1
|
Phosri A, Srisodaphol W, Sangkharat K. Combined effects of ambient air pollution and temperature on mortality in Thailand. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025:10.1007/s00484-025-02913-8. [PMID: 40198345 DOI: 10.1007/s00484-025-02913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 03/03/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
This study aimed to investigate the combined effects of air pollution and temperature on mortality in 34 provinces of Thailand by modeling temperature as a confounding factor and effect modifier, estimating the effects of air pollution at low, moderate, and high temperature categories defined by the 1st and 99th province-specific temperature percentiles. When the temperature was modeled as a confounding factor, the relative risk (RR) of mortality associated with a 10 µg/m3 increase in PM10 and PM2.5 (lag 0-2), and a 10-ppb increase in NO2 (lag 0-2) and O3 (lag 0-7) was respectively 1.0096 (95% Confidence Interval (CI): 1.0073, 1.0118), 1.0134 (95% CI: 1.0099, 1.0170), 1.0172 (95% CI: 1.0122, 1.0222), and 1.0164 (95% CI: 1.0093, 1.0236). Regarding temperature as an effect modifier, the combined effects of air pollution and temperature were observed as a U-shaped pattern, where the effects of PM10, PM2.5, NO2, and O3 on mortality were greater at low (< 1st percentile) and high (> 99th percentile) temperature days compared to those at moderate temperature days (1st - 99th percentile). The pattern of combined effects of air pollution and temperature remained robust even when different temperature percentiles were employed, except for that of NO2. Furthermore, the estimated effects of PM10, PM2.5, NO2, and O3 on mortality at high-temperature days were mitigated by high green density. Findings of this study revealed that extreme temperature (both hot and cold) could exacerbate the effect of air pollution on mortality, and higher green density mitigate the combined effects of air pollution and high temperature.
Collapse
Affiliation(s)
- Arthit Phosri
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand.
| | - Wuttichai Srisodaphol
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kamolrat Sangkharat
- Regional Health Promotion Center 3, Department of Health, Ministry of Public Health, Nakhon Sawan, Thailand
| |
Collapse
|
2
|
Castro E, Healy J, Liu A, Wei Y, Kosheleva A, Schwartz J. Interactive effects between extreme temperatures and PM 2.5 on cause-specific mortality in thirteen U.S. states. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2025; 20:014011. [PMID: 39649149 PMCID: PMC11622441 DOI: 10.1088/1748-9326/ad97d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
The extent and robustness of the interaction between exposures to heat and ambient PM2.5 is unclear and little is known of the interaction between exposures to cold and ambient PM2.5. Clarifying these interactions, if any, is crucial due to the omnipresence of PM2.5 in the atmosphere and increasing scope and frequency of extreme temperature events. To investigate both of these interactions, we merged 6 073 575 individual-level mortality records from thirteen states spanning seventeen years with 1 km daily PM2.5 predictions from sophisticated prediction model and 1 km meteorology from Daymet V4. A time-stratified, bidirectional case-crossover design was used to control for confounding by individual-level, long-term and cyclic weekly characteristics. We fitted conditional logistic regressions with an interaction term between PM2.5 and extreme temperature events to investigate the potential interactive effects on mortality. Ambient PM2.5 exposure has the greatest effect on mortality by all internal causes in the 2 d moving average exposure window. Additionally, we found consistently synergistic interactions between a 10 μg m-3 increase in the 2 d moving average of PM2.5 and extreme heat with interaction odds ratios of 1.013 (95% CI: 1.000, 1.026), 1.024 (95% CI: 1.002, 1.046), and 1.033 (95% CI: 0.991, 1.077) for deaths by all internal causes, circulatory causes, and respiratory causes, respectively, which represent 75%, 156%, and 214% increases in the coefficient estimates for PM2.5 on those days. We also found evidence of interactions on the additive scale with corresponding relative excess risks due to interaction (RERIs) of 0.013 (95% CI: 0.003, 0.021), 0.020 (95% CI: 0.008, 0.031), and 0.017 (95% CI: -0.015, 0.036). Interactions with other PM2.5 exposure windows were more pronounced. For extreme cold, our results were suggestive of an antagonistic relationship. These results suggest that ambient PM2.5 interacts synergistically with exposure to extreme heat, yielding greater risks for mortality than only either exposure alone.
