1
|
Mishra T, Wairkar S. Pathogenesis, attenuation, and treatment strategies for keloid management. Tissue Cell 2025; 94:102800. [PMID: 39999656 DOI: 10.1016/j.tice.2025.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Keloid is an outcome of abnormal cellular response in the wound healing process with excessive fibroblast and collagen deposition in the dermal layer of the skin. It is characterized by a scar showing fibrous outgrowth that grows beyond the original boundaries of the wound. Thus, it is cosmetically and functionally disturbing to the patient. Keloidal development depends on various patient and environmental factors, possibly initiating abnormal wound healing. Due to abnormal wound healing, various aberrant cellular responses are observed during keloid development, like delayed inflammatory response, increased growth factors, varied cytokine level, decreased apoptosis, increased angiogenesis, and imbalanced proteinases. Bacteria and the immune system also play a role in keloid development. Advancements like single-cell RNA sequencing and transcriptomics studies have led to a better understanding of pathogenesis. In line with the complex pathogenesis, the later part of the review covers a detailed analysis of various treatment options employed for keloid, which includes silicone-based topical therapy, drug-based therapy, invasive approach (surgery), and minimally invasive therapies (radiation, laser therapy, and cryotherapy). The advantages and limitations of individual and combination therapies are also discussed. Keloids tend to re-occur after treatment; hence, follow-up is very important, making keloid treatment a complex procedure. Novel therapeutics in keloid have advantages like better efficacy of drugs, less pain, self-administration, and fewer side effects. A few nanotherapeutics advancements, such as microneedles, nanoparticles, liposomes, and exosomes, are discussed in the review.
Collapse
Affiliation(s)
- Twinkle Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L., Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L., Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
2
|
Zhou Y, Zhou Y, Chen H, Zhang L, Bi S. Potential Role of CD99 Signaling Pathway in Schwann Cell Dysfunction in Diabetic Foot Ulcers Based on Single-Cell Transcriptome Analysis. J Diabetes Res 2025; 2025:9935400. [PMID: 40420926 PMCID: PMC12103954 DOI: 10.1155/jdr/9935400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
Background: Schwann cell (SC) dysfunction contributes to the delayed healing of diabetic foot ulcers (DFUs). However, the underlying molecular mechanism regarding the unregulated SC function is poorly understood. Thus, we examined the single-cell transcriptome data from different DFU states focusing on SC characteristics. Methods: The single-cell RNA sequencing (scRNA-seq) data of DFU was obtained from the Gene Expression Omnibus (GEO) database, covering foot skin samples from nondiabetic patients, diabetic patients without DFU, DFU healers, and DFU nonhealers. After scRNA-seq data processing, downscaling, and cell cluster identification, cell communication analysis was performed by the CellChat package. Furthermore, we subclustered SC populations and ran the trajectory inference and pseudotime analysis to investigate the dynamic changes in SC. Finally, the significant pathways were validated with a db/db mouse wound model. Results: scRNA-seq analysis revealed different SC percentages and gene markers across the DFU groups. We identified that the CD99 signaling pathway was upregulated in the DFU nonhealer group. In the db/db mouse wound model, we observed that CD99 was highly expressed in the demyelinated area of the peripheral nerve fibers. Conclusion: Our study elucidated that the CD99 pathway activation may play a crucial role in SC dysfunction of DFU, providing insights into the peripheral glia regulation mechanism and potential therapeutic target of DFU.
