1
|
Luo S, Zhang X, Liu Z, Wang C, Pei J, Yu Y, Liu H, Gu W. Low-dose aspirin for the prevention of preeclampsia in women with polycystic ovary syndrome: a retrospective cohort study. BMC Pregnancy Childbirth 2025; 25:98. [PMID: 39885419 PMCID: PMC11780906 DOI: 10.1186/s12884-025-07183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The objective of this study was to investigate the efficacy of low-dose aspirin (LDA) in preventing preeclampsia among pregnant women with polycystic ovary syndrome (PCOS), given the increased susceptibility of this population to preeclampsia development. METHODS A retrospective cohort study was conducted on pregnant women with PCOS who delivered between January 1, 2018 and February 10, 2024 at our institution. Clinical characteristics and obstetric data were extracted from medical records. Propensity score matching (PSM) was employed to analyze the association between LDA use and PE incidence. RESULTS The study cohort comprised 1522 pregnant women with PCOS. Among 395 pregnant women identified as high-risk for preeclampsia, 98 were administered LDA for preeclampsia prevention, while 297 did not receive LDA. Following PSM, no statistically significant difference was observed in preeclampsia risk between the LDA and non-LDA groups. Additionally, maternal and neonatal outcomes were comparable between the two groups. CONCLUSIONS This cohort analysis did not provide sufficient evidence to support the efficacy of LDA in preventing preeclampsia among PCOS patients at high risk for preeclampsia.
Collapse
Affiliation(s)
- Shouling Luo
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Huangpu Area, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaoyue Zhang
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Huangpu Area, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Zhenzhen Liu
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Huangpu Area, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Chengjie Wang
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Huangpu Area, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jiangnan Pei
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Huangpu Area, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yi Yu
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Huangpu Area, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Haiyan Liu
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Huangpu Area, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Weirong Gu
- The Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Huangpu Area, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
2
|
Knabl J, Ye Y, Desoye G, Jeschke U. HLA-G - evolvement from a trophoblast specific marker to a checkpoint molecule in cancer, a narrative review about the specific role in breast- and gynecological cancer. J Reprod Immunol 2024; 166:104385. [PMID: 39432974 DOI: 10.1016/j.jri.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Human leukocyte antigen G (HLA-G) is known as a non-classical molecule of the major histocompatibility complex class Ib and downregulates the mother's immune response against the fetus during pregnancy, thereby generating immune tolerance. Due to the latter effect, HLA-G is also referred to as an immune checkpoint molecule. Originally identified on extravillous trophoblasts, HLA-G is already known to induce immune tolerance at various stages of the immune response, for example through cell differentiation and proliferation, cytolysis and cytokine secretion. Because of these functions, HLA-G is involved in various processes of cancer progression, but a comprehensive review of the role of HLA-G in gynecologic cancers is lacking. Therefore, this review focuses on the existing knowledge of HLA-G in ovarian cancer, endometrial cancer, cervical cancer and breast cancer. HLA-G is predominantly expressed in cancer tissues adjacent to the extravillous trophoblast. Therefore, modulating its expression in the cancer target tissues of cancer patients could be a potential therapeutic approach to treat these diseases.
Collapse
Affiliation(s)
- Julia Knabl
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Marchioninistr.15, Munich 81377 , Germany; Department of Obstetrics, Klinik Hallerwiese, St.-Johannis Mühlgasse 19, Nürnberg 90419, Germany
| | - Yao Ye
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University Graz, Auenbruggerplatz 14, Graz A-8036, Austria
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, Augsburg 86156, Germany.
