1
|
Merz LM, Winter K, Richter S, Kallendrusch S, Horn A, Grunewald S, Klöting N, Krause K, Kiess W, Le Duc D, Garten A. Effects of alpelisib treatment on murine Pten-deficient lipomas. Adipocyte 2025; 14:2468275. [PMID: 39962643 PMCID: PMC11844927 DOI: 10.1080/21623945.2025.2468275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (Pcna), fibrosis (Tgfb1), and adipogenesis (Pparg) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.
Collapse
Affiliation(s)
- Lea M. Merz
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Clinical Research and Systems Medicine, Health and Medical University Potsdam, Potsdam, Germany
| | - Andreas Horn
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sonja Grunewald
- Department for Dermatology, Venereology and Allergology, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Zhang X, Duan H, Yue S, Gong L, Liao F. A rare case of a rectal neuroendocrine neoplasm growing within a lipoma with ulcerative lesions. Wien Klin Wochenschr 2025; 137:248-250. [PMID: 39900808 DOI: 10.1007/s00508-024-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025]
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of tumors with different immunophenotypes, morphological features, clinical presentations, and outcomes. Therefore, the diversity of NENs can easily confuse clinicians and lead to misdiagnosis. This article reports a case of a rectal NEN (r-NEN) growing within a lipoma with ulcerative lesions, which had been mistaken for rectal cancer. Fortunately, an experienced surgeon questioned the initial diagnosis (rectal cancer) after combining the results of a colonoscopic biopsy and the digital anorectal examination, thus enabling the patient to avoid unnecessary surgery. Through the review of this case and relevant literature, we further analyze the growth pattern of NENs and lipomas. Additionally, we hope to enhance clinicians' awareness of a NEN that grew insidiously within a lipoma with surface ulcerative lesions, to make accurate diagnoses and treatments in time.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Houyu Duan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Simei Yue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Lingjiao Gong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Hajfathalian M, Ghelichi S, Jacobsen C. Anti-obesity peptides from food: Production, evaluation, sources, and commercialization. Compr Rev Food Sci Food Saf 2025; 24:e70158. [PMID: 40111015 PMCID: PMC11924896 DOI: 10.1111/1541-4337.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/29/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
The global obesity epidemic has heightened interest in natural solutions, with anti-obesity peptides emerging as promising candidates. Derived from food sources such as plants, algae, marine organisms, and products like milk and eggs, these peptides combat obesity through various mechanisms but face challenges in production and scalability. The aim of this review is to explore their sources, mechanisms, measurement, and synthesis methods, including innovative approaches such as de novo synthesis, proteomics, and bioinformatics. Its unique contribution lies in critically analyzing the current state of research while highlighting novel synthesis techniques and their practical relevance in addressing commercialization challenges, offering valuable insights for advancing anti-obesity peptide development. Diverse methods for assessing the anti-obesity properties of these peptides are discussed, encompassing both in vitro and in vivo experimental approaches, as well as emerging alternatives. The review also explores the integration of cutting-edge technologies in peptide synthesis with the potential to revolutionize scalability and cost-effectiveness. Key findings assert that despite the great potential of peptides from various food sources to fight against obesity and advances in their identification and analysis, challenges like scalability, regulatory hurdles, bioavailability issues, high production costs, and consumer appeal persist. Future research should explore the use of bioinformatics tools and advanced peptide screening technologies to identify and design peptides with enhanced efficacy and bioavailability, efficient and cost-effective extraction and purification methods, sustainable practices such as utilizing byproducts from the food industry, and the efficacy of products containing isolated anti-obesity peptides versus whole materials in clinical settings.