Collapse
Affiliation(s)
- Yannan Zhou
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yaxin Zhou
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haohan Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Wei K, Shi Y, Wang M, He L, Xu H, Wang H, Chai L, Zhou L, Zou Y, Guo L. Schwann cells secrete IGFBP5 to facilitate the growth of keloids. Life Sci 2025; 369:123534. [PMID: 40049369 DOI: 10.1016/j.lfs.2025.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/01/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Keloids (KD) are noncancerous fibroproliferative tumors exhibiting cancer-like traits, encompass aggressive unregulated growth, absence of natural regression, and a significantly high rate of recurrence. The precise molecular mechanisms underlying KD pathology remain poorly understood. In this study, we employed single-cell sequencing to examine the characteristics of cells in KD and normal scar (NS) tissue. We evaluated Schwann cells and their secretory protein IGFBP5 function in KD. Then, the recombinant IGFBP5 protein was employed to elucidate the regulatory roles of IGFBP5 in the proliferation, migration, invasion, angiogenesis, and cell cycle of keloids fibroblasts (KF). The rabbit ear scar model was utilized to ascertain the function of IGFBP5 in vivo. We demonstrated that in KD, the proportion of Schwann cells was 4.13 times that of NS. Besides, the IGFBP5 gene exhibited an expression level that was 8.02 times higher in KD Schwann cells compared to those in NS Schwann cells. High IGFBP5 expression was positively associated with the cell proliferation, migration, invasion, angiogenesis, and cell cycle of KF. Additionally, the p53/p21/Cyclin D1 pathway regulated cell cycle and promoted cell proliferation, which was suppressed after rIGFBP5 administration. These findings suggest that Schwann cells infiltrate in KD and secrete IGFBP5 protein to promote KD growth, and targeting IGFBP5 or Schwann cell infiltration could offer novel therapeutic strategies for KD.
Collapse
Affiliation(s)
- Kang Wei
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Yiran Shi
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Lu He
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 100 Xianggang Road, Wuhan 430000, China
| | - Haijie Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Langjie Chai
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China
| | - Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China.
| | - Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, 169 East Lake Road, Wuchang District, Wuhan 430071, China.
| |
Collapse
|
4
|
Xie R, Li C, Yun J, Zhang S, Zhong A, Cen Y, Li Z, Chen J. Identifying the Pattern Characteristics of Anoikis-Related Genes in Keloid. Adv Wound Care (New Rochelle) 2025; 14:223-237. [PMID: 38775414 DOI: 10.1089/wound.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Objective: Anoikis is a kind of programmed cell death that is triggered when cells lose contact with each other or with the matrix. However, the potential value of anoikis-related genes (ARGs) in keloid (KD) has not been investigated. Approach: We downloaded three keloid fibroblast (KF) RNA sequencing (RNA-seq) datasets from the Gene Expression Omnibus (GEO) and obtained 338 ARGs from a search of the GeneCards database and PubMed articles. Weighted correlation network analysis was used to construct the coexpression network and obtain the KF-related ARGs. The LASSO-Cox method was used to screen the hub ARGs and construct the best prediction model. Then, GEO single-cell sequencing datasets were used to verify the expression of hub genes. We used whole RNA-seq for gene-level validation and the correlation between KD immune infiltration and anoikis. Results: Our study comprehensively analyzed the role of ARGs in KD for the first time. The least absolute shrinkage and selection operator (LASSO) regression analysis identified six hub ARGs (HIF1A, SEMA7A, SESN1, CASP3, LAMA3, and SIK2). A large number of miRNAs participate in the regulation of hub ARGs. In addition, correlation analysis revealed that ARGs were significantly correlated with the infiltration levels of multiple immune cells in patients with KD. Innovation: We explored the expression characteristics of ARGs in KD, which is extremely important for determining the molecular pathways and mechanisms underlying KD. Conclusions: This study provides a useful reference for revealing the characteristics of ARGs in the pathogenesis of KD. The identified hub genes may provide potential therapeutic targets for patients. This study provides new ideas for individualized therapy and immunotherapy.