| |
Collapse
|
3
|
Ma Y, Qian Y, Jiang H, Meng H, Wang Y, Yang Y. Combined maternal KIR2DL4 and fetal HLA-G polymorphisms were associated with preeclampsia in a Han Chinese population. Front Genet 2024; 15:1442938. [PMID: 39144721 PMCID: PMC11322057 DOI: 10.3389/fgene.2024.1442938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Preeclampsia is the main cause of maternal and infant mortality and morbidity during pregnancy. Killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4) and human leukocyte antigen G (HLA-G) play crucial roles in immune tolerance at the maternal-fetal interface. In this case‒control study, 154 maternal-fetal pairs were recruited, including 74 pairs with preeclampsia (56 of 74 pairs from family triads) and 80 pairs with a normal pregnancy (78 of 80 pairs from family triads). SNaPshot technology was used to detect genetic polymorphisms for 7 TagSNPs in the KIR2DL4 and HLA-G genes. Among the fetal HLA-G gene polymorphisms, rs9380142 (A vs. G: OR = 2.802, 95% CI = 1.761-4.458) and rs1063320 (G vs. C: OR = 1.807, 95% CI = 1.144-2.852) differed between the preeclampsia group and the control group. The transmission disequilibrium test (TDT) suggested that the differences in the rs9380142G/A polymorphism in foetuses between preeclampsia triads and control triads were due to differences in transmission from the parents (P = 0.001). There was no significant difference in the distribution of maternal KIR2DL4 alleles or genotype frequency between the preeclampsia group and the control group. Gene‒gene interaction analysis revealed that the combined genotypes of maternal rs649216-CC and fetal rs9380142-GG, maternal rs1051456-CG/GG and fetal rs9380142-GG, maternal rs34785252-CC and fetal rs9380142-AA/GA, and maternal rs34785252-CC/AA and fetal rs9380142-GG were associated with a significantly lower risk of preeclampsia. Therefore, this study suggested that the combination of maternal KIR2DL4 and fetal HLA-G polymorphisms was associated with preeclampsia in a Han Chinese population.
Collapse
Affiliation(s)
- Yantuanjin Ma
- College of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Institute of Biomedical Engineering, Kunming Medical University, Kunming, China
| | - Yuan Qian
- Prenatal Diagnosis Center, The first Affiliated Hospital of Kunming Medical University, Kunming, China
- Precision Medicine Center, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, China
| | - Hong Jiang
- College of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Clinical Laboratory, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, China
| | - Haiyun Meng
- Obstetrics Department, Yan’an Hospital of Kunming City, Kunming, China
| | - Yang Wang
- Clinical Laboratory, Yan’an Hospital of Kunming City, Kunming, China
| | - Yuling Yang
- College of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Li CY, Liu YJ, Tao F, Chen RY, Shi JJ, Lu JF, Yang GJ, Chen J. Lysine-specific demethylase 7A (KDM7A): A potential target for disease therapy. Biochem Pharmacol 2023; 216:115799. [PMID: 37696455 DOI: 10.1016/j.bcp.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Histone demethylation is a kind of epigenetic modification mediated by a variety of enzymes and participates in regulating multiple physiological and pathological events. Lysine-specific demethylase 7A is a kind of α-ketoglutarate- and Fe(II)-dependent demethylase belonging to the PHF2/8 subfamily of the JmjC demethylases. KDM7A is mainly localized in the nucleus and contributes to transcriptional activation via removing mono- and di-methyl groups from the lysine residues 9 and 27 of Histone H3. Mounting studies support that KDM7A is not only necessary for normal embryonic, neural, and skeletal development, but also associated with cancer, inflammation, osteoporosis, and other diseases. Herein, the structure of KDM7A is described by comparing the similarities and differences of its amino acid sequences of KDM7A and other Histone demethylases; the functions of KDM7A in homeostasis and dyshomeostasis are summarized via documenting its content and related signaling; the currently known KDM7A-specific inhibitors and their structural relationship are listed based on their structure optimization and pharmacological activities; and the challenges and opportunities in exploring functions and developing targeted agents of KDM7A are also prospected via presenting encountered problems and potential solutions, which will provide an insight in functional exploration and drug discovery for KDM7A-related diseases.