Collapse
Affiliation(s)
- Mona Hajfathalian
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sakhi Ghelichi
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Mohammad H, Almajed S, Nawaf N, AlMulla N, Lari A, Jarragh A. Giant periscapular lipoma unmasked by post-bariatric surgery weight loss: a case report. J Surg Case Rep 2025; 2025:rjae817. [PMID: 39737213 PMCID: PMC11683727 DOI: 10.1093/jscr/rjae817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Giant lipomas, rare benign tumours composed of mature adipose tissue, represent only 1% of all lipomas, typically exceeding 10 cm in diameter or weighing over 1000 g. These tumours can cause nerve compression, discomfort, or functional impairment, necessitating surgical excision. We report a 52-year-old male with a giant intramuscular lipoma in the periscapular region, initially identified following significant weight loss after bariatric surgery. Clinical evaluation revealed a 15 × 20 cm mass, confirmed via computed tomography (CT) scan. Surgical excision was performed, followed by histopathological analysis, which confirmed a benign lipoma. Postoperative management was complicated by seroma formation, requiring drainage. This case underscores the importance of early diagnosis, imaging, and appropriate surgical management for large lipomas to prevent complications and recurrence while ensuring optimal cosmetic outcomes.
Collapse
Affiliation(s)
- Hussain Mohammad
- Department of Orthopedic Surgery, AlRazi National Orthopedic Hospital, Kuwait City, Kuwait
| | - Suaad Almajed
- Department of Orthopedic Surgery, AlRazi National Orthopedic Hospital, Kuwait City, Kuwait
| | - Norah Nawaf
- Department of Orthopedic Surgery, AlRazi National Orthopedic Hospital, Kuwait City, Kuwait
| | - Nawar AlMulla
- Department of Orthopedic Surgery, AlRazi National Orthopedic Hospital, Kuwait City, Kuwait
| | - Ali Lari
- Department of Orthopedic Surgery, AlRazi National Orthopedic Hospital, Kuwait City, Kuwait
| | - Ali Jarragh
- Department of Surgery, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
5
|
Katoumas K, Kouri M, Anterriotis D, Georgaki M, Nikitakis NG. Large Buccal Space Lipoma Excised Through an Intraoral Approach. Cureus 2024; 16:e70475. [PMID: 39479140 PMCID: PMC11522671 DOI: 10.7759/cureus.70475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Lipomas are benign tumors of adipose tissue. They represent the most common mesenchymal neoplasm but are relatively rare in the oral and maxillofacial regions. The purpose of this study is to present an unusual case of a large lipoma of the buccal space and its excision by an intraoral approach. A 38-year-old male patient presented with an otherwise asymptomatic swelling of the right cheek that had first been noticed four years earlier and had subsequently exhibited gradual, continuous enlargement with stable dimensions over the last year. The patient was obese but otherwise healthy. Examination revealed a movable, well-circumscribed, non-fluctuant, soft-elastic large swelling of the right buccal and parotid-masseteric region with normal overlying skin and no bruit. Ultrasound and MRI findings, as well as fine needle aspiration, were suggestive of lipoma. The lesion was excised under general anesthesia through an intraoral approach. The tumor measured 7.0 cm × 5.3 cm × 1.6 cm and was separated from the surrounding tissues by a thin capsule. Histopathologic examination rendered a final diagnosis of lipoma. No signs of recurrence were noted. Although lipomas are the most common mesenchymal neoplasm, they do not usually occur in the oral and maxillofacial region, especially as large lesions are located in the buccal space, and may pose diagnostic and therapeutic challenges.