Collapse
Affiliation(s)
- Ruxin Xie
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Chenyu Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jiao Yun
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shiwei Zhang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Ai Zhong
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Rosen ABI, Sanyal A, Hutchins T, Werner G, Berkowitz JS, Tabib T, Lafyatis R, Jacobe H, Das J, Torok KS. Unique and shared transcriptomic signatures underlying localized scleroderma pathogenesis identified using interpretable machine learning. JCI Insight 2025; 10:e185758. [PMID: 40197368 PMCID: PMC11981619 DOI: 10.1172/jci.insight.185758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/18/2025] [Indexed: 04/10/2025] Open
Abstract
Using transcriptomic profiling at single-cell resolution, we investigated cell-intrinsic and cell-extrinsic signatures associated with pathogenesis and inflammation-driven fibrosis in both adult and pediatric patients with localized scleroderma (LS). We performed single-cell RNA-Seq on adult and pediatric patients with LS and healthy controls. We then analyzed the single-cell RNA-Seq data using an interpretable factor analysis machine learning framework, significant latent factor interaction discovery and exploration (SLIDE), which moves beyond predictive biomarkers to infer latent factors underlying LS pathophysiology. SLIDE is a recently developed latent factor regression-based framework that comes with rigorous statistical guarantees regarding identifiability of the latent factors, corresponding inference, and FDR control. We found distinct differences in the characteristics and complexity in the molecular signatures between adult and pediatric LS. SLIDE identified cell type-specific determinants of LS associated with age and severity and revealed insights into signaling mechanisms shared between LS and systemic sclerosis (SSc), as well as differences in onset of the disease in the pediatric compared with adult population. Our analyses recapitulate known drivers of LS pathology and identify cellular signaling modules that stratify LS subtypes and define a shared signaling axis with SSc.
Collapse
Affiliation(s)
- Aaron BI Rosen
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology
| | | | | | | | - Jacob S. Berkowitz
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology
| | - Tracy Tabib
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Heidi Jacobe
- Department of Dermatology, University of Texas Southwestern, Dallas, Texas, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology
| | | |
Collapse
|
6
|
Xie R, Li C, Zhao T, Zhang S, Zhong A, Chen N, Li Z, Chen J. Integration of Flow Cytometry and Single-Cell RNA Sequencing Analysis to Explore the Fibroblast Subpopulations in Keloid that Correlate with Recurrence. Adv Wound Care (New Rochelle) 2025. [PMID: 40177712 DOI: 10.1089/wound.2024.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Objective: Fibroblasts (FBs) are the cytological basis of keloid (KD) formation. This study aimed to identify the key pathogenic target cell subpopulation involved in KD recurrence. Approach: Single-cell RNA sequencing data were retrieved from public databases, revealing distinct gene expression patterns in FB subpopulations. Flow cytometry (FCM) was used to identify the surface molecular phenotypes of FBs that affect KD recurrence. Simultaneously, logistic regression analysis was performed to assess the predictive value of changes in FB subpopulation percentages for clinical KD recurrence. Results: The percentage of keloid fibroblasts was significantly greater than that in normal tissues. Through further clustering analysis of the FB population, we obtained four subpopulations, FB1-FB4, in which the percentages of FB1 subpopulation were increased, and functional enrichment analysis suggested that the FB1 subpopulation may play a greater role in extracellular matrix collagen oversynthesis in KD. In addition, the gene expression of CD26 (DPP4), CD117 (c-KIT), and CD34 in the FB1 subpopulation was significantly higher than that in FB2-4 subpopulations. Moreover, the percentage of CD26+/CD117+/CD34+ cell subpopulations in the FCM data of patients with KD recurrence was significantly increased. Regression analysis confirmed that the CD26+/CD117+/CD34+ FB subpopulation was a risk factor for relapse. Innovation: We demonstrated that the molecular phenotypic and functional heterogeneity of FBs influences KD recurrence. Conclusion: We identified key pathogenic FB subpopulations that may affect KD development, which can be used as potential markers to predict recurrence and provide potential target cell populations for future clinical treatment.
Collapse
Affiliation(s)
- Ruxin Xie
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Chenyu Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Tian Zhao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shiwei Zhang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Ai Zhong
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Nengbin Chen
- Cosmetic Burn and Plastic Surgery, The People's Hospital of Leshan, Leshan, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Karjalainen J, Hain S, Progatzky F. Glial-immune interactions in barrier organs. Mucosal Immunol 2025; 18:271-278. [PMID: 39716688 DOI: 10.1016/j.mucimm.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention. Glial cells were long considered as mere bystanders, only supporting their neuronal neighbours, but recent discoveries mainly on enteric glial cells in the intestine have implicated these cells in immune-regulation and inflammatory disease pathogenesis. In this review, we will highlight the bi-directional interactions between peripheral glial cells and the immune system and discuss the emerging immune regulatory functions of glial cells in barrier organs.
