1
|
Jiang H, Fang W, Feng Y, Liu X, Zhao J, Xu L, Han G, Long X. Bafilomycin A1 mitigates subchondral bone degeneration and pain in TMJOA rats. Int Immunopharmacol 2025; 147:113947. [PMID: 39756167 DOI: 10.1016/j.intimp.2024.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Pain and disability are primary concerns for temporomandibular joint osteoarthritis (TMJOA) patients, and the efficacy of current treatments remains controversial. Overactive osteoclasts are associated with subchondral bone degeneration and pain in OA. The vacuolar H+-ATPase (V-ATPase) is crucial for differentiation and function in osteoclasts, but its role in TMJOA is not well defined. This study aims to evaluate the effects of the V-ATPase inhibitor, bafilomycin A1 (Baf A1) on the progression and pain of TMJOA. MATERIALS AND METHODS Pain behavior tests, histological staining, tartrate-resistant acid phosphatase (TRAP) staining, immunofluorescence staining, and micro-CT analysis were conducted to evaluate the therapeutic efficacy of Baf A1 in monosodium iodoacetate-induced TMJOA in rats. Additionally, TRAP staining, enzyme-linked immunosorbent assay and immunofluorescence staining were used to assess the inhibitory effects of Baf a1 on the osteoclastogenesis, secretion of netrin-1 and neurite growth of trigeminal ganglion (TG) neurons. RESULTS Baf A1 significantly mitigated subchondral bone degeneration by suppressing osteoclastogenesis and subsequently inhibited cartilage degradation in TMJOA rats. Baf A1 also effectively alleviated pain behavior by inhibiting expression of netrin-1 and innervation of sensory nerve in TMJOA rats. In vitro assays of osteoclast and TG further demonstrated the inhibitory effects of Baf A1 on osteoclastogenesis, secretion of netrin-1 and neurite outgrowth of TG. CONCLUSIONS This study demonstrates that Baf A1 inhibits V-ATPase to mitigate TMJOA degeneration and pain by suppressing osteoclastogenesis and secretion of netrin-1, thereby suggesting it as a potential clinical treatment option for degeneration and pain of TMJOA.
Collapse
Affiliation(s)
- Henghua Jiang
- Department of Orthodontic Division II, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yaping Feng
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xin Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jie Zhao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Liqin Xu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Guangli Han
- Department of Orthodontic Division II, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Zhang Y, Zhang D, Xu Q, Xia S, Shen P, Yang C. Fostamatinib alleviates temporomandibular joint osteoarthritis by maintaining cartilage homeostasis through MAPK/NF-κB and AKT/mTOR pathways. Int Immunopharmacol 2025; 147:113996. [PMID: 39756165 DOI: 10.1016/j.intimp.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a common degenerative disease characterized by cartilage degeneration. However, the therapeutic strategies aimed to maintain cartilage homeostasis remain unclear. Fostamatinib (Fos) is a potential clinical drug for rheumatoid arthritis (RA) and predicted as target drug for many inflammatory diseases. In this study we investigated the therapeutic effects of Fos for TMJ OA and underlying mechanisms. Interleukin-1β (IL-1β) was used to construct a condylar chondrocyte injury model in vitro and rat TMJ OA models were induced by unilateral anterior crossbite (UAC) in vivo. Subsequently, a series of experiments were performed to assess the therapeutic effects and potential mechanisms of Fos in TMJ OA. Herein, we verified that Fos improved IL-1β-induced decrease in chondrocyte viability and proliferation, as well as inhibited cell apoptosis. Additionally, Fos could alleviate IL-1β-induced inflammation, ECM degradation, and chondrocyte phenotype change through blocking MAPK/NF-κB pathways, as well as promote chondrocyte autophagy by regulating AKT/mTOR pathways. The therapeutic effects of Fos on TMJ OA were further validated through rat UAC model in vivo. Overall, Fos could maintaining cartilage homeostasis through regulating chondrocyte inflammation, ECM degradation, and abnormal cell biological behaviors (apoptosis and autophagy), which made it a promising small molecule drug for TMJ OA early intervention.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China; Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Qingyu Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
3
|