Collapse
Affiliation(s)
- Konstantinos Katoumas
- Department of Oral and Maxillofacial Surgery, School of Dentistry, National and Kapodistrian University of Athens, Athens, GRC
| | - Maria Kouri
- Department of Oral Medicine and Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, GRC
| | - Dimitrios Anterriotis
- Department of Oral and Maxillofacial Surgery, General Hospital of Athens «G. Gennimatas», Athens, GRC
| | - Maria Georgaki
- Department of Oral Medicine and Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, GRC
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
6
|
Okuyama K, Inage K, Kim G, Mukaihata T, Tajiri I, Shiga Y, Inoue M, Eguchi Y, Suzuki-Narita M, Otagiri T, Tsuchiya R, Hishiya T, Arai T, Toshi N, Tokeshi S, Tashiro S, Ohyama S, Suzuki N, Furuya T, Maki S, Nakamura J, Hagiwara S, Kawarai Y, Aoki Y, Kotani T, Koda M, Takahashi H, Akazawa T, Ohtori S, Orita S. Bone union-promoting effect of romosozumab in an ovariectomized rat posterolateral lumbar fusion model. J Orthop Res 2024; 42:1831-1840. [PMID: 38567415 DOI: 10.1002/jor.25834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
Spinal fixation surgery has been increasingly performed in patients with osteoporosis. Romosozumab, a drug that was introduced in Japan recently, is known to possibly promote bone healing. However, few studies have reported the therapeutic effects of romosozumab in clinical practice in Japan. Therefore, here, we investigated the effects of romosozumab dosage on bone fusion promotion using an ovariectomized rat spinal fusion model. Eight-week-old female Sprague-Dawley rats were matched by body weight and divided into three groups: 1.0 romosozumab (R) group (Evenity®, 25 mg/kg), 1/10R group (Evenity®, 2.5 mg/kg), and control (C) group (saline). Subcutaneous injections were administered twice a week for 8 weeks postoperatively. Computed tomography scans were performed every 2 weeks from the time of surgery till 8 weeks postoperatively. The mean fusion rates in terms of volume were significantly higher in the R groups [1/10R, 1.0R] than in the C group from 4 weeks postoperatively. The rate of increase was significantly higher in the 1.0R group from 4 weeks postoperatively and in the 1/10R group from 6 weeks postoperatively, than in the C group. The proportion of trabecular bone area was approximately 1.5 times higher in the R groups than in the C group. No significant differences were observed between the R groups. Our results suggest that romosozumab stimulates bone growth at the graft site, and similar effects were achieved at 1/10 of the standard dosage.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Geundong Kim
- Department of Orthopaedic Surgery, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Tomohito Mukaihata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ikuko Tajiri
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiro Inoue
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyako Suzuki-Narita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuma Otagiri
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryuto Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahisa Hishiya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahito Arai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriyasu Toshi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Soichiro Tokeshi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Susumu Tashiro
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuhei Ohyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noritaka Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Maki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuuya Kawarai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuchika Aoki
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Toshiaki Kotani
- Department of Orthopedic Surgery, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Masao Koda
- Department of Orthopedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Takahashi
- Department of Orthopedic Surgery, University of Tsukuba, Ibaraki, Japan
| | - Tsutomu Akazawa
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki City, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Dietzsch AN, Al-Hasani H, Altschmied J, Bottermann K, Brendler J, Haendeler J, Horn S, Kaczmarek I, Körner A, Krause K, Landgraf K, Le Duc D, Lehmann L, Lehr S, Pick S, Ricken A, Schnorr R, Schulz A, Strnadová M, Velluva A, Zabri H, Schöneberg T, Thor D, Prömel S. Dysfunction of the adhesion G protein-coupled receptor latrophilin 1 (ADGRL1/LPHN1) increases the risk of obesity. Signal Transduct Target Ther 2024; 9:103. [PMID: 38664368 PMCID: PMC11045723 DOI: 10.1038/s41392-024-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.