Collapse
Affiliation(s)
| | - Sofia Hain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fränze Progatzky
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Shi X, Xia X, Xiao Y, Zhang Y, Gong Y, Chen Y, Shi C, Wang W, Liu J, Huang J, Liu M, Xu Z, Ma Y, Shi M, Wang J, Wu W. Increased melanin induces aberrant keratinocyte - melanocyte - basal - fibroblast cell communication and fibrogenesis by inducing iron overload and ferroptosis resistance in keloids. Cell Commun Signal 2025; 23:141. [PMID: 40102920 PMCID: PMC11917160 DOI: 10.1186/s12964-025-02116-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Keloid is a typical skin fibrotic disease with unclear mechanisms and limited therapeutic options. Fibroblast-induced fibrogenesis is a crucial cause of KD. However, the types of cells involved in fibroblast fibrogenesis in KD and the specific mechanisms are unclear. This study aimed to investigate the role of melanocyte-secreted melanin in promoting fibroblast fibrogenesis and its mechanism and to evaluate the potential therapeutic effect of intervening melanin in treating keloid. METHODS The activity of pigmentation-related pathways in KD melanocytes was examined using single-cell RNA-sequence (scRNA-seq) analysis. Masson-Fontana staining or isolated melanin quantification detected the melanin levels and distribution in the skin and cells. Collagen deposition, wounding healing, and proliferation analysis were employed to integratively assess fibroblast fibrogenesis. After melanin treatment, bulk-seq identified fibroblasts' differentially expressed genes (DEGs). The iron levels were detected by Perl's staining or isolated iron quantification. Cell viability, LipidROS, and malondialdehyde assay accessed the ferroptosis levels. The therapeutic potential of ML329 was evaluated in keloid-bearing mice. RESULTS We found the enriched skin pigmentation-related pathways in the melanocytes of keloid by single-cell RNA-sequence (scRNA-seq) analysis. We further validated increased melanin levels in keloid patients. Additionally, melanin positively correlated with the Keloid Area and Severity Index in keloid. Furthermore, melanocyte-secreted melanin significantly promoted fibroblast proliferation, migration, and collagen synthesis. Mechanically, melanin increased basal cell permeability and inflammation to facilitate its transfer to the dermis, where it further activated fibroblasts by evoking iron overload and ferroptosis resistance. Consistently, iron overload and ferroptosis resistance were validated in primary fibroblasts and skin tissues of keloid patients. Inhibition of iron overload and ferroptosis resistance effectively diminish melanin-induced fibrogenesis. Interestingly, melanin induced iron overload and ferroptosis resistance in melanocytes in an autocrine manner and further stimulated keratinocytes to take up melanin to deepen skin color by upregulating the F2R-like trypsin receptor 1 (F2RL1). In vivo, the delivery of ML329, a microphthalmia-associated transcription factor (MITF) inhibitor, could suppress melanogenesis and alleviate keloid in human keloid-bearing nude mice. Meanwhile, ML329 decreased the iron content and restored the sensitivities of ferroptosis. CONCLUSION Collectively, melanin-lowing strategies may appear as a potential new therapeutic target for keloid.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Institute of Dermatology, Huashan Hospital, Jing'an District Central Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Xueyi Xia
- School of Life Science and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yang Xiao
- School of Life Science and Human Phenome Institute, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyi Gong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yahui Chen
- School of Life Science and Human Phenome Institute, Fudan University, Shanghai, China
| | - Chenyi Shi
- School of Life Science and Human Phenome Institute, Fudan University, Shanghai, China
| | - Wei Wang
- School of Life Science and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jianlan Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhuoya Xu
- School of Life Science and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- School of Life Science and Human Phenome Institute, Fudan University, Shanghai, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
- School of Life Science and Human Phenome Institute, Fudan University, Shanghai, China.
- Deptartment of Allergy and Immunology, Huashan Hospital, and Research Center of Allergy and Diseases, Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China.
