse
|