Collapse
Affiliation(s)
- André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Joachim Altschmied
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Bottermann
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Brendler
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Judith Haendeler
- Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute (CARID), Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children and Adolescents, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Laura Lehmann
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Munich-Neuherberg, Germany
| | - Stephanie Pick
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Rene Schnorr
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Martina Strnadová
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany
| | - Heba Zabri
- Institute of Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
8
|
Lin J, Rao D, Zhang M, Gao Q. Metabolic reprogramming in the tumor microenvironment of liver cancer. J Hematol Oncol 2024; 17:6. [PMID: 38297372 PMCID: PMC10832230 DOI: 10.1186/s13045-024-01527-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
The liver is essential for metabolic homeostasis. The onset of liver cancer is often accompanied by dysregulated liver function, leading to metabolic rearrangements. Overwhelming evidence has illustrated that dysregulated cellular metabolism can, in turn, promote anabolic growth and tumor propagation in a hostile microenvironment. In addition to supporting continuous tumor growth and survival, disrupted metabolic process also creates obstacles for the anticancer immune response and restrains durable clinical remission following immunotherapy. In this review, we elucidate the metabolic communication between liver cancer cells and their surrounding immune cells and discuss how metabolic reprogramming of liver cancer impacts the immune microenvironment and the efficacy of anticancer immunotherapy. We also describe the crucial role of the gut-liver axis in remodeling the metabolic crosstalk of immune surveillance and escape, highlighting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jian Lin
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Qiang Gao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Kim G, Inage K, Shiga Y, Mukaihata T, Tajiri I, Eguchi Y, Suzuki-Narita M, Takaoka H, Hozumi T, Mizuki N, Tsuchiya R, Otagiri T, Hishiya T, Arai T, Toshi N, Furuya T, Maki S, Nakamura J, Hagiwara S, Aoki Y, Koda M, Takahashi H, Akazawa T, Ohtori S, Orita S. Bone union-promoting effect of romosozumab in a rat posterolateral lumbar fusion model. J Orthop Res 2022; 40:2576-2585. [PMID: 35088447 DOI: 10.1002/jor.25287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/29/2021] [Accepted: 01/23/2022] [Indexed: 02/04/2023]
Abstract
This study investigated the effect of romosozumab on bone union in a rat posterolateral lumbar fixation model. Posterolateral lumbar fixation was performed on 8-week-old male Sprague Dawley rats (n = 20). For bone grafting, autogenous bone (40 mg) was harvested from the spinous processes of the 10th thoracic vertebra until the 2nd lumbar vertebra and implanted between the intervertebral joints and transverse processes of the 4th and 5th lumbar vertebrae on both sides. Rats were matched by body weight and equally divided into two groups: R group (Evenity®, 25 mg/kg) and control (C) group (saline). Subcutaneous injections were administered twice a week until 8 weeks after surgery. Computed tomography was performed at surgery and week 8 after surgery. The area and percentage of bone trabeculae in the total area of bone fusion were calculated. Statistical analysis was performed using an unpaired t test (p < 0.05). We found that the R group rats had significantly higher mean bone union rate and volume than did the C group rats at all time courses starting week 4 after surgery. The R group had significantly higher increase rates than did the C group at weeks 4 and 6 after surgery. The percentage of bone trabeculae area in the R group was approximately 1.7 times larger than that in the C group. Thus, we demonstrated that romosozumab administration has stimulatory effects on bony outgrowth at bone graft sites. We attribute this to the modeling effect of romosozumab.
Collapse
Affiliation(s)
- Geundong Kim
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohito Mukaihata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ikuko Tajiri
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yawara Eguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyako Suzuki-Narita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiromitsu Takaoka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Hozumi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Norichika Mizuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryuto Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuma Otagiri
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahisa Hishiya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahito Arai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriyasu Toshi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Maki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuchika Aoki
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Masao Koda
- Department of Orthopedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Takahashi