Collapse
Affiliation(s)
- Edgar Castro
- Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - James Healy
- Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Abbie Liu
- Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Yaguang Wei
- Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Anna Kosheleva
- Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Joel Schwartz
- Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|
3
|
Peng M, Li Y, Wu J, Zeng Y, Yao Y, Zhang Y. Exposure to submicron particulate matter and long-term survival: Cross-cohort analysis of 3 Chinese national surveys. Int J Hyg Environ Health 2025; 263:114472. [PMID: 39369489 DOI: 10.1016/j.ijheh.2024.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Cohort evidence linking increased mortality with airborne fine particulate matter (PM2.5, particulate matter [PM] with aerodynamic diameter ≤2.5 μm) exposure was extensively validated worldwide. Nevertheless, long-term survival associated with submicron particulate matter (PM1, PM with aerodynamic diameter ≤1 μm) exposure remained largely unstudied, particularly in highly exposed populations. METHODS We performed a population-based investigation involving 86844 adults aged 16+ years from 3 national dynamic cohorts spanning from 2005 to 2018. Residential annual exposure to PM1 and PM2.5 was assigned for each follow-up year using satellite-derived spatiotemporal estimates at a 1-km2 resolution. The concentration of PM1-2.5 (PM with aerodynamic diameter between 1 and 2.5 μm) was calculated by subtracting PM1 from PM2.5. Time-independent Cox proportional hazards regression models were applied to assess the associations of all-cause mortality with long-term exposure to size-specific particles. To investigate the effect of PM1 on PM2.5-mortality associations, we categorized participants into low, medium, and high groups based on PM1/PM2.5 ratio and examined the risk of PM2.5-associated mortality in each stratum. Effect modifications were checked via subgroup analyses. RESULTS A total of 18722 deaths occurred during 497069.2 person-years of follow-up (median 5.7 years). Participants were exposed to an average annual concentration of 31.8 μg/m³ (range: 7.6-66.8 μg/m³) for PM1, 56.3 μg/m³ (range: 19.8-127.2 μg/m³) for PM2.5, and 24.5 μg/m³ (range: 7.3-60.3 μg/m³) for PM1-2.5. PM1, PM2.5, and PM1-2.5 were consistently associated with elevated mortality risks, with a hazard ratio (HR) of 1.029 (95% confidence interval [CI]: 1.013-1.046), 1.014 (95% CI: 1.005-1.023), and 1.019 (95% CI: 1.001-1.038) for each 10-μg/m3 increase in exposure, respectively. Compared with low (HR = 0.986, 95% CI: 0.967-1.004) and medium (HR = 1.015, 95% CI: 1.002-1.029) PM1/PM2.5 ratio groups, PM2.5-related risk of mortality was more pronounced in high PM1/PM2.5 ratio stratum (HR = 1.041, 95% CI: 1.019-1.064). Greater risks of mortality associated with size-specific particles were found among the elderly (>80 years old), southeastern participants, and those living in warmer areas. CONCLUSIONS This study demonstrated that long-term exposure to PM1, PM2.5, and PM1-2.5 was associated with heightened mortality, and PM1 may play a predominant role in PM2.5-induced risk. Our results emphasized the population health implications of establishing ambient PM1 air quality guidelines to mitigate the burden of premature mortality stemming from particulate air pollution.
Collapse
Affiliation(s)
- Minjin Peng
- Department of Outpatient, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yachen Li
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jing Wu
- China Center for Health Development Studies, Peking University, Beijing 100871, China
| | - Yi Zeng
- China Center for Health Development Studies, Peking University, Beijing 100871, China
| | - Yao Yao
- China Center for Health Development Studies, Peking University, Beijing 100871, China.
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
4
|
Fan Y, Hu J, Qiu L, Wu K, Li Z, Feng Y, Wu Q, Yang M, Tao J, Song J, Su H, Cheng J, Wang X. Ambient temperature and the risk of childhood epilepsy hospitalizations: Potentially neglected risk of temperature extremes and modifying effects of air pollution. Epilepsy Behav 2024; 159:109992. [PMID: 39213936 DOI: 10.1016/j.yebeh.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Extreme temperatures and air pollution are increasingly important risk factors for human health in the background of climate change, with limited evidence available for neurological disorders. This study intended to investigate the short-term effects of extreme temperatures on childhood epilepsy and explore the potential modifying effect of air pollution. METHODS Daily childhood epilepsy hospitalization, meteorological and air pollution data were collected from 10 cities in Anhui Province of China during 2016-2018. We firstly employed a space-time-stratified case-crossover design and conditional logistic regression model to fit the short-term relationship between temperature and epilepsy. Then, we conducted stratified analyses by the level of air pollution and individual characteristics. RESULTS Both extreme heat and extreme cold increased the risk of hospitalization for childhood epilepsy. The effect of extreme heat [97.5th vs. minimum hospitalization temperature (MHT)] on hospitalization was acute and emerged at lag0 [OR: 1.229 (95 %CI: 1.035 to 1.459)], while the effect of extreme cold (2.5th vs. MHT) was delayed and appeared at lag5 [OR: 1.098 (95 %CI: 1.043 to 1.156)]. We also found children aged 6-18 years were more susceptible to extreme cold than children aged 0-5 years. Besides, extreme heat and cold effects differed by the level of air pollutants. CONCLUSION This study suggests that extreme temperatures might be the novel but currently neglected risk factor for childhood epilepsy, and air pollution could further amplify the adverse effect of temperature.