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Reshetnikov EA, Stepanov VA, Serebrova VN, Bocharova AV, Trifonova EA, Ponomarenko IV, Reshetnikova YN, Efremova OA, Orlova VS, Batlutskaya IV, Sorokina IN, Churnosov MI. Genes TMEM136 and PPP1R12C Differentially Expressed in the Placenta Are Associated with Preeclampsia. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422120110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Human Trophoblast Cell-Derived Extracellular Vesicles Facilitate Preeclampsia by Transmitting miR-1273d, miR-4492, and miR-4417 to Target HLA-G. Reprod Sci 2022; 29:2685-2696. [PMID: 35503501 DOI: 10.1007/s43032-022-00939-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Extracellular vesicles (EVs) can intercellularly transmit a wide range of bioactive molecules, and these cargoes may potentially serve as therapeutic biomarkers for preeclampsia. Herein, the current study aims to elucidate the mechanism underlying the human trophoblast cell-derived EV-mediated miRNA-mRNA network that could potentially influence the development of preeclampsia based on microarray datasets from publicly available GEO databases. Preeclampsia-related genes were retrieved from the GeneCards and CTD databases, which were then subjected to GO and KEGG enrichment analyses in an effort to identify key pathways in preeclampsia. The obtained results suggested an important role of the immune- and inflammation-related pathways in preeclampsia. Infiltration proportion of 22 immune cells was subsequently analyzed using the CIBERSORT algorithm. Placental tissues of patients with preeclampsia presented with increased proportion of resting NK cells and resting dendritic cells, while there was a reduction in the proportion of activated NK cells. Differentially expressed mRNAs were additionally predicted in the preeclampsia-related datasets retrieved from the GEO database, and then intersected with preeclampsia-related genes to identify the key genes. HLA-G was indicated as a key target gene in the development of preeclampsia and further associated with hypoxia, immune, and inflammatory pathways. The upstream microRNAs (miRNAs/miRs) of the key genes were further predicted and intersected with differentially expressed miRNAs in the human trophoblast cell-derived EV-related datasets from the GEO database to obtain the key miRNAs. EVs secreted by human trophoblast cells under hypoxic conditions were associated with 3 key upstream miRNAs of HLA-G, namely miR-1273d, miR-4492, and miR-4417, which might be implicated in the development of preeclampsia via targeting of HLA-G. Collectively, our findings highlighted that EVs secreted by human trophoblast cells under hypoxic conditions transferred miR-1273d, miR-4492, and miR-4417, all of which targeted HLA-G, thus orchestrating immune- and inflammation-related pathways and consequently promoting the development of preeclampsia.
Collapse
|
7
|
Kleinbrink EL, Gomez-Lopez N, Ju D, Done B, Goustin AS, Tarca AL, Romero R, Lipovich L. Gestational Age Dependence of the Maternal Circulating Long Non-Coding RNA Transcriptome During Normal Pregnancy Highlights Antisense and Pseudogene Transcripts. Front Genet 2021; 12:760849. [PMID: 34880903 PMCID: PMC8645989 DOI: 10.3389/fgene.2021.760849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
In the post-genomic era, our understanding of the molecular regulators of physiologic and pathologic processes in pregnancy is expanding at the whole-genome level. Longitudinal changes in the known protein-coding transcriptome during normal pregnancy, which we recently reported (Gomez-Lopez et al., 2019), have improved our definition of the major operant networks, yet pregnancy-related functions of the non-coding RNA transcriptome remain poorly understood. A key finding of the ENCODE (Encyclopedia of DNA Elements) Consortium, the successor of the Human Genome Project, was that the human genome contains approximately 60,000 genes, the majority of which do not encode proteins. The total transcriptional output of non-protein-coding RNA genes, collectively referred to as the non-coding transcriptome, is comprised mainly of long non-coding RNA (lncRNA) transcripts (Derrien et al., 2012). Although the ncRNA transcriptome eclipses its protein-coding counterpart in abundance, it has until recently lacked a