Li XX, Wang MT, Wu ZF, Sun Q, Ono N, Nagata M, Zang XL, Ono W. Etiological Mechanisms and Genetic/Biological Modulation Related to PTH1R in Primary Failure of Tooth Eruption. Calcif Tissue Int 2024; 115:101-116. [PMID: 38833001 DOI: 10.1007/s00223-024-01227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
Primary failure of eruption (PFE) is a rare disorder that is characterized by the inability of a molar tooth/teeth to erupt to the occlusal plane or to normally react to orthodontic force. This condition is related to hereditary factors and has been extensively researched over many years. However, the etiological mechanisms of pathogenesis are still not fully understood. Evidence from studies on PFE cases has shown that PFE patients may carry parathyroid hormone 1 receptor (PTH1R) gene mutations, and genetic detection can be used to diagnose PFE at an early stage. PTH1R variants can lead to altered protein structure, impaired protein function, and abnormal biological activities of the cells, which may ultimately impact the behavior of teeth, as observed in PFE. Dental follicle cells play a critical role in tooth eruption and root development and are regulated by parathyroid hormone-related peptide (PTHrP)-PTH1R signaling in their differentiation and other activities. PTHrP-PTH1R signaling also regulates the activity of osteoblasts, osteoclasts and odontoclasts during tooth development and eruption. When interference occurs in the PTHrP-PTH1R signaling pathway, the normal function of dental follicles and bone remodeling are impaired. This review provides an overview of PTH1R variants and their correlation with PFE, and highlights that a disruption of PTHrP-PTH1R signaling impairs the normal process of tooth development and eruption, thus providing insight into the underlying mechanisms related to PTH1R and its role in driving PFE.
Collapse
Affiliation(s)
- Xiao-Xia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Man-Ting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhi-Fang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qiang Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Mizuki Nagata
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Xiao-Long Zang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA.
| |
Collapse
|
4
|
Xing H, Han R, Wang Q, Sun Z, Li H. The spatio-temporal expression analysis of parathyroid hormone like hormone gene provides a new insight for bone growth of the antler tip tissue in sika deer. Anim Biosci 2024; 37:1367-1376. [PMID: 38419534 PMCID: PMC11222856 DOI: 10.5713/ab.23.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Parathyroid hormone like hormone (PTHLH), as an essential factor for bone growth, is involved in a variety of physiological processes. The aim of this study was to explore the role of PTHLH gene in the growth of antlers. METHODS The coding sequence (CDS) of PTHLH gene cDNA was obtained by cloning in sika deer (Cervus nippon), and the bioinformatics was analyzed. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the differences expression of PTHLH mRNA in different tissues of the antler tip at different growth periods (early period, EP; middle period, MP; late period, LP). RESULTS The CDS of PTHLH gene was 534 bp in length and encoded 177 amino acids. Predictive analysis results revealed that the PTHLH protein was a hydrophilic protein without transmembrane structure, with its secondary structure consisting mainly of random coil. The PTHLH protein of sika deer had the identity of 98.31%, 96.82%, 96.05%, and 94.92% with Cervus canadensis, Bos mutus, Oryx dammah and Budorcas taxicolor, which were highly conserved among the artiodactyls. The qRT-PCR results showed that PTHLH mRNA had a unique spatio-temporal expression pattern in antlers. In the dermis, precartilage, and cartilage tissues, the expression of PTHLH mRNA was extremely significantly higher in MP than in EP, LP (p<0.01). In the mesenchyme tissue, the expression of PTHLH mRNA in MP was significantly higher than that of EP (p<0.05), but extremely significantly lower than that of LP (p<0.01). The expression of PTHLH mRNA in antler tip tissues at all growth periods had approximately the same trend, that is, from distal to basal, it was first downregulated from the dermis to the mesenchyme and then continuously up-regulated to the cartilage tissue. CONCLUSION PTHLH gene may promote the rapid growth of antler mainly through its extensive regulatory effect on the antler tip tissue.