- Department of Orthopedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Tsutomu Akazawa
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki City, Kanagawa, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Chiba University Center for Frontier Medical Engineering, Chiba, Japan
| |
Collapse
|
10
|
He H, Chen C, Zhao W. Soybean soluble polysaccharide prevents obesity in high-fat diet-induced rats via lipid metabolism regulation. Int J Biol Macromol 2022; 222:3057-3065. [DOI: 10.1016/j.ijbiomac.2022.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
11
|
Barth LAG, Nebe M, Kalwa H, Velluva A, Kehr S, Kolbig F, Prabutzki P, Kiess W, Le Duc D, Garten A, Kirstein AS. Phospholipid Scramblase 4 (PLSCR4) Regulates Adipocyte Differentiation via PIP3-Mediated AKT Activation. Int J Mol Sci 2022; 23:ijms23179787. [PMID: 36077184 PMCID: PMC9456373 DOI: 10.3390/ijms23179787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Phospholipid scramblase 4 (PLSCR4) is a member of a conserved enzyme family with high relevance for the remodeling of phospholipid distribution in the plasma membrane and the regulation of cellular signaling. While PLSCR1 and -3 are involved in the regulation of adipose-tissue expansion, the role of PLSCR4 is so far unknown. PLSCR4 is significantly downregulated in an adipose-progenitor-cell model of deficiency for phosphatase and tensin homolog (PTEN). PTEN acts as a tumor suppressor and antagonist of the growth and survival signaling phosphoinositide 3-kinase (PI3K)/AKT cascade by dephosphorylating phosphatidylinositol-3,4,5-trisphosphate (PIP3). Patients with PTEN germline deletion frequently develop lipomas. The underlying mechanism for this aberrant adipose-tissue growth is incompletely understood. PLSCR4 is most highly expressed in human adipose tissue, compared with other phospholipid scramblases, suggesting a specific role of PLSCR4 in adipose-tissue biology. In cell and mouse models of lipid accumulation, we found PLSCR4 to be downregulated. We observed increased adipogenesis in PLSCR4-knockdown adipose progenitor cells, while PLSCR4 overexpression attenuated lipid accumulation. PLSCR4 knockdown was associated with increased PIP3 levels and the activation of AKT. Our results indicated that PLSCR4 is a regulator of PI3K/AKT signaling and adipogenesis and may play a role in PTEN-associated adipose-tissue overgrowth and lipoma formation.
Collapse
Affiliation(s)
- Lisa A. G. Barth
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, 04103 Leipzig, Germany
| | - Michèle Nebe
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, 04103 Leipzig, Germany
| | - Hermann Kalwa
- Institute of Pharmacology, Pharmacy and Toxicology, Leipzig University, 04107 Leipzig, Germany
| | - Akhil Velluva
- Institute of Human Genetics, Leipzig University Medical Center, 04103 Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
| | - Florentien Kolbig
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, 04103 Leipzig, Germany
| | - Patricia Prabutzki
- Institute for Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
| | - Wieland Kiess
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, 04103 Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University Medical Center, 04103 Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Antje Garten
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, 04103 Leipzig, Germany
| | - Anna S. Kirstein
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-972-6504
| |
Collapse
|
12
|
Körner MB, Velluva A, Bundalian L, Radtke M, Lin CC, Zacher P, Bartolomaeus T, Kirstein AS, Mrestani A, Scholz N, Platzer K, Teichmann AC, Hentschel J, Langenhan T, Lemke JR, Garten A, Abou Jamra R, Le Duc D. Altered gene expression profiles impair the nervous system development in individuals with 15q13.3 microdeletion. Sci Rep 2022; 12:13507. [PMID: 35931711 PMCID: PMC9356015 DOI: 10.1038/s41598-022-17604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
The 15q13.3 microdeletion has pleiotropic effects ranging from apparently healthy to severely affected individuals. The underlying basis of the variable phenotype remains elusive. We analyzed gene expression using blood from three individuals with 15q13.3 microdeletion and brain cortex tissue from ten mice Df[h15q13]/+. We assessed differentially expressed genes (DEGs), protein–protein interaction (PPI) functional modules, and gene expression in brain developmental stages. The deleted genes’ haploinsufficiency was not transcriptionally compensated, suggesting a dosage effect may contribute to the pathomechanism. DEGs shared between tested individuals and a corresponding mouse model show a significant overlap including genes involved in monogenic neurodevelopmental disorders. Yet, network-wide dysregulatory effects suggest the phenotype is not caused by a single critical gene. A significant proportion of blood DEGs, silenced in adult brain, have maximum expression during the prenatal brain development. Based on DEGs and their PPI partners we identified altered functional modules related to developmental processes, including nervous system development. We show that the 15q13.3 microdeletion has a ubiquitous impact on the transcriptome pattern, especially dysregulation of genes involved in brain development. The high phenotypic variability seen in 15q13.3 microdeletion could stem from an increased vulnerability during brain development, instead of a specific pathomechanism.