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Institute of Dermatology, Huashan Hospital, Jing'an District Central Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Yang E, Xu R, Zhang H, Xia W, Huang X, Zan T. Deciphering Pain and Pruritus in Keloids from the Perspective of Neurological Dysfunction: Where Are We Now? Biomedicines 2025; 13:663. [PMID: 40149639 PMCID: PMC11940183 DOI: 10.3390/biomedicines13030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Keloids are a typical skin fibroproliferative disease that can cause severe aesthetic and functional concerns. Pain and pruritus are the most common clinical symptoms of keloids, but the mechanisms underlying these symptoms remain unclear. The peripheral nervous system plays a pivotal role in the transmission of superficial sensation signals. Mounting evidence has shown potential correlations between disturbance in the peripheral nervous system and pain and pruritus in keloids. Here, we summarize the role of neurological dysfunction in the development of pain and pruritus, with a specific focus on neuroanatomical alterations, the dysfunction of sensory nerves, and neurogenic inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200021, China; (E.Y.); (R.X.); (H.Z.); (W.X.)
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200021, China; (E.Y.); (R.X.); (H.Z.); (W.X.)
| |
Collapse
|
10
|
Qin Y, Shirakawa J, Xu C, Chen R, Yang X, Ng C, Nakano S, Elguindy M, Deng Z, Prasanth KV, Eissmann MF, Nakagawa S, Ricci WM, Zhao B. Long non-coding RNA Malat1 fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and β-catenin-OPG/Jagged1 pathway. eLife 2024; 13:RP98900. [PMID: 39714456 DOI: 10.7554/elife.98900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts, and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.
Collapse
Affiliation(s)
- Yongli Qin
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States
- Department of Medicine, Weill Cornell Medical College, New York, United States
| | - Jumpei Shirakawa
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States
| | - Cheng Xu
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States
| | - Ruge Chen
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, United States
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, United States
| | - Courtney Ng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States
| | - Shinichi Nakano
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States
| | - Mahmoud Elguindy
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States
| | - Zhonghao Deng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Moritz F Eissmann
- Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - William M Ricci
- Orthopaedic Trauma Service, Hospital for Special Surgery & NewYork-Presbyterian Hospital, NewYork, United States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States
- Department of Medicine, Weill Cornell Medical College, New York, United States
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, United States
| |
Collapse
|
11
|
Cheng X, Gao Z, Shan S, Shen H, Zheng H, Jin L, Li Q, Zhou J. Single cell transcriptomics reveals the cellular heterogeneity of keloids and the mechanism of their aggressiveness. Commun Biol 2024; 7:1647. [PMID: 39702490 DOI: 10.1038/s42003-024-07311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Keloid is a dermatofibrotic disease known for its aggressive nature and characterized by pathological scarring, which often leads to disfigurement and frequent recurrences. Effective therapies for keloids are still limited, presumably due to the inadequate comprehension of their aggressive mechanisms. In our study, we examined the unique scenario where both keloid and non-aggressive pathological scar originate from the same patient, providing a rare opportunity to explore the aggressive mechanisms of keloids through single-cell RNA sequencing. We found that the dominant fibroblast subgroup in keloids is mechanoresponsive group, which showed enhanced mechanotransduction and migration. This mechanoresponsive fibroblast subgroup is likely to be the key cell population and confer aggressive growth of keloids. The results also indicate that the endothelial cells and keratinocytes in keloid involve in endothelial-mesenchymal and epithelial-mesenchymal transitions. This study demonstrated the mechanoresponsive fibroblasts and multiple cellular mesenchymal processes could pave the way for further investigations into the keloid aggressiveness.
Collapse
Affiliation(s)
- Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Shen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hongkun Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
He J, Wang T, Liu D, Yang J, He Y, Zhao S, Ju Y. The Characterization and Regulation of Schwann Cells in the Tooth Germ Development and Odontogenic Differentiation. Int J Stem Cells 2024; 17:437-448. [PMID: 39069640 PMCID: PMC11612224 DOI: 10.15283/ijsc23205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 07/30/2024] Open
Abstract
Schwann cells (SCs), a type of glial cell in the peripheral nervous system, can serve as a source of mesenchymal stem cells (MSCs) to repair injured pulp. This study aimed to investigate the role of SCs in tooth germ development and repair of pulp injury. We performed RNA-seq and immunofluorescent staining on tooth germs at different developmental stages. The effect of L-type calcium channel (LTCC) blocker nimodipine on SCs odontogenic differentiation was analyzed by real-time polymerase chain reaction and Alizarin Red S staining. We used the PLP1-CreERT2/ Rosa26-GFP tracing mice model to examine the role of SCs and Cav1.2 in self-repair after pulp injury. SC-specific markers expressed in rat tooth germs at different developmental stages. Nimodipine treatment enhanced mRNA levels of osteogenic markers (DSPP, DMP1, and Runx2) but decreased calcium nodule formation. SCs-derived cells increased following pulp injury and Cav1.2 showed a similar response pattern as SCs. The different SCs phenotypes are coordinated in the whole process to ensure tooth development. Blocking the LTCC with nimodipine promoted SCs odontogenic differentiation. Moreover, SCs participate in the process of injured dental pulp repair as a source of MSCs, and Cav1.2 may regulate this process.