Collapse
Affiliation(s)
- Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Jihong Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Lijuan Qiu
- School of Health Services Management, Anhui Medical University, Hefei, China
| | - Keyu Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Zhiwei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Yufan Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Qiyue Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Min Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Junwen Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Jian Song
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Xu Wang
- Department of Science and Education, Children's Hospital of Anhui Medical University (Anhui Provincial Children's Hospital), Hefei, Anhui, China.
| |
Collapse
|
5
|
Cabello-Torres RJ, Carbo-Bustinza N, Romero-Cabello EA, Ureta Tolentino JM, Torres Armas EA, Turpo-Chaparro JE, Canas Rodrigues P, López-Gonzales JL. An exploratory analysis of PM 2.5 /PM 10 ratio during spring 2016-2018 in Metropolitan Lima. Sci Rep 2024; 14:9285. [PMID: 38654081 DOI: 10.1038/s41598-024-59831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Aerosols (PM2.5 and PM10 ) represent one of the most critical pollutants due to their negative effects on human health. This research analyzed the relationship of PM and its PM2.5 /PM10 ratios with climatic variables in the austral spring (2016-2018) in Metropolitan Lima. Overall, there was an average PM2.5 /PM10 ratio of 0.33 with fluctuations from 0.30 to 0.35. However, there have also been high point values that reached ratios greater than one. This situation indicates a moderate condition of contamination by particulate matter with a predominance of coarse aerosols in spring, with an increasing trend over the years. The locations Ate and Villa Maria del Triunfo, especially Ate, presented poor quality conditions. Thursdays showed outstanding pollution peaks by PM10 , and a decrease is visible on Sundays. On the other hand, the PM2.5 showed a similar pattern every day, including Sundays. The maximum peaks occurred in the morning and night hours. The increase in anthropogenic emissions associated with the formation of secondary aerosols has been evident, being the case of the location Campo de Marte, the one that had a significant increase in ratios PM2.5 /PM10 , which confirms a greater intensity of secondary formations of carbonaceous particles from industrial oil sources, vehicle exhaust, as well as aerosols from metal smelting and biomass burning. There were negative correlations of the ratios with PM10 , temperature, wind speed, and direction, and positive correlations with PM2.5 and relative humidity. Contour lines were successfully developed that demonstrated the interaction of climate with PM2.5 /PM10 ratios. This will deepen the exploration of emission sources and modeling, which allows for optimizing air quality indices to control emissions and adequately manage air quality in Metropolitan Lima.
Collapse
Affiliation(s)
| | - Natalí Carbo-Bustinza
- Doctorado Interdisciplinario en Ciencias Ambientales, Universidad de Playa Ancha, Valparaíso, Chile
| | | | | | - Elías A Torres Armas
- Instituto de Investigación de Estudios Estadísticos y Control de Calidad, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Peru
| | | | | | | |
Collapse
|
6
|
Mahakalkar AU, Gianquintieri L, Amici L, Brovelli MA, Caiani EG. Geospatial analysis of short-term exposure to air pollution and risk of cardiovascular diseases and mortality-A systematic review. CHEMOSPHERE 2024; 353:141495. [PMID: 38373448 DOI: 10.1016/j.chemosphere.2024.141495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The cardiovascular risk associated with short-term ambient air pollution exposure is well-documented. However, recent advancements in geospatial techniques have provided new insights into this risk. This systematic review focuses on short-term exposure studies that applied advanced geospatial pollution modelling to estimate cardiovascular disease (CVD) risk and accounted for additional unconventional neighbourhood-level confounders to analyse their modifier effect on the risk. Four databases were investigated to select publications between 2018 and 2023 that met the inclusion criteria of studying the effect of particulate matter (PM2.5 and PM10), SO2, NOx, CO, and O3 on CVD mortality or morbidity, utilizing pollution modelling techniques, and considering spatial and temporal confounders. Out of 3277 publications, 285 were identified for full-text review, of which 34 satisfied the inclusion criteria for qualitative analysis, and 12 of them were chosen for additional quantitative analysis. Quality assessment revealed that 28 out of 34 included articles scored 4 or above, indicating high quality. In 30 studies, advanced pollution modelling techniques were used, while in 4 only simpler methods were applied. The most pertinent confounders identified were socio-demographic variables (e.g., socio-economic status, population percentage by race or ethnicity) and neighbourhood-level built environment variables (e.g., urban/rural area, percentage of green space, proximity to healthcare), which exhibited varying modifier effects depending on the context. In the quantitative analysis, only PM 2.5 showed a significant positive association to all-cause CVD-related hospitalisation. Other pollutants did not show any significant effect, likely due to the high inter-study heterogeneity and a limited number of cases. The application of advanced geospatial measurement and modelling of air pollution exposure, as well as its risk, is increasing. This review underscores the importance of accounting for unconventional neighbourhood-level confounders to enhance the understanding of the CVD risk associated with short-term pollution exposure.