Collapse
Affiliation(s)
- Marek B Körner
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany.,Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Akhil Velluva
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany.,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Maximilian Radtke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Pia Zacher
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany.,Epilepsy Center Kleinwachau, 01454, Radeberg, Germany
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Anna S Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103, Leipzig, Germany
| | - Achmed Mrestani
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany.,Department of Neurology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Nicole Scholz
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | | | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Tobias Langenhan
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany.
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, 04103, Leipzig, Germany. .,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice. Mol Metab 2021; 55:101411. [PMID: 34863940 PMCID: PMC8717577 DOI: 10.1016/j.molmet.2021.101411] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Objective Accumulating evidence indicates that high uric acid (UA) is strongly associated with obesity and metabolic syndrome and drives the development of nonalcoholic fatty liver disease (NAFLD) and insulin resistance. Although urate transporter-1 (URAT1), which is primarily expressed in the kidneys, plays a critical role in the development of hyperuricemia, its pathophysiological implication in NAFLD and insulin resistance remains unclear. We herein investigated the role and functional significance of URAT1 in diet-induced obese mice. Methods Mice fed a high-fat diet (HFD) for 16–18 weeks or a normal-fat diet (NFD) were treated with or without a novel oral URAT1-selective inhibitor (dotinurad [50 mg/kg/day]) for another 4 weeks. Results We found that URAT1 was also expressed in the liver and brown adipose tissue (BAT) other than the kidneys. Dotinurad administration significantly ameliorated HFD-induced obesity and insulin resistance. HFD markedly induced NAFLD, which was characterized by severe hepatic steatosis as well as the elevation of serum ALT activity and tissue inflammatory cytokine genes (chemokine ligand 2 (Ccl2) and tissue necrosis factor α (TNFα)), all of which were attenuated by dotinurad. Similarly, HFD significantly increased URAT1 expression in BAT, resulting in lipid accumulation (whitening of BAT), and increased the production of tissue reactive oxygen species (ROS), which were reduced by dotinurad via UCP1 activation. Conclusions In conclusion, a novel URAT1-selective inhibitor, dotinurad, ameliorates insulin resistance by attenuating hepatic steatosis and promoting rebrowning of lipid-rich BAT in HFD-induced obese mice. URAT1 serves as a key regulator of the pathophysiology of metabolic syndrome and may be a new therapeutic target for insulin-resistant individuals, particularly those with concomitant NAFLD. URAT1 is expressed in the liver and brown adipose tissue other than in the kidneys. URAT1-selective inhibitor ameliorates HFD-induced insulin resistance. URAT1-selective inhibitor improves NAFLD through the inhibition of Ccl2 and TNFα. URAT1-selective inhibitor promotes rebrowning of HFD-induced lipid-rich BAT. URAT1 serves as a key regulator of the pathophysiology of metabolic syndrome.
Collapse
|
14
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
15
|
Gjermeni E, Kirstein AS, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, Laufs U, Blüher M, Garten A, Le Duc D. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules 2021; 11:1426. [PMID: 34680059 PMCID: PMC8533625 DOI: 10.3390/biom11101426] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity represents a major public health problem with a prevalence increasing at an alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology and improve clinical management have led to a better understanding of biomolecules like gut hormones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat absorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity including intersection points to the new generation of antidiabetic drugs. We provide insight into the effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be explored.