Collapse
Affiliation(s)
- Jing He
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Wang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Jingan Dental Clinic, Shanghai, China
| | - Danyang Liu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanpei He
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanqin Ju
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Qin Y, Shirakawa J, Xu C, Chen R, Yang X, Ng C, Nakano S, Elguindy M, Deng Z, Prasanth KV, Eissmann MF, Nakagawa S, Ricci WM, Zhao B. Long non-coding RNA Malat1 fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and the β-catenin-OPG/Jagged1 pathway. RESEARCH SQUARE 2024:rs.3.rs-3793919. [PMID: 38234849 PMCID: PMC10793491 DOI: 10.21203/rs.3.rs-3793919/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.
Collapse
Affiliation(s)
- Yongli Qin
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jumpei Shirakawa
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Cheng Xu
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Ruge Chen
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Courtney Ng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Shinichi Nakano
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Mahmoud Elguindy
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Zhonghao Deng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Moritz F. Eissmann
- Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - William M. Ricci
- Orthopaedic Trauma Service, Hospital for Special Surgery & NewYork-Presbyterian Hospital, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
14
|
Liu Y, Han B, Tan L, Ji D, Chen X. IGF1 and CXCR4 Respectively Related With Inhibited M1 Macrophage Polarization in Keloids. J Craniofac Surg 2024; 35:00001665-990000000-01799. [PMID: 39145631 PMCID: PMC11556827 DOI: 10.1097/scs.0000000000010479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024] Open
Abstract
PURPOSE The pathophysiology of keloid remains unclear. Exploring the immune heterogeneity and new biomarkers of keloids can help design new therapeutic targets for keloid treatments and prevention. METHODS The authors performed single-cell RNA sequencing analysis and bulk data differential gene expression analysis of public datasets(GSE92566 and GSE163973). They used Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and immune infiltration analysis to identify the function of the differential expressed genes. Besides, the authors performed qt-PCR on keloid tissue and adjacent normal tissues from 3 patients for further verification. RESULTS M2 macrophage increased in keloid samples than M1 macrophage. The authors identified 2 potential novel biomarkers of keloid, IGF1 and CXCR4, which could inhibit M1 macrophage polarization. The potential mechanism could be inhibiting immune responses and anti-inflammatory activities through INF signaling and E2F targeting. The differential expression of the 2 genes was verified by clinical samples. CONCLUSIONS The authors identified 2 immune signaling molecules associated with keloid formation (IGF1 and CXCR4) and analyzed their potential pathogenic mechanisms.