Collapse
Affiliation(s)
- Haihua Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Qianghui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Zihui Sun
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040,
China
| |
Collapse
|
5
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Zhou H, Zhao Y, Zha X, Zhang Z, Zhang L, Wu Y, Ren R, Zhao Z, Yang W, Zhao L. A Janus, robust, biodegradable bacterial cellulose/Ti 3C 2Tx MXene bilayer membranes for guided bone regeneration. BIOMATERIALS ADVANCES 2024; 161:213892. [PMID: 38795472 DOI: 10.1016/j.bioadv.2024.213892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Guided bone regeneration (GBR) stands as an essential modality for craniomaxillofacial bone defect repair, yet challenges like mechanical weakness, inappropriate degradability, limited bioactivity, and intricate manufacturing of GBR membranes hindered the clinical efficacy. Herein, we developed a Janus bacterial cellulose(BC)/MXene membrane through a facile vacuum filtration and etching strategy. This Janus membrane displayed an asymmetric bilayer structure with interfacial compatibility, where the dense layer impeded cell invasion and the porous layer maintained stable space for osteogenesis. Incorporating BC with Ti3C2Tx MXene significantly enhanced the mechanical robustness and flexibility of the material, enabling clinical operability and lasting GBR membrane supports. It also contributed to a suitable biodegradation rate, which aligned with the long-term bone repair period. After demonstrating the desirable biocompatibility, barrier role, and osteogenic capability in vitro, the membrane's regenerative potential was also confirmed in a rat cranial defect model. The excellent bone repair performance could be attributed to the osteogenic capability of MXene nanosheets, the morphological cues of the porous layer, as well as the long-lasting, stable regeneration space provided by the GBR membrane. Thus, our work presented a facile, robust, long-lasting, and biodegradable BC/MXene GBR membrane, offering a practical solution to craniomaxillofacial bone defect repair.
Collapse
Affiliation(s)
- Hongling Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China
| | - Yifan Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangjun Zha
- Liver Transplant Center and Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Linli Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, China
| | - Ruiyang Ren
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
7
|
Wang X, Tao J, Zhou J, Shu Y, Xu J. Excessive load promotes temporomandibular joint chondrocyte apoptosis via Piezo1/endoplasmic reticulum stress pathway. J Cell Mol Med 2024; 28:e18472. [PMID: 38842129 PMCID: PMC11154833 DOI: 10.1111/jcmm.18472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Excessive load on the temporomandibular joint (TMJ) is a significant factor in the development of TMJ osteoarthritis, contributing to cartilage degeneration. The specific mechanism through which excessive load induces TMJ osteoarthritis is not fully understood; however, mechanically-activated (MA) ion channels play a crucial role. Among these channels, Piezo1 has been identified as a mediator of chondrocyte catabolic responses and is markedly increased in osteoarthritis. Our observations indicate that, under excessive load conditions, endoplasmic reticulum stress in chondrocytes results in apoptosis of the TMJ chondrocytes. Importantly, using the Piezo1 inhibitor GsMTx4 demonstrates its potential to alleviate this condition. Furthermore, Piezo1 mediates endoplasmic reticulum stress in chondrocytes by inducing calcium ion influx. Our research substantiates the role of Piezo1 as a pivotal ion channel in mediating chondrocyte overload. It elucidates the link between excessive load, cell apoptosis, and calcium ion influx through Piezo1. The findings underscore Piezo1 as a key player in the pathogenesis of TMJ osteoarthritis, shedding light on potential therapeutic interventions for this condition.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Junli Tao
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Jianping Zhou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Yi Shu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Jie Xu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
8
|
Xie S, Jin L, Fu J, Yuan Q, Yin T, Ren J, Liu W. PTHrP participates in the bone destruction of middle ear cholesteatoma via promoting macrophage differentiation into osteoclasts induced by RANKL. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:655-666. [PMID: 39174879 PMCID: PMC11341230 DOI: 10.11817/j.issn.1672-7347.2024.230482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Progressive bone resorption and destruction is one of the most critical clinical features of middle ear cholesteatoma, potentially leading to various intracranial and extracranial complications. However, the mechanisms underlying bone destruction in middle ear cholesteatoma remain unclear. This study aims to explore the role of parathyroid hormone-related protein (PTHrP) in bone destruction associated with middle ear cholesteatoma. METHODS A total of 25 cholesteatoma specimens and 13 normal external auditory canal skin specimens were collected from patients with acquired middle ear cholesteatoma. Immunohistochemical staining was used to detect the expressions of PTHrP, receptor activator for nuclear factor-kappa B ligand (RANKL), and osteoprotegerin (OPG) in cholesteatoma and normal tissues. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the presence of TRAP positive multi-nucleated macrophages in cholesteatoma and normal tissues. Mono-nuclear macrophage RAW264.7 cells were subjected to interventions, divided into a RANKL intervention group and a PTHrP+ RANKL co-intervention group. TRAP staining was used to detect osteoclast formation in the 2 groups. The mRNA expression levels of osteoclast-related genes, including TRAP, cathepsin K (CTSK), and nuclear factor of activated T cell cytoplasmic 1 (NFATc1), were measured using real-time polymerase chain reaction (real-time PCR) after the interventions. Bone resorption function of osteoclasts was assessed using a bone resorption pit analysis. RESULTS Immunohistochemical staining showed significantly increased expression of PTHrP and RANKL and decreased expression of OPG in cholesteatoma tissues (all P<0.05). PTHrP expression was significantly positively correlated with RANKL, the RANKL/OPG ratio, and negatively correlated with OPG expression (r=0.385, r=0.417, r=-0.316, all P<0.05). Additionally, the expression levels of PTHrP and RANKL were significantly positively correlated with the degree of bone destruction in cholesteatoma (r=0.413, r=0.505, both P<0.05). TRAP staining revealed a large number of TRAP-positive cells, including multi-nucleated osteoclasts with three or more nuclei, in the stroma surrounding the cholesteatoma epithelium. After 5 days of RANKL or PTHrP+RANKL co-intervention, the number of osteoclasts was significantly greater in the PTHrP+RANKL co-intervention group than that in the RANKL group (P<0.05), with increased mRNA expression levels of TRAP, CTSK, and NFATc1 (all P<0.05). Scanning electron microscopy of bone resorption pits showed that the number (P<0.05) and size of bone resorption pits on bone slices were significantly greater in the PTHrP+RANKL co-intervention group compared with the RANKL group. CONCLUSIONS PTHrP may promote the differentiation of macrophages in the surrounding stroma of cholesteatoma into osteoclasts through RANKL induction, contributing to bone destruction in middle ear cholesteatoma.
Collapse
Affiliation(s)
- Shumin Xie
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008.
| | - Li Jin
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Jinfeng Fu
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Qiulin Yuan
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Tuanfang Yin
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Jihao Ren
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
- Clinical Medical Research Center for Otology in Hunan Province, Changsha 410011, China.
| |
Collapse
|
9
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
10
|
Chen K, Zhu P, Chu M, Tao H, Wang Q, Lv S, Huang L, Geng D. What do osteoporosis and osteoarthritis have in common? An integrated study of overlapping differentially expressed genes in bone mesenchymal stem cells of osteoporosis and osteoarthritis. Gene 2024; 893:147914. [PMID: 37865148 DOI: 10.1016/j.gene.2023.147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE For identification of aberrantly expressed genes in mesenchymal stem cells of osteoporosis (OP) and osteoarthritis (OA), Gene Expression Omnibus (GEO) datasets were integrated to investigate the intersection point. METHODS GSE35958 (osteoporosis) and GSE19664 (osteoarthritis) datasets were obtained from GEO database. The abnormally expressed genes were analyzed by GEO2R. Functional enrichment was explored by Metascape database and R software. The String database and Cytoscape software were used to build the protein-protein interaction network and identify hub genes. GSE35957 and GSE116925 were used as verification datasets. Single-cell analysis and pseudotime analysis were undertaken. CTDbase, Network Analyst, HPA database, HERB database and MIRW database were used to research the information, tissue and cell distribution, regulation, interaction and ingredients targeting the hub genes. Additionally, in vitro experiments such as RT-PCR, ALP staining and immunofluorescence were undertaken as verification tests. RESULTS Ten hub genes were identified in this study. All these genes play an important role in bone or cartilage generation. They have diagnostic values and therapeutic potential for OA and OP. Single-cell analysis visualized the cell distribution and pseudotime distribution of these genes. Some potential therapeutic ingredients of these genes were identified, such as curcumin, wogonin and glycerin. In vitro experiments, RT-PCR results showed that COL9A3 and MMP3 were downregulated and PTH1R was upregulated during osteogenic induction of BMSC. Immunohistochemical results showed the expression trend of MMP3 and COL2A1. CONCLUSION Ten abnormal hub genes of osteoporosis and osteoarthritis were identified successfully by this study. They were important regulatory genes for healthy bone and cartilage. These genes could be the common connections between osteoporosis and osteoarthritis as well as treatment targets. Further study of the regulatory mechanism and treatment effects of these genes would be valuable. The results of this study could contribute to further research.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu 226600, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China; Department of Orthopedics, Yixing People's Hospital, Tongzhenguan Road 75, Yixing, Jiangsu 214200, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu First People's Hospital, Shuyuan Road 1, Changshu, Jiangsu 215500, China
| | - Shujun Lv
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu 226600, China.