comprehensive, unbiased, genome-scale characterization over the timecourse of normal human pregnancy. Here, we annotated, characterized, and selectively validated the longitudinal changes in the non-coding transcriptome of maternal whole blood during normal pregnancy to term. We identified nine long non-coding RNAs (lncRNAs), including long intergenic non-coding RNAs (lincRNAs) as well as lncRNAs antisense to or otherwise in the immediate vicinity of protein-coding genes, that were differentially expressed with advancing gestation in normal pregnancy: AL355711, BC039551 (expressed mainly in the placenta), JHDM1D-AS1, A2M-AS1, MANEA-AS1, NR_034004, LINC00649, LINC00861, and LINC01094. By cross-referencing our dataset against major public pseudogene catalogs, we also identified six transcribed pseudogenes that were differentially expressed over time during normal pregnancy in maternal blood: UBBP4, FOXO3B, two Makorin (MKRN) pseudogenes (MKRN9P and LOC441455), PSME2P2, and YBX3P1. We also identified three non-coding RNAs belonging to other classes that were modulated during gestation: the microRNA MIR4439, the small nucleolar RNA (snoRNA) SNORD41, and the small Cajal-body specific ncRNA SCARNA2. The expression profiles of most hits were broadly suggestive of functions in pregnancy. These time-dependent changes of the non-coding transcriptome during normal pregnancy, which may confer specific regulatory impacts on their protein-coding gene targets, will facilitate a deeper molecular understanding of pregnancy and lncRNA-mediated molecular pathways at the maternal-fetal interface and of how these pathways impact maternal and fetal health.
Collapse
Affiliation(s)
- Erica L Kleinbrink
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donghong Ju
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
| | - Anton-Scott Goustin
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Roberto Romero
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Detroit Medical Center, Detroit, MI, United States
| | - Leonard Lipovich
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
8
|
Matsui H, Iriyama T, Sayama S, Inaoka N, Suzuki K, Yoshikawa M, Ichinose M, Sone K, Kumasawa K, Nagamatsu T, Fujisawa T, Naguro I, Ichijo H, Fujii T, Osuga Y. Elevated placental histone H3K4 methylation via upregulated histone methyltransferases SETD1A and SMYD3 in preeclampsia and its possible involvement in hypoxia-induced pathophysiological process. Placenta 2021; 115:60-69. [PMID: 34560329 DOI: 10.1016/j.placenta.2021.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Disturbance in placental epigenetic regulation contributes to the pathogenesis of preeclampsia (PE). Although aberrant placental DNA methylation status in PE has been thoroughly studied, the role of histone modifications, including histone methylation, in PE remains unclear. Moreover, no study has ever reported the association between PE and placental histone methylation status by focusing on histone methyltransferases. The present study aimed to investigate the possible involvement of placental epigenetic regulation by histone methylation via histone methyltransferases in the pathophysiology of PE. METHODS Placental mRNA expression of histone methyltransferases was examined using quantitative RT-PCR. Protein expression of histone methyltransferases and histone methylation status in placentas and trophoblast cell lines were assessed by immunoblotting and immunohistochemistry. RESULTS Expression profile of histone methyltransferases in the placentas using quantitative RT-PCR revealed that the mRNA expression levels of histone 3 lysine 4 (H3K4) methyltransferases, SETD1A and SMYD3, were significantly increased in placentas from PE patients. Immunoblotting and immunohistochemistry revealed that not only protein expression levels of SETD1A and SMYD3, but also H3K4 methylation status was increased in the trophoblasts from PE placentas. In vitro studies using HTR-8/SV-neo and BeWo cells showed that hypoxia induced the expression levels of SETD1A and SMYD3, and subsequently enhanced H3K4 methylation. Furthermore, the overexpression of SETD1A and SMYD3 in HTR-8/SV-neo cells enhanced H3K4 methylation in response to hypoxia. DISCUSSION Our study results suggest that placental epigenetic alteration by enhanced histone H3K4 methylation through upregulated SETD1A and SMYD3 might play a role in the pathophysiological process of PE associated with hypoxia.