Collapse
Affiliation(s)
- Ying Liu
- Department of Plastic Surgery, Beijing Hospital of Integrated Traditional Chinese and Western Medicine
- Department of Scar & Wound Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Bing Han
- Department of Scar & Wound Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Liuchang Tan
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongshuo Ji
- Department of Plastic Surgery, Beijing Hospital of Integrated Traditional Chinese and Western Medicine
| | - Xiaofang Chen
- Department of Plastic and Reconstructive Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing
| |
Collapse
|
15
|
Direder M, Laggner M, Copic D, Klas K, Bormann D, Schweiger T, Hoetzenecker K, Aigner C, Ankersmit HJ, Mildner M. Transcriptional profiling sheds light on the fibrotic aspects of idiopathic subglottic tracheal stenosis. Front Cell Dev Biol 2024; 12:1380902. [PMID: 39071799 PMCID: PMC11272577 DOI: 10.3389/fcell.2024.1380902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Idiopathic subglottic stenosis (ISGS) is a rare fibrotic disease of the upper trachea with an unknown pathomechanism. It typically affects adult Caucasian female patients, leading to severe airway constrictions caused by progressive scar formation and inflammation with clinical symptoms of dyspnoea, stridor and potential changes to the voice. Endoscopic treatment frequently leads to recurrence, whereas surgical resection and reconstruction provides excellent long-term functional outcome. This study aimed to identify so far unrecognized pathologic aspects of ISGS using single cell RNA sequencing. Our scRNAseq analysis uncovered the cellular composition of the subglottic scar tissue, including the presence of a pathologic, profibrotic fibroblast subtype and the presence of Schwann cells in a profibrotic state. In addition, a pathology-associated increase of plasma cells was identified. Using extended bioinformatics analyses, we decoded pathology-associated changes of factors of the extracellular matrix. Our data identified ongoing fibrotic processes in ISGS and provide novel insights on the contribution of fibroblasts, Schwann cells and plasma cells to the pathogenesis of ISGS. This knowledge could impact the development of novel approaches for diagnosis and therapy of ISGS.
Collapse
Affiliation(s)
- Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Daniel Bormann
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Komulainen T, Daymond P, Hietanen KE, Kaartinen IS, Järvinen TAH. Myofibroblasts reside in the middle dermis of the keloids but do not predict the response to injection therapies: a double-blinded, randomized, controlled trial. Front Med (Lausanne) 2024; 11:1293028. [PMID: 38495113 PMCID: PMC10943694 DOI: 10.3389/fmed.2024.1293028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Keloids form as a pathological response to skin wound healing, and their etiopathology is poorly understood. Myofibroblasts, which are cells transformed from normal fibroblasts, are believed to contribute to pathological scar formation in wounds. Methods We carried out a double-blinded randomized controlled trial (RCT) comparing the efficacy of intralesional 5-fluorouracil (5-FU) and triamcinolone (TAC) injections in treating keloids. A total of 43 patients with 50 keloids were treated with either intralesional TAC or 5-FU injections, and their clinical response was evaluated. Biopsies were collected before, during, and after injection therapy from the active border of a keloid. To understand the role of myofibroblasts in keloids, we conducted an immunohistochemical analysis to identify myofibroblasts [α-smooth muscle actin (αSMA)] from the biopsies. We first defined the three histologically distinct regions-superficial, middle, and deep dermis-in each keloid. Results We then demonstrated that myofibroblasts almost exclusively exist in the middle dermis of the keloids as 80% of the cells in the middle dermis were αSMA positive. However, both the percentage of myofibroblasts as well as the area covered by them was substantially lower in the superficial and deep dermis than in the middle dermis of the keloids. Myofibroblasts do not predict the clinical response to intralesional injection therapies. There is no difference in the myofibroblast numbers in keloids or in the induced change in myofibroblasts between the responders and non-responders after treatment. Discussion This study demonstrates that myofibroblasts reside almost exclusively in the middle dermis layer of the keloids, but their numbers do not predict the clinical response to intralesional injection therapies in the RCT.
Collapse
Affiliation(s)
- Tuomas Komulainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Musculoskeletal Surgery and Diseases, Tampere University Hospital, Tampere, Finland
| | - Patrik Daymond
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kristiina E. Hietanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Plastic Surgery, Hospital Nova, Wellbeing Services County of Central Finland, Jyväskylä, Finland
| | - Ilkka S. Kaartinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Musculoskeletal Surgery and Diseases, Tampere University Hospital, Tampere, Finland
| | - Tero A. H. Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Musculoskeletal Surgery and Diseases, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
17
|
Tai Y, Zheng L, Liao J, Wang Z, Zhang L. Roles of the HIF-1α pathway in the development and progression of keloids. Heliyon 2023; 9:e18651. [PMID: 37636362 PMCID: PMC10448433 DOI: 10.1016/j.heliyon.2023.e18651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Keloids, a pathological scar that is induced by the consequence of aberrant wound healing, is still a major global health concern for its unsatisfactory treatment outcomes. HIF-1α, a main regulator of hypoxia, mainly acts through some proteins or signaling pathways and plays important roles in a variety of biological processes. Accumulating evidence has shown that HIF-1α played a crucial role in the process of keloid formation. In this review, we attempted to summarize the current knowledge on the association between HIF-1α expression and the development and progression of keloids. Through a comprehensive analysis, the molecular mechanisms underlying HIF-1α in keloids were shown to be correlated to the proliferation of fibroblasts, angiogenesis, and collagen deposits. The affected proteins and the signaling pathways were multiple. For instance, HIF-1α was reported to promote keloids formation by enhancing angiogenesis, fibroblast proliferation, and collagen deposition through the activation of periostin PI3K/Akt, TGF-β/Smad and TLR4/MyD88/NF-κB pathway. However, the specific effects of HIF-1α on keloids keloid illnesses in clinical practice is are entirely unclear, and further studies in clinical trials are still warranted. Therefore, an in-depth understanding of the biological mechanisms of HIF-1α in keloid formation is significant to develop promising therapeutic targets for the treatment of keloids in clinical practice.