Collapse
Affiliation(s)
- Erind Gjermeni
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany;
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Anna S. Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Florentien Kolbig
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Michael Kirchhof
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Linnaeus Bundalian
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
| | - Julius L. Katzmann
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Kirstein AS, Kehr S, Nebe M, Hanschkow M, Barth LAG, Lorenz J, Penke M, Breitfeld J, Le Duc D, Landgraf K, Körner A, Kovacs P, Stadler PF, Kiess W, Garten A. PTEN regulates adipose progenitor cell growth, differentiation, and replicative aging. J Biol Chem 2021; 297:100968. [PMID: 34273354 PMCID: PMC8350019 DOI: 10.1016/j.jbc.2021.100968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates the insulin signaling pathway. Germline PTEN pathogenic variants cause PTEN hamartoma tumor syndrome (PHTS), associated with lipoma development in children. Adipose progenitor cells (APCs) lose their capacity to differentiate into adipocytes during continuous culture, whereas APCs from lipomas of patients with PHTS retain their adipogenic potential over a prolonged period. It remains unclear which mechanisms trigger this aberrant adipose tissue growth. To investigate the role of PTEN in adipose tissue development, we performed functional assays and RNA-Seq of control and PTEN knockdown APCs. Reduction of PTEN levels using siRNA or CRISPR led to enhanced proliferation and differentiation of APCs. Forkhead box protein O1 (FOXO1) transcriptional activity is known to be regulated by insulin signaling, and FOXO1 was downregulated at the mRNA level while its inactivation through phosphorylation increased. FOXO1 phosphorylation initiates the expression of the lipogenesis-activating transcription factor sterol regulatory element-binding protein 1 (SREBP1). SREBP1 levels were higher after PTEN knockdown and may account for the observed enhanced adipogenesis. To validate this, we overexpressed constitutively active FOXO1 in PTEN CRISPR cells and found reduced adipogenesis, accompanied by SREBP1 downregulation. We observed that PTEN CRISPR cells showed less senescence compared with controls and the senescence marker CDKN1A (p21) was downregulated in PTEN knockdown cells. Cellular senescence was the most significantly enriched pathway found in RNA-Seq of PTEN knockdown versus control cells. These results provide evidence that PTEN is involved in the regulation of APC proliferation, differentiation, and senescence, thereby contributing to aberrant adipose tissue growth in patients with PHTS.
Collapse
Affiliation(s)
- Anna S Kirstein
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany.
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Michèle Nebe
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Martha Hanschkow
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Lisa A G Barth
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Judith Lorenz
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Melanie Penke
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Jana Breitfeld
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University Medical Center, Leipzig, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kathrin Landgraf
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Leipzig University Medical Center, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany; Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Wieland Kiess
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Antje Garten
- University Hospital for Children & Adolescents, Center for Pediatric Research, Leipzig University, Leipzig, Germany; Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Mangiola S, Thomas EA, Modrák M, Vehtari A, Papenfuss A. Probabilistic outlier identification for RNA sequencing generalized linear models. NAR Genom Bioinform 2021; 3:lqab005. [PMID: 33709073 PMCID: PMC7936652 DOI: 10.1093/nargab/lqab005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Relative transcript abundance has proven to be a valuable tool for understanding the function of genes in biological systems. For the differential analysis of transcript abundance using RNA sequencing data, the negative binomial model is by far the most frequently adopted. However, common methods that are based on a negative binomial model are not robust to extreme outliers, which we found to be abundant in public datasets. So far, no rigorous and probabilistic methods for detection of outliers have been developed for RNA sequencing data, leaving the identification mostly to visual inspection. Recent advances in Bayesian computation allow large-scale comparison of observed data against its theoretical distribution given in a statistical model. Here we propose ppcseq, a key quality-control tool for identifying transcripts that include outlier data points in differential expression analysis, which do not follow a negative binomial distribution. Applying ppcseq to analyse several publicly available datasets using popular tools, we show that from 3 to 10 percent of differentially abundant transcripts across algorithms and datasets had statistics inflated by the presence of outliers.
Collapse
Affiliation(s)
- Stefano Mangiola
- The Walter and Eliza Hall Institute, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Evan A Thomas
- The Walter and Eliza Hall Institute, Parkville, Victoria, 3052, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Martin Modrák
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 1083, Czech Republic
| | - Aki Vehtari
- Department of Computer Science, Aalto University, Aalto, FI-00076, Finland
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, 3010, Australia
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|