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
11
|
Jiang H, Tang Q, Zheng D, Gu Y, Man C. Parathyroid hormone enhances the therapeutic effect of mesenchymal stem cells on temporomandibular joint osteoarthritis in rats. AMERICAN JOURNAL OF STEM CELLS 2023; 12:73-82. [PMID: 38021454 PMCID: PMC10658131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease affecting the joint, which is characterized by injury to the articular cartilage, as well as changes in the synovial and subchondral bone. TMJOA has a high incidence rate, without any effective treatment. Despite the therapeutic potential of mesenchymal stem cells (MSCs) in various diseases, their efficacy in treating TMJOA is constrained by the local hypoxic conditions and elevated reactive oxygen species (ROS) environment within the damaged temporomandibular joint. In recent years, many studies have reported that parathyroid hormone (PTH) can effectively treat TMJOA, and has an important impact on MSC differentiation. Therefore, we hypothesized that PTH may influence the potential of MSCs, thereby improving their therapeutic effect on TMJOA. METHODS First, we isolated and cultured rat bone marrow MSCs, and evaluated their proliferation and differentiation after adding PTH. Next, the in vitro environment of hypoxia and high ROS was established by hypoxia condition and H2O2 treatment, and the resistance of PTH-treated MSCs to hypoxia and ROS was subsequently investigated. Finally, PTH-treated MSCs were used to treat TMJOA in a rat model to evaluate the efficacy of PTH. RESULTS PTH enhanced the proliferation ability of MSCs, promoted the osteogenic differentiation of MSCs, and improved the tolerance of MSCs to hypoxia and ROS. Finally, the therapeutic effect of PTH-treated MSCs on TMJOA was significantly improved. CONCLUSION PTH enhances the therapeutic effect of MSCs on TMJOA in rats.
Collapse
Affiliation(s)
- Haitao Jiang
- Department of Oral and Maxillofacial Trauma and Orthognathic Surgery, Stomatological Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Qiuyu Tang
- Honghuagang District Stomatological Hospital of Zunyi CityZunyi, Guizhou, China
| | - Dexin Zheng
- Department of Oral and Maxillofacial Trauma and Orthognathic Surgery, Stomatological Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Yunkai Gu
- Department of Stomatology, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, China
| | - Cheng Man
- Department of Oral and Maxillofacial Trauma and Orthognathic Surgery, Stomatological Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| |
Collapse
|
12
|
da Silva ZA, Melo WWP, Ferreira HHN, Lima RR, Souza-Rodrigues RD. Global Trends and Future Research Directions for Temporomandibular Disorders and Stem Cells. J Funct Biomater 2023; 14:103. [PMID: 36826902 PMCID: PMC9965396 DOI: 10.3390/jfb14020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Temporomandibular disorder (TMD) is an umbrella term used to describe various conditions that affect temporomandibular joints, masticatory muscles, and associated structures. Although the most conservative and least invasive treatment is preferable, more invasive therapies should be employed to refractory patients. Tissue engineering has been presented as a promising therapy. Our study aimed to investigate trends and point out future research directions on TMD and stem cells. A comprehensive search was carried out in the Web of Science Core Collection (WoS-CC) in October 2022. The bibliometric parameters were analyzed through descriptive statistics and graphical mapping. Thus, 125 papers, published between 1992 and 2022 in 65 journals, were selected. The period with the highest number of publications and citations was between 2012 and 2022. China has produced the most publications on the subject. The most frequently used keywords were "cartilage", "temporomandibular joint", "mesenchymal stem cells", and "osteoarthritis". Moreover, the primary type of study was in vivo. It was noticed that using stem cells to improve temporomandibular joint repair and regeneration is a significant subject of investigation. Nonetheless, a greater understanding of the biological interaction and the benefits of using these cells in patients with TMD is required.
Collapse
Affiliation(s)
| | | | | | | | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
13
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|