Collapse
Affiliation(s)
- Yuncheng Tai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Jiao Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, China
| | - Zixiong Wang
- Department of Burn and Plastic Surgery, Xinjiang Military General Hospital, Urumqi, 830063, Xinjiang, China
| | - Lai Zhang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
18
|
Bensa T, Tekkela S, Rognoni E. Skin fibroblast functional heterogeneity in health and disease. J Pathol 2023; 260:609-620. [PMID: 37553730 DOI: 10.1002/path.6159] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 08/10/2023]
Abstract
Fibroblasts are the major cell population of connective tissue, including the skin dermis, and are best known for their function in depositing and remodelling the extracellular matrix. Besides their role in extracellular matrix homeostasis, fibroblasts have emerged as key players in many biological processes ranging from tissue immunity and wound healing to hair follicle development. Recent advances in single-cell RNA-sequencing technologies have revealed an astonishing transcriptional fibroblast heterogeneity in the skin and other organs. A key challenge in the field is to understand the functional relevance and significance of the identified new cell clusters in health and disease. Here, we discuss the functionally distinct fibroblast subtypes identified in skin homeostasis and repair and how they evolve in fibrotic disease conditions, in particular keloid scars and cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tjaša Bensa
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stavroula Tekkela
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emanuel Rognoni
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
19
|
Xia Y, Wang Y, Hao Y, Shan M, Liu H, Liang Z, Kuang X. Deciphering the single-cell transcriptome network in keloids with intra-lesional injection of triamcinolone acetonide combined with 5-fluorouracil. Front Immunol 2023; 14:1106289. [PMID: 37275903 PMCID: PMC10235510 DOI: 10.3389/fimmu.2023.1106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Objectives Keloid is a highly aggressive fibrotic disease resulting from excessive extracellular matrix deposition after dermal injury. Intra-lesional injection of triamcinolone acetonide (TAC) in combination with 5-fluorouracil (5-FU) is a commonly used pharmacological regimen and long-term repeated injections can achieve sustained inhibition of keloid proliferation. However, the molecular mechanisms underlying the inhibitory effect on keloids remain insufficiently investigated. Methods and materials This study performed single-cell RNA sequencing analysis of keloids treated with TAC+5-FU injections, keloids, and skins to explore patterns of gene expression regulation and cellular reprogramming. Results The results revealed that TAC+5-FU interrupted the differentiation trajectory of fibroblasts toward pro-fibrotic subtypes and induced keloid atrophy possibly by inhibiting the FGF signaling pathway in intercellular communication. It also stimulated partial fibroblasts to develop the potential for self-replication and multidirectional differentiation, which may be a possible cellular source of keloid recurrence. T cell dynamics demonstrated elevated expression of secretory globulin family members, which may be possible immunotherapeutic targets. Schwann cell populations achieved functional changes by increasing the proportion of apoptotic or senescence-associated cell populations and reducing cell clusters that promote epidermal development and fibroblast proliferation. Conclusions Our findings elucidated the molecular and cellular reprogramming of keloids by intra-lesional injection of TAC+5-FU, which will provide new insights to understand the mechanism of action and therapeutic targets.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinwen Kuang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|