Collapse
Affiliation(s)
- Haruka Matsui
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Seisuke Sayama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Naoko Inaoka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kensuke Suzuki
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Midori Yoshikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mari Ichinose
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Sanno Hospital, 8-10-16 Akasaka, Minato-ku, Tokyo, 107-0052, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
9
|
Leisegang MS, Gu L, Preussner J, Günther S, Hitzel J, Ratiu C, Weigert A, Chen W, Schwarz EC, Looso M, Fork C, Brandes RP. The histone demethylase
PHF
8 facilitates alternative splicing of the histocompatibility antigen
HLA
‐G. FEBS Lett 2019; 593:487-498. [DOI: 10.1002/1873-3468.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias S. Leisegang
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| | - Lunda Gu
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
| | - Jens Preussner
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- ECCPS Bioinformatics and Sequencing Facility Max‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Stefan Günther
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- ECCPS Bioinformatics and Sequencing Facility Max‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Juliane Hitzel
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| | - Corina Ratiu
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- Department of Functional Sciences – Pathophysiology “Victor Babes” University of Medicine and Pharmacy Timisoara Romania
| | - Andreas Weigert
- Faculty of Medicine Institute of Biochemistry I Goethe University Frankfurt Germany
| | - Wei Chen
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- Laboratory for Novel Sequencing Technology, Functional and Medical Genomics Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
- Department of Biology Southern University of Science and Technology Shenzhen China
| | - Eva C. Schwarz
- Biophysics Center for Integrative Physiology and Molecular Medicine School of Medicine Saarland University Homburg Germany
| | - Mario Looso
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
- ECCPS Bioinformatics and Sequencing Facility Max‐Planck‐Institute for Heart and Lung Research Bad Nauheim Germany
| | - Christian Fork
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology Medical Faculty Goethe University Frankfurt Germany
- German Center for Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt Germany
| |
Collapse
|
10
|
Feng J, Wang X, Li H, Wang L, Tang Z. Silencing of Annexin A1 suppressed the apoptosis and inflammatory response of preeclampsia rat trophoblasts. Int J Mol Med 2018; 42:3125-3134. [PMID: 30272262 PMCID: PMC6202081 DOI: 10.3892/ijmm.2018.3887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Preeclampsia (PE) is a disorder that is characterized by pregnancy-induced hypertension. It has been reported that Annexin A1 (ANXA1) is highly expressed in the plasma of women diagnosed with PE. Therefore, the present study aimed to examine the effect of ANXA1 on PE rats. The PE animal model was constructed in rats using Nω-nitro-L-arginine methyl ester (L-NAME), and the blood pressure and urine protein levels of rats were detected. The pathological features of placental tissue, and the levels of inflammatory factors and ANXA1 were respectively measured by hematoxylin-eosin staining, enzyme-linked immunosorbent assay and immunohistochemical assay. The activity of trophoblasts obtained from PE placental tissue was measured using immunofluorescence staining, while cell apoptosis was assessed using flow cytometry. The levels of associated factors were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis. The results identified that systolic blood pressure, diastolic blood pressure, mean arterial pressure and urine protein levels were enhanced, and that the contents of ANXA1, tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6 and IL-8 were increased in the L-NAME group. Transfection with small interfering RNA (siRNA)-ANXA1 markedly decreased the apoptosis and inflammatory response of trophoblasts. In addition, siRNA-ANXA1 upregulated the levels of B-cell lymphoma-2 (Bcl-2) and pro-caspase-3, and downregulated the levels of Bcl-2-associated X protein, cleaved-caspase-3, TNF-α, IL-1β, IL-6 and IL-8. Furthermore, siRNA-ANXA1 repressed the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3); however, siRNA-ANXA1 did not alter the levels of JAK2 and STAT3. Therefore, silencing of ANXA1 suppressed the apoptosis and inflammatory response of PE rat trophoblasts, and downregulated JAK2/STAK3 pathway.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xinling Wang
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Hongyan Li
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Li Wang
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zengjun Tang
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|