Collapse
Affiliation(s)
- Amruta Umakant Mahakalkar
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy; University School for Advanced Studies IUSS, Pavia, Italy
| | - Lorenzo Gianquintieri
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy.
| | - Lorenzo Amici
- Politecnico di Milano, Civil and Environmental Engineering Dpt., Milan, Italy
| | | | - Enrico Gianluca Caiani
- Politecnico di Milano, Electronics, Information and Bioengineering Dpt., Milan, Italy; IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
7
|
Mermiri M, Mavrovounis G, Kanellopoulos N, Papageorgiou K, Spanos M, Kalantzis G, Saharidis G, Gourgoulianis K, Pantazopoulos I. Effect of PM2.5 Levels on ED Visits for Respiratory Causes in a Greek Semi-Urban Area. J Pers Med 2022; 12:jpm12111849. [PMID: 36579575 PMCID: PMC9696598 DOI: 10.3390/jpm12111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Fine particulate matter that have a diameter of <2.5 μm (PM2.5) are an important factor of anthropogenic pollution since they are associated with the development of acute respiratory illnesses. The aim of this prospective study is to examine the correlation between PM2.5 levels in the semi-urban city of Volos and Emergency Department (ED) visits for respiratory causes. ED visits from patients with asthma, pneumonia and upper respiratory infection (URI) were recorded during a one-year period. The 24 h PM2.5 pollution data were collected in a prospective manner by using twelve fully automated air quality monitoring stations. PM2.5 levels exceeded the daily limit during 48.6% of the study period, with the mean PM2.5 concentration being 30.03 ± 17.47 μg/m3. PM2.5 levels were significantly higher during winter. When PM2.5 levels were beyond the daily limit, there was a statistically significant increase in respiratory-related ED visits (1.77 vs. 2.22 visits per day; p: 0.018). PM2.5 levels were also statistically significantly related to the number of URI-related ED visits (0.71 vs. 0.99 visits/day; p = 0.01). The temperature was negatively correlated with ED visits (r: −0.21; p < 0.001) and age was found to be positively correlated with ED visits (r: 0.69; p < 0.001), while no statistically significant correlation was found concerning humidity (r: 0.03; p = 0.58). In conclusion, PM2.5 levels had a significant effect on ED visits for respiratory causes in the city of Volos.
Collapse
Affiliation(s)
- Maria Mermiri
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
- Correspondence:
| | - Georgios Mavrovounis
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Nikolaos Kanellopoulos
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Konstantina Papageorgiou
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Michalis Spanos
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Georgios Kalantzis
- Department of Mechanical Engineering, University of Thessaly, Leoforos Athinon, 8 Pedion Areos, 38334 Volos, Greece
| | - Georgios Saharidis
- Department of Mechanical Engineering, University of Thessaly, Leoforos Athinon, 8 Pedion Areos, 38334 Volos, Greece
| | - Konstantinos Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Ioannis Pantazopoulos
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| |
Collapse
|
8
|
City-level impact of extreme temperatures and mortality in Latin America. Nat Med 2022; 28:1700-1705. [PMID: 35760859 PMCID: PMC9388372 DOI: 10.1038/s41591-022-01872-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/10/2022] [Indexed: 11/08/2022]
Abstract
Climate change and urbanization are rapidly increasing human exposure to extreme ambient temperatures, yet few studies have examined temperature and mortality in Latin America. We conducted a nonlinear, distributed-lag, longitudinal analysis of daily ambient temperatures and mortality among 326 Latin American cities between 2002 and 2015. We observed 15,431,532 deaths among ≈2.9 billion person-years of risk. The excess death fraction of total deaths was 0.67% (95% confidence interval (CI) 0.58-0.74%) for heat-related deaths and 5.09% (95% CI 4.64-5.47%) for cold-related deaths. The relative risk of death was 1.057 (95% CI 1.046-1.067%) per 1 °C higher temperature during extreme heat and 1.034 (95% CI 1.028-1.040%) per 1 °C lower temperature during extreme cold. In Latin American cities, a substantial proportion of deaths is attributable to nonoptimal ambient temperatures. Marginal increases in observed hot temperatures are associated with steep increases in mortality risk. These risks were strongest among older adults and for cardiovascular and respiratory deaths.
Collapse
|
9
|
Scheepers PTJ, Nakayama SF. Exposure science perspective on disaster preparedness and resilience. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:795-796. [PMID: 34511599 DOI: 10.1038/s41370-021-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands.
| | | |